

Robot Path Generation by Viewing a Static Scene from a
Single Camera

Dimitrios Aristos*, Theodore Pachidis**, John Lygouras***

Department of Electrical and Computer Engineering
Democritus University of Thrace

67100 Xanthi-Greece
*daristos@hotmail.com **pated@mail.otenet.gr *** ilygour@ee.duth.gr

Abstract - In this paper a new method for robot path
generation on a plane surface is proposed. As a sensor a
single camera mounted on the end-effector of a robotic
manipulator is used. Processing an image of a static scene of
the environment of the manipulator, where the desired track is
contained, the 3D path points are accurately calculated. The
accuracy of the calculation is achieved by combining two well-
known methods for camera calibration and hand/eye –
robot/world calibration. The method was implemented in a
PUMA 761 robotic manipulator using a proper program
developed in C. Finally the accuracy of the calculation was
checked in the same robot using a software application in
Visual C++.

I. INTRODUCTION

 A major problem in robotics is the accurate calculation
of a desired robot path. Several researchers have proposed
methods where the initial path of a robotic manipulator
could be generated. In some cases, a vision system was
used as a sensor for the robot path generation. “Teaching
by showing” is one method where a stereovision system is
used to generate a robot path [1-4]. According to this
method an object is moving while a stereovision system
captures successive stereo images. Then, by processing
these images the desired path is generated. A recent
proposed method in [5] uses again a stereo system or the
pseudo stereovision system (PSVS) [6]. According to the
last method, edge points of an image captured by means of
an ordinary stereo system or the PSVS of a static scene
can be converted to 3-D path points.
 In this paper a new approach to this problem is
proposed. The basic concept is to find again robot path
points but using a single camera and exploiting the
accuracy in calculations during camera calibration and
hand/eye-robot/world calibration. Several camera calibra-
tion methods have been proposed [7-12]. In this approach
Z. Zhang method for camera calibration is used. The
intrinsic and the extrinsic camera parameters are obtained.
Transformation matrices, which relate robot base
coordinate system with the world coordinate system and
camera coordinate system with the end effector coordinate
system, are necessary to be estimated. The estimation is
possible if some of the proposed from several researchers
methods are used. The most commonly methods used for

the evaluation of the above transformations are the linear
method, the closed-form method and the non-linear
minimization method [13-17]. The method used in this
approach is the linear method proposed in [14]. A
combination of the previous selected methods and using a
simple image processing procedure permit the accurate
calculation of successive robot path points.
 This paper is organized as follows. In section II, the
camera calibration problem is briefly described. In section
III, the linear method for the solution of the hand/eye -
robot/world calibration problem is presented. In section
IV, the processing of an image containing the desired
track, captured by the camera, is briefly explained. In
section V, a method for the calculation of real 3D
coordinates of the robot path is proposed, based on pixel
coordinates found during the image processing part of the
procedure. In section VI, the experimental results for the
camera calibration and hand/eye-robot/world calibration
problems are provided. Finally in section VII, the
conclusions of this work are presented.

II. CAMERA CALIBRATION

 An analogue camera, mounted on the end-effector of the
robot, is used to observe a plane surface (i.e. the surface
of a table). The world coordinate frame is located on the
surface of the table. Every point in 3-D space can be
described with respect to the world coordinate frame, so it
can be denoted by M=[X,Y,Z]T. The augmented vector is
found by adding 1 as the last element: M΄=[X,Y,Z,1]T. If
this certain point is observed by the camera, it is
transformed into a pixel into the digital image, which is
finally stored into the memory of the host PC. This pixel,
that corresponds to the real point M, can be denoted by
m=[u,v]T, where u,v are pixel coordinates of the captured
image. Respectively, the augmented vector of m is
m΄=[u,v,1]T. A camera is modeled by the usual pinhole, so
the relationship between a 3D point M and its image
projection 2D point m is given by:
















