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Abstract - In this paper a new method for robot path 
generation on a plane surface is proposed. As a sensor a 
single camera mounted on the end-effector of a robotic 
manipulator is used. Processing an image of a static scene of 
the environment of the manipulator, where the desired track is 
contained, the 3D path points are accurately calculated. The 
accuracy of the calculation is achieved by combining two well-
known methods for camera calibration and hand/eye – 
robot/world calibration. The method was implemented in a 
PUMA 761 robotic manipulator using a proper program 
developed in C. Finally the accuracy of the calculation was 
checked in the same robot using a software application in 
Visual C++. 
 

I.  INTRODUCTION 
 
   A major problem in robotics is the accurate calculation 
of a desired robot path. Several researchers have proposed 
methods where the initial path of a robotic manipulator 
could be generated. In some cases, a vision system was 
used as a sensor for the robot path generation. “Teaching 
by showing” is one method where a stereovision system is 
used to generate a robot path [1-4]. According to this 
method an object is moving while a stereovision system 
captures successive stereo images. Then, by processing 
these images the desired path is generated. A recent 
proposed method in [5] uses again a stereo system or the 
pseudo stereovision system (PSVS) [6]. According to the 
last method, edge points of an image captured by means of 
an ordinary stereo system or the PSVS of a static scene 
can be converted to 3-D path points. 
   In this paper a new approach to this problem is 
proposed. The basic concept is to find again robot path 
points but using a single camera and exploiting the 
accuracy in calculations during camera calibration and 
hand/eye-robot/world calibration. Several camera calibra-
tion methods have been proposed [7-12]. In this approach 
Z. Zhang method for camera calibration is used. The 
intrinsic and the extrinsic camera parameters are obtained. 
Transformation matrices, which relate robot base 
coordinate system with the world coordinate system and 
camera coordinate system with the end effector coordinate 
system, are necessary to be estimated. The estimation is 
possible if some of the proposed from several researchers 
methods are used. The most commonly methods used for 

the evaluation of the above transformations are the linear 
method, the closed-form method and the non-linear 
minimization method [13-17]. The method used in this 
approach is the linear method proposed in [14]. A 
combination of the previous selected methods and using a 
simple image processing procedure permit the accurate 
calculation of successive robot path points. 
   This paper is organized as follows. In section II, the 
camera calibration problem is briefly described. In section 
III, the linear method for the solution of the hand/eye - 
robot/world calibration problem is presented. In section 
IV, the processing of an image containing the desired 
track, captured by the camera, is briefly explained. In 
section V, a method for the calculation of real 3D 
coordinates of the robot path is proposed, based on pixel 
coordinates found during the image processing part of the 
procedure. In section VI, the experimental results for the 
camera calibration and hand/eye-robot/world calibration 
problems are provided. Finally in section VII, the 
conclusions of this work are presented. 
 

II.  CAMERA CALIBRATION 
 
   An analogue camera, mounted on the end-effector of the 
robot, is used to observe a plane surface (i.e. the surface 
of a table). The world coordinate frame is located on the 
surface of the table. Every point in 3-D space can be 
described with respect to the world coordinate frame, so it 
can be denoted by M=[X,Y,Z]T. The augmented vector is 
found by adding 1 as the last element: M΄=[X,Y,Z,1]T. If 
this certain point is observed by the camera, it is 
transformed into a pixel into the digital image, which is 
finally stored into the memory of the host PC. This pixel, 
that corresponds to the real point M, can be denoted by 
m=[u,v]T, where u,v are pixel coordinates of the captured 
image. Respectively, the augmented vector of m is 
m΄=[u,v,1]T. A camera is modeled by the usual pinhole, so 
the relationship between a 3D point M and its image 
projection 2D point m is given by: 
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where s is an arbitrary scaling factor. The 3×3 rotation 
matrix R and the 3×1 translation vector t are called 
extrinsic parameters of the camera, and relate the world 
coordinate frame to the camera coordinate frame. It is 
obvious that the extrinsic parameters change if the camera 
is moved. The intrinsic parameters are given by the 3×3 
matrix Ain, and describe the internal characteristics of the 
camera, such as the pixel coordinates of the principal 
point (u0,v0), the scale factors a, b in image’s u and v axes, 
and the parameter c describing the skewness of the two 
image axes. 
   The camera calibration problem is to find the intrinsic 
parameter matrix Ain, which is stable for a certain camera, 
and the extrinsic parameters R, t for various positions of 
the camera. A model pattern with known geometry is 
usually used for the calibration process, such as a pattern 
with fixed geometric features, printed on a laser printer. 
This is necessary because certain points M of the pattern 
(i.e. its corners or edges) must have known coordinates 
[X,Y,Z] with respect to a fixed coordinate frame. The 
model plane is put on the surface of the table (so we can 
assume that Z=0) and the camera is moved to acquire 
different aspects of the non-moving pattern. Using an edge 
or corner detection algorithm, the images, captured by the 
camera, can be digitally processed. In this way, the pixels 
m=(u,v) that correspond to certain points of the pattern 
can be found. If at least three images of the same pattern 
are acquired, it is possible to calculate the intrinsic 
parameters of the camera (matrix Ain) and the extrinsic 
parameters for the different (at least three) positions of the 
camera. The algorithm for the solution of the camera 
calibration problem can be found in [11-12]. 
 