⋅⋅=⋅

100
0
a

= with '] [' 0

0

vb
uc

s inin AMtRAm (1)

where s is an arbitrary scaling factor. The 3×3 rotation
matrix R and the 3×1 translation vector t are called
extrinsic parameters of the camera, and relate the world
coordinate frame to the camera coordinate frame. It is
obvious that the extrinsic parameters change if the camera
is moved. The intrinsic parameters are given by the 3×3
matrix Ain, and describe the internal characteristics of the
camera, such as the pixel coordinates of the principal
point (u0,v0), the scale factors a, b in image’s u and v axes,
and the parameter c describing the skewness of the two
image axes.
 The camera calibration problem is to find the intrinsic
parameter matrix Ain, which is stable for a certain camera,
and the extrinsic parameters R, t for various positions of
the camera. A model pattern with known geometry is
usually used for the calibration process, such as a pattern
with fixed geometric features, printed on a laser printer.
This is necessary because certain points M of the pattern
(i.e. its corners or edges) must have known coordinates
[X,Y,Z] with respect to a fixed coordinate frame. The
model plane is put on the surface of the table (so we can
assume that Z=0) and the camera is moved to acquire
different aspects of the non-moving pattern. Using an edge
or corner detection algorithm, the images, captured by the
camera, can be digitally processed. In this way, the pixels
m=(u,v) that correspond to certain points of the pattern
can be found. If at least three images of the same pattern
are acquired, it is possible to calculate the intrinsic
parameters of the camera (matrix Ain) and the extrinsic
parameters for the different (at least three) positions of the
camera. The algorithm for the solution of the camera
calibration problem can be found in [11-12].

III. ROBOT/WORLD AND HAND/EYE
CALIBRATION

 In many cases it is necessary to relate the robot base
coordinate frame to the world frame, or the end-effector
frame to the camera frame. The calculation of the
unknown transformations X, Z between these coordinate
frames is usually named as “Robot/World and Hand/Eye
Calibration”. Fig.1 depicts the robot geometry, the corres-
ponding coordinate frames and the transformation
matrixes A, B, X, Z among them. Transformation B is
known by the solution of the manipulator’s forward
kinematics problem, which is usually done automatically
by the software of the robot. Transformation A has been
computed by the camera calibration procedure and
includes the extrinsic parameters of the camera (rotation
and translation R, t). Although matrixes X and Z are
constant for certain robot geometry, the elements of the
matrixes A, B, change every time the end effector of the
robotic manipulator and consequently the camera mounted
on it is moving.

 The linear method for the computation of the unknown
X, Z uses quaternion algebra for the representation of the
rotation matrixes. A method for the conversion of a
rotation matrix into the corresponding unit quaternions,
and vice-versa, can be found in [18]. The Hand/Eye and
Robot/World calibration problem refers to the solution of
a homogenous matrix equation of the form AX=ZB for at
least two different positions of the robot. This matrix
equation can be decomposed into a rotation equation and
a position equation:

 BZXA RRRR = (2)
 ZBZAXA ttRttR +=+ (3)

Fig.1 The robot geometry including the robot base, the end-
effector, the camera and the world coordinate frames. The
unknowns are the Robot/World (Z) and the Hand/Eye (X)
transformations.

 A unit quaternion, Xq , which corresponds to a rotation
matrix XR can be denoted as:

),(),,,(03210 qq qqqqqX ==
 Let),(0 aq aA = ,),(0 bq bB = ,),(0 xq xX = and

),(0 zq zZ = be the unit quaternions that correspond to the
rotation matrixes ZXBA RRRR and ,, respectively.
From equation (2) we can obtain a system of three linear
equations with six unknowns of the form:

 abuJ)/(00
1663

ab−=⋅
××

 (4)

where]/,/[],,,,,[00654321 zzuuuuuu TTT zxu == is the
unknown vector. The matrix J is known and can be
computed from B and qq A . More detailed information
about the computation of J can be found in [14]. Equation
(4) refers to the rotations of only one robot position
between the coordinate frames of Fig. 1. Every additional

robot position yields three additional equations of the
form of (4) with the same unknowns, so at least two robot
positions are required to obtain a 6×6 system of linear
equations. Solving for u, the components of

ZX qq and can be determined using the equations below:

2/12
0

3210

6540

2/1
6540

)1(

] , , [
] , , [

)1(

x

x
z

−±=

=
=

+++±= −

x

uuuz
uuuz

uuuz

 (5)

 The computation of the rotation matrixes ZX RR and
with respect to the quaternions ZX qq and becomes
trivial:

















−−++−
−−−++
+−−−+

=
2
2

2
1

2
3

2
010322031

1032
2
3

2
1

2
2

2
03021

20313021
2
3

2
2

2
1

2
0

)(2)(2
)(2)(2
)(2)(2

)(
qqqqqqqqqqqq

qqqqqqqqqqqq
qqqqqqqqqqqq

qR

 The remaining unknowns are the translation vectors

zx tt and . Equation (3) can be rewritten as a 3×6 system
of linear equations of the form:

 d
t
t

F =







⋅

×
×

16
63 Z

X (6)

with:
[]

ABZ

A

ttRd
IRF
−⋅=

−= ×33

 At least two different positions of the robot are required
to form a 6×6 system of linear equations and obtain a uni-
que solution vector. In practice, however, many more ro-
bot positions are required to obtain accurate and reliable
results. For the solution of a linear system with more
equations than the unknowns, the Singular Value
Decomposition algorithm can be used [19].

IV. IMAGE PROCESSING

 The camera mounted on the end-effector of the robot
manipulator observes the scene on a plane surface (i.e. the
surface of a table). On the plane surface there is a pattern
of the track that the end-effector of the robot must follow.
In this case we have drawn a curved line on a piece of
paper, as shown in Fig.2. The purpose of the image
processing part of the procedure is to find the central
pixels of the track (the black line) from one end (bottom
of image) to the other (top-right of image). Many image
processing methods can be used for this purpose. One way

is to convert the 8-bit image into binary (1-bit) in order to
distinguish the foreground (black line) from the
background. Another way is to perform edge detection
through the whole image, as the edges correspond to
pixels of the track. This method involves scanning of the
whole image for the detection of areas where neighbor
pixels have large variations of color values. For example
the pixels that correspond to the background of the image
have similar color values close to white. An edge is
detected if the variation between neighbor pixel values
exceeds a predetermined threshold value. Concerning the
image in Fig.2, this is possible only for the image area
including the track, because this is the only part of the
image where abrupt variations of pixel color values occur.

Fig.2 Image of a track on a plane surface captured by a camera
mounted on the end-effector of the robotic manipulator PUMA
761.

 It is also known that a small amount of distortion is
introduced in an image captured by a camera. However
the most important factor that must be taken into
consideration is the lens distortion of the camera,
especially radial distortion. The reader is referred to [11-
12] for a complete description of the model used to
describe radial distortion. During the camera calibration
process it is possible to estimate the coefficients k1 and k2
of the radial distortion, which can be used before the
image processing procedure, to remove this distortion
from the image. This task is necessary if better accuracy is
needed for the calculation of the real world coordinates
that follows.

V. CALCULATION OF WORLD COORDINATES

 The final step of the procedure is the calculation of the
real world coordinates of the path that the end-effector
must follow. Based on the central pixels of the track,
which have been found during the image processing, we
must find a way to transform pixel coordinates into real
world coordinates. Provided that the camera calibration
problem has been solved, the intrinsic parameters (array
Ain) and the extrinsic parameters (rotation R and
translation t), for a certain position of the camera with
respect to the observed planar surface, are known. To

obtain accurate results, the camera must not be moved
from this specific position. Otherwise, the values of the
rotation array R and translation vector t between the
camera and the real world coordinate frames will change
and will not be known any more.
 The basic equation (1) of the camera calibration
problem transforms a scene point M, with real world
coordinates [X,Y,Z], into the corresponding pixel in the
digital image array, with pixel coordinates m=[u,v].



