III. ROBOT/WORLD AND HAND/EYE 
CALIBRATION 

 
   In many cases it is necessary to relate the robot base 
coordinate frame to the world frame, or the end-effector 
frame to the camera frame. The calculation of the 
unknown transformations X, Z between these coordinate 
frames is usually named as “Robot/World and Hand/Eye 
Calibration”. Fig.1 depicts the robot geometry, the corres-
ponding coordinate frames and the transformation 
matrixes A, B, X, Z among them. Transformation B is 
known by the solution of the manipulator’s forward 
kinematics problem, which is usually done automatically 
by the software of the robot. Transformation A has been 
computed by the camera calibration procedure and 
includes the extrinsic parameters of the camera (rotation 
and translation R, t). Although matrixes X and Z are 
constant for certain robot geometry, the elements of the 
matrixes A, B, change every time the end effector of the 
robotic manipulator and consequently the camera mounted 
on it is moving.  

   The linear method for the computation of the unknown 
X, Z uses quaternion algebra for the representation of the 
rotation matrixes. A method for the conversion of a 
rotation matrix into the corresponding unit quaternions, 
and vice-versa, can be found in [18]. The Hand/Eye and 
Robot/World calibration problem refers to the solution of 
a homogenous matrix equation of the form AX=ZB for at 
least two different positions of the robot.  This matrix 
equation can be decomposed into a rotation equation and 
a position equation: 
 

                         BZXA RRRR =                          (2) 
                  ZBZAXA ttRttR +=+                     (3) 

 

 
 
Fig.1 The robot geometry including the robot base, the end-
effector, the camera and the world coordinate frames. The 
unknowns are the Robot/World (Z) and the Hand/Eye (X) 
transformations. 
 
   A unit quaternion, Xq , which corresponds to a rotation 
matrix XR  can be denoted as: 

),(),,,( 03210 qq qqqqqX ==  
   Let ),( 0 aq aA = , ),( 0 bq bB = , ),( 0 xq xX =  and 

),( 0 zq zZ =  be the unit quaternions that correspond to the 
rotation matrixes ZXBA RRRR  and ,,  respectively.  
From equation (2) we can obtain a system of three linear 
equations with six unknowns of the form: 
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where ]/,/[],,,,,[ 00654321 zzuuuuuu TTT zxu ==  is the 
unknown vector. The matrix J is known and can be 
computed from B and qq A . More detailed information 
about the computation of J can be found in [14]. Equation 
(4) refers to the rotations of only one robot position 
between the coordinate frames of Fig. 1. Every additional 



 

 

robot position yields three additional equations of the 
form of (4) with the same unknowns, so at least two robot 
positions are required to obtain a 6×6 system of linear 
equations. Solving for u, the components of 

ZX qq  and can be determined using the equations below: 
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   The computation of the rotation matrixes ZX RR  and  
with respect to the quaternions ZX qq  and becomes 
trivial: 
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   The remaining unknowns are the translation vectors 

zx tt  and . Equation (3) can be rewritten as a 3×6 system 
of linear equations of the form: 
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   At least two different positions of the robot are required 
to form a 6×6 system of linear equations and obtain a uni-
que solution vector. In practice, however, many more ro-
bot positions are required to obtain accurate and reliable 
results. For the solution of a linear system with more 
equations than the unknowns, the Singular Value 
Decomposition algorithm can be used [19].  
 