⋅















⋅=
















⋅

1
1 333231

232221

131211

Z
Y
X

trrr
trrr
trrr

v
u

s

z

y

x

inA

 In this case we are interested in the inverse procedure,
which is the calculation of the real world coordinates
[X,Y,Z] that correspond to a certain pixel [u,v] of the
image captured by the camera. Provided that Z=0 for all
the scene points of the observed planar surface, the above
array equation can be rewritten as:

















−
−−
−−

=















⋅

















−
−++
−++

⇔















+
+

+















⋅
















+++
+++

=















=

z

zy

zx

Z

z

zy

zx

t
tvbt
tuat

s
Y
X

rr
vrvbrrvbr
uruarruar

t
tvbt
tuat

Z
Y
X

rrr
rvbrrvbrrvbr
ruarruarruar

v
u

s

0

0

3231

3202231021

3201231011

0

0

0

333231

330233202231021

330133201231011

1

1 (8)

 From the solution of the above 3×3 system of linear
equations we obtain the desired real world coordinates
that correspond to a pixel m of the image. The scaling
factor s is of no interest and there is no need to be found.
 So the track of the image shown in Fig.2 is transformed
into a real world 2D path, with world coordinates found
using equation (8).
 The final step is to transform the real world coordinates
into robot base coordinates, as the position of the end-
effector is controlled by the robot’s software with respect
to the robot base coordinate frame. This is very simple to
be done, as far as the transformation Z from the world
coordinate frame to the robot base coordinate frame is
known from the solution of the hand/eye and robot/world
calibration problem. The desired transformation takes
place with the multiplication of Z with the real world
coordinates X,Y,Z, using the equation (9):



















⋅


















=


















⋅=


















1100011
_
_
_

)()33()32()31(

)()23()22()21(

)()13()12()11(

Z
Y
X

trrr
trrr
trrr

Z
Y
X

ZRobotBase
YRobotBase
XRobotBase

zzzzz

yzzzz

xzzzz

Z (9)

 VI. EXPERIMENTAL RESULTS

 In this section some experimental results are given for
the camera calibration problem and the hand/eye-
robot/world calibration procedure. A PUMA 761 robot
manipulator is used, with an analogue camera PULNIX
TM-520 CCIR mounted on its end-effector. The images of
the pattern shown in Fig.3 have 512×512 pixel resolution
and 8-bit color depth. The chessboard model pattern
shown in Fig.3 is printed on a laser printer and has been
designed so that the distance between two neighbor inner
corners is 2cm in both horizontal and vertical directions.
 The source code for the solution of the camera
calibration problem is developed in C. The program
processes a number of images of the pattern taken from
various orientations of the camera. Then, the sub-pixel
coordinates for all corners of each image are found, and
the intrinsic and extrinsic parameters of the camera are
calculated combining these coordinates with the real
world coordinates of the corners. The accuracy of the final
results increases as the number of the pattern images
increases. Table 1 shows the intrinsic parameters of the
camera found for various numbers of input images.
 The intrinsic parameter c is found to be very close to
zero, which means that the angle between the two image
axes u and v is very close to 90°. The extrinsic parameters
are also calculated for each position of the camera and
will be used for the computation of the unknown
transformations X and Z (Hand/Eye and Robot/World
Calibration).

Fig.3 Image of the chessboard pattern as observed from an
unknown orientation.

 The source code for the computation of the transforma-
tions X and Z is also developed in C, using, as inputs for n
different positions of the robot manipulator, matrixes An
(extrinsic parameters) and Bi (transformations from the
end-effector coordinate frame to the robot base coordinate
frame for i robot positions). Table 2 shows the translation
vectors of the transformations X and Z found, for various
numbers of robot positions.

TABLE 1
 Number of

images a b u0 v0
4 1375.907 1386.020 356.523 322.127
5 1366.065 1374.967 353.078 321.958
6 1353.795 1363.750 352.583 332.687
7 1513.394 1505.001 352.215 207.627
8 1429.292 1430.947 344.972 277.136
9 1440.030 1439.174 343.899 266.191

10 1440.947 1439.924 344.080 265.762
11 1448.901 1446.719 344.741 259.759
12 1450.796 1448.004 345.413 258.451
13 1448.997 1446.579 344.978 260.033
14 1445.087 1443.219 344.882 262.513
15 1442.564 1441.088 345.219 264.667
16 1442.430 1440.977 346.082 264.648
17 1445.876 1444.094 346.161 262.189
18 1443.631 1442.149 346.186 263.741
19 1443.453 1442.005 346.294 264.130
20 1446.424 1445.119 345.760 263.520

TABLE 2

Number of
robot pos.

Translation vector
of transformation X

Translation vector
of transformation Z

 X (cm) Y (cm) Z (cm) X (cm) Y (cm) Z (cm)

4 -15.56 22.01 -7.17 -37.29 -150.49 52.82
5 -11.80 14.96 -7.52 -31.05 -143.23 51.28
6 -12.05 12.09 -10.86 -30.56 -142.48 56.34
7 -8.41 13.39 -12.45 -26.33 -143.69 55.65
8 -8.81 13.41 -13.27 -24.51 -144.70 56.41
9 -5.23 11.36 -12.72 -20.32 -142.73 56.74

10 -6.43 12.30 -13.48 -20.71 -143.94 56.81
11 -4.06 12.58 -13.16 -17.84 -144.12 56.31
12 -3.76 13.56 -13.21 -17.86 -144.87 55.95
13 0.68 15.75 -12.92 -12.22 -147.50 56.09
14 1.42 16.08 -12.86 -11.53 -147.86 56.14
15 1.23 15.82 -12.77 -12.31 -147.51 56.20
16 1.04 15.61 -12.62 -12.93 -147.20 56.21
17 0.87 15.32 -12.59 -13.32 -146.97 56.53
18 0.95 15.10 -12.56 -13.22 -146.86 56.80
19 0.74 14.92 -12.52 -13.81 -146.58 56.83
20 0.84 15.69 -12.50 -13.82 -147.05 55.98

 The rotation matrixes of the transformations X and Z
converge more quickly, and their values are more stable
with respect to the number of the different robot positions.
For 20 robot positions their values are:
















=

0.947331-0.319999-0.012824
0.3201680.945377-0.06128
0.007486-0.0621580.998038

XR

and
















=

0.9999520.0051740.008319-
0.005114-0.9999610.007253

0.0083560.007211-0.999939

ZR

 The rotation matrix RZ is very close to the identity
matrix I3×3. This means that the axes of both real world
and robot base coordinate frames are almost parallel.

Fig.4 The track of the image in Fig.2 transformed into real world
coordinates (in cm).

 In order to archive higher accuracy using less robot
positions, it is possible to use the non-linear minimization
method. The most commonly non-linear method used is
the Levenberg-Marquardt algorithm, which makes a
maximum likelihood estimation to obtain more accurate
results. The initial estimates required can be provided by
the results of the standard linear method. The failure of
the linear method to converge at a small number of robot
positions is mostly attributed to the presence of noise in
the values of the transformations A and B, which are used
for the computation of the unknown transformations X
and Z. Furthermore, non-linear methods provide
parameters related to the quality of the solution and the
confidence associated with the solution.
 Path points coordinates to the world and the robot base
coordinate systems, can now be found using of equations
(8) and (9) respectively. Fig.4 and Fig.5 illustrate path
point coordinates of the track shown in Fig. 2, based on
the calibration parameters previously computed. If the Z
axes of the world coordinate frame and the robot base
coordinate frame were completely parallel (rz(31)=rz(32)=0

and rz(33)=1) then the 3D track of Fig.5 would be parallel
to XY plane and all points of the line would have a
constant coordinate RobotBase_Z. In practice it is most
common the Z-axes of the two coordinate frames to be
almost parallel. For this reason, the plane where the track
line is found in Fig.5 is not completely parallel with the
XY plane of the world coordinate system and there is a
small variation of the coordinate RobotBase_Z.
 The robot base coordinates were tested on the PUMA
761 robot manipulator, where the end-effector tracked the
path generated by the proposed method with high
accuracy.

Fig 5. The track of Fig. 3 transformed into robot base coordinates
(in cm).

VII. CONCLUSION

 A new method of finding a robot path on a plane surface
is presented. A single camera, mounted on the end-
effector of the robot manipulator, was used as a sensor.
The robot path points are calculated using an image of a
static scene of the environment of the manipulator, where
a desired track was appeared. The calculation of the final
path points is the result of the combination of two well-
known methods for camera calibration and for hand/eye –
robot/world calibration. A software application written in
C, using the previous two methods and simple image
processing procedures is used to calculate the desired
robot path points based on the image captured by the
camera. With the proposed method, the desired robot path
points can be found with high accuracy. The method was
used to simulate a gantry system with a robotic
manipulator.