IV. IMAGE PROCESSING 
 
  The camera mounted on the end-effector of the robot 
manipulator observes the scene on a plane surface (i.e. the 
surface of a table). On the plane surface there is a pattern 
of the track that the end-effector of the robot must follow. 
In this case we have drawn a curved line on a piece of 
paper, as shown in Fig.2.  The purpose of the image 
processing part of the procedure is to find the central 
pixels of the track (the black line) from one end (bottom 
of image) to the other (top-right of image). Many image 
processing methods can be used for this purpose. One way 

is to convert the 8-bit image into binary (1-bit) in order to 
distinguish the foreground (black line) from the 
background. Another way is to perform edge detection 
through the whole image, as the edges correspond to 
pixels of the track. This method involves scanning of the 
whole image for the detection of areas where neighbor 
pixels have large variations of color values. For example 
the pixels that correspond to the background of the image 
have similar color values close to white. An edge is 
detected if the variation between neighbor pixel values 
exceeds a predetermined threshold value. Concerning the 
image in Fig.2, this is possible only for the image area 
including the track, because this is the only part of the 
image where abrupt variations of pixel color values occur.  
 

 
 
Fig.2 Image of a track on a plane surface captured by a camera 
mounted on the end-effector of the robotic manipulator PUMA 
761. 
 
   It is also known that a small amount of distortion is 
introduced in an image captured by a camera. However 
the most important factor that must be taken into 
consideration is the lens distortion of the camera, 
especially radial distortion. The reader is referred to [11-
12] for a complete description of the model used to 
describe radial distortion. During the camera calibration 
process it is possible to estimate the coefficients k1 and k2 
of the radial distortion, which can be used before the 
image processing procedure, to remove this distortion 
from the image. This task is necessary if better accuracy is 
needed for the calculation of the real world coordinates 
that follows. 
  

V.  CALCULATION OF WORLD COORDINATES 
 
   The final step of the procedure is the calculation of the 
real world coordinates of the path that the end-effector 
must follow. Based on the central pixels of the track, 
which have been found during the image processing, we 
must find a way to transform pixel coordinates into real 
world coordinates. Provided that the camera calibration 
problem has been solved, the intrinsic parameters (array 
Ain) and the extrinsic parameters (rotation R and 
translation t), for a certain position of the camera with 
respect to the observed planar surface, are known. To 



 

 

obtain accurate results, the camera must not be moved 
from this specific position. Otherwise, the values of the 
rotation array R and translation vector t between the 
camera and the real world coordinate frames will change 
and will not be known any more. 
   The basic equation (1) of the camera calibration 
problem transforms a scene point M, with real world 
coordinates [X,Y,Z], into the corresponding pixel in the 
digital image array, with pixel coordinates m=[u,v]. 
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   In this case we are interested in the inverse procedure, 
which is the calculation of the real world coordinates 
[X,Y,Z] that correspond to a certain pixel [u,v] of the 
image captured by the camera. Provided that Z=0 for all 
the scene points of the observed planar surface, the above 
array equation can be rewritten as: 
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   From the solution of the above 3×3 system of linear 
equations we obtain the desired real world coordinates 
that correspond to a pixel m of the image. The scaling 
factor s is of no interest and there is no need to be found. 
   So the track of the image shown in Fig.2 is transformed 
into a real world 2D path, with world coordinates found 
using equation (8). 
   The final step is to transform the real world coordinates 
into robot base coordinates, as the position of the end-
effector is controlled by the robot’s software with respect 
to the robot base coordinate frame. This is very simple to 
be done, as far as the transformation Z from the world 
coordinate frame to the robot base coordinate frame is 
known from the solution of the hand/eye and robot/world 
calibration problem. The desired transformation takes 
place with the multiplication of Z with the real world 
coordinates X,Y,Z, using the equation (9): 
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 VI. EXPERIMENTAL RESULTS 
 
   In this section some experimental results are given for 
the camera calibration problem and the hand/eye- 
robot/world calibration procedure. A PUMA 761 robot 
manipulator is used, with an analogue camera PULNIX 
TM-520 CCIR mounted on its end-effector. The images of 
the pattern shown in Fig.3 have 512×512 pixel resolution 
and 8-bit color depth. The chessboard model pattern 
shown in Fig.3 is printed on a laser printer and has been 
designed so that the distance between two neighbor inner 
corners is 2cm in both horizontal and vertical directions. 
   The source code for the solution of the camera 
calibration problem is developed in C. The program 
processes a number of images of the pattern taken from 
various orientations of the camera. Then, the sub-pixel 
coordinates for all corners of each image are found, and 
the intrinsic and extrinsic parameters of the camera are 
calculated combining these coordinates with the real 
world coordinates of the corners. The accuracy of the final 
results increases as the number of the pattern images 
increases. Table 1 shows the intrinsic parameters of the 
camera found for various numbers of input images. 
   The intrinsic parameter c is found to be very close to 
zero, which means that the angle between the two image 
axes u and v is very close to 90°. The extrinsic parameters 
are also calculated for each position of the camera and 
will be used for the computation of the unknown 
transformations X and Z (Hand/Eye and Robot/World 
Calibration). 
 