REFERENCES

[1] Ales Ude and Rudiger Dillmann, “Trajectory Reconstruction from
Stereo Image Sequences for Teaching Robot Paths,” in Proc. 24th Inter.
Symp. Industrial Robots, 1993, pp. 407-414.

[2] Ales Ude and Rudiger Dillmann, “Vision-Based Robot Path
Planning,” Advances in Robot Kinematics and Computational
Geometry, Kluwer, 1994, pp.505-512.
[3] Ales Ude, Rudiger Dillmann, “Robot Motion Specification: a
Vision-Based Approach,” Surveys on Mathematics for Industry, vol. 5,
pp. 109-131, 1995.
[4] B. Brunner, K. Arbter, G. Hirzinger and R. Koeppe, “Programming
Robots via Learning by Showing in a Virtual Environment,” in Proc.
Virtual Reality World’95, IDG Conferences and Seminars, 1995, pp.63-
72.
[5] T. Pachidis, J. Lygouras and P. Tsalidis, “A Graphical User Interface
for the Initial Path Generation of a Robotic Manipulator for an Arc
Welding System,” in Proc. WSEAS ICRODIC, 2002. (Accepted)
[6] T. Pachidis, J. Lygouras, “A Pseudo Stereo Vision System as a
Sensor for Real Time Path Control of a Robot,” in Proc. IEEE
Instrumentation and Measurement Technology Conference, 2002,
pp.1589-1594.
[7] O. Faugeras and G. Toscani “The calibration problem in stereo,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition,
Miami Beach, FL, June 1986, pp. 15-20.
[8] R. Y. Tsai, “A versatile camera calibration technique for high-
accuracy 3D machine vision metrology using off-the-shelf tv cameras
and lenses,” IEEE Journal of Robotics and Automation, vol. 3 no. 4, pp.
323-344, Aug. 1987.
[9] S. J. Mayback and O. D. Faugeras, “A theory of self-calibration of a
moving camera,” The International Journal of Computer Vision, vol. 8
no. 2, pp. 123-152, Aug. 1992.
[10] O. Faugeras, T. Luong and S. Mayback, “Camera self-calibration:
theory and experiments,” in Proc. 2nd ECCV, May 1992, pp. 321-334.
[11] Z. Zhang. “A Flexible New Technique for Camera Calibration,”
Technical report MSR-TR-98-71, Microsoft Research, December 1998.
[12] Z. Zhang, “Flexible Camera Calibration By Viewing a Plane From
Unknown Orientations,” IEEE Transactions on Robotics and
Automation, vol. 22, no. 11, pp. 1330-1334, November 2000.
[13] R. Y. Tsai and R. K. Lenz, “A new technique for fully autonomous
and efficient 3D robotics hand/eye calibration”, IEEE Journal of
Robotics and Automation , vol. 5, no. 3, pp. 345-358, June 1989.
[14] H. Zhuang, Z. Roth and R. Sudhakar, “Simultaneous robot/world
and tool/flange calibration by solving homogeneous transformation of
the form AX=YB,” IEEE Transactions on Robotics and Automation,
vol. 10, no. 4, pp. 549-554, August 1994.
[15] F. Park and B. Martin, “Robot sensor calibration: solving AX=XB
on the euclidean group,” IEEE Transactions on Robotics and
Automation, vol. 10, no. 5, pp. 717-721, October 1994.
[16] H. Zhuang, K. Wang and Z. S. Roth, “Simultaneous calibration of
a robot and a hand-mounted camera,” IEEE Transactions on Robotics
and Automation, vol. 11, no. 5, pp. 649-660, October 1995.
 [17] Fadi Dornaika and Radu Horaud, “Simultaneous robot/world and
hand/eye calibration,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 4, pp. 617-622, 1998.
[18] Jain, R. Kasturi, B. Schunck, Machine Vision. McGraw-Hill, 1995.
[19] W. Press, B. Flannery, S. Teukolsky and W. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University
Press, 1988.