 
 
Fig.3 Image of the chessboard pattern as observed from an 
unknown orientation. 
     
   The source code for the computation of the transforma-
tions X and Z is also developed in C, using, as inputs for n 
different positions of the robot manipulator, matrixes An 
(extrinsic parameters) and Bi (transformations from the 
end-effector coordinate frame to the robot base coordinate 
frame for i robot positions). Table 2 shows the translation 
vectors of the transformations X and Z found, for various 
numbers of robot positions. 
 



 

 

TABLE 1 
 Number of 

images a b u0 v0 
4 1375.907 1386.020 356.523 322.127 
5 1366.065 1374.967 353.078 321.958 
6 1353.795 1363.750 352.583 332.687 
7 1513.394 1505.001 352.215 207.627 
8 1429.292 1430.947 344.972 277.136 
9 1440.030 1439.174 343.899 266.191 

10 1440.947 1439.924 344.080 265.762 
11 1448.901 1446.719 344.741 259.759 
12 1450.796 1448.004 345.413 258.451 
13 1448.997 1446.579 344.978 260.033 
14 1445.087 1443.219 344.882 262.513 
15 1442.564 1441.088 345.219 264.667 
16 1442.430 1440.977 346.082 264.648 
17 1445.876 1444.094 346.161 262.189 
18 1443.631 1442.149 346.186 263.741 
19 1443.453 1442.005 346.294 264.130 
20 1446.424 1445.119 345.760 263.520 

 
TABLE 2 

Number of 
robot pos. 

Translation vector 
of transformation X 

Translation vector 
of transformation Z 

 X (cm) Y (cm) Z (cm) X (cm) Y (cm) Z (cm) 

4 -15.56 22.01 -7.17 -37.29 -150.49 52.82 
5 -11.80 14.96 -7.52 -31.05 -143.23 51.28 
6 -12.05 12.09 -10.86 -30.56 -142.48 56.34 
7 -8.41 13.39 -12.45 -26.33 -143.69 55.65 
8 -8.81 13.41 -13.27 -24.51 -144.70 56.41 
9 -5.23 11.36 -12.72 -20.32 -142.73 56.74 

10 -6.43 12.30 -13.48 -20.71 -143.94 56.81 
11 -4.06 12.58 -13.16 -17.84 -144.12 56.31 
12 -3.76 13.56 -13.21 -17.86 -144.87 55.95 
13 0.68 15.75 -12.92 -12.22 -147.50 56.09 
14 1.42 16.08 -12.86 -11.53 -147.86 56.14 
15 1.23 15.82 -12.77 -12.31 -147.51 56.20 
16 1.04 15.61 -12.62 -12.93 -147.20 56.21 
17 0.87 15.32 -12.59 -13.32 -146.97 56.53 
18 0.95 15.10 -12.56 -13.22 -146.86 56.80 
19 0.74 14.92 -12.52 -13.81 -146.58 56.83 
20 0.84 15.69 -12.50 -13.82 -147.05 55.98 

       
   The rotation matrixes of the transformations X and Z 
converge more quickly, and their values are more stable 
with respect to the number of the different robot positions. 
For 20 robot positions their values are: 
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   The rotation matrix RZ is very close to the identity 
matrix I3×3. This means that the axes of both real world 
and robot base coordinate frames are almost parallel. 
   

 
 
Fig.4 The track of the image in Fig.2 transformed into real world 
coordinates (in cm). 
 
    In order to archive higher accuracy using less robot 
positions, it is possible to use the non-linear minimization 
method. The most commonly non-linear method used is 
the Levenberg-Marquardt algorithm, which makes a 
maximum likelihood estimation to obtain more accurate 
results. The initial estimates required can be provided by 
the results of the standard linear method. The failure of 
the linear method to converge at a small number of robot 
positions is mostly attributed to the presence of noise in 
the values of the transformations A and B, which are used 
for the computation of the unknown transformations X 
and Z. Furthermore, non-linear methods provide 
parameters related to the quality of the solution and the 
confidence associated with the solution.   
   Path points coordinates to the world and the robot base 
coordinate systems, can now be found using of equations 
(8) and (9) respectively. Fig.4 and Fig.5 illustrate path 
point coordinates of the track shown in Fig. 2, based on 
the calibration parameters previously computed. If the Z 
axes of the world coordinate frame and the robot base 
coordinate frame were completely parallel (rz(31)=rz(32)=0 



 

 

and rz(33)=1) then the 3D track of Fig.5 would be parallel 
to XY plane and all points of the line would have a 
constant coordinate RobotBase_Z. In practice it is most 
common the Z-axes of the two coordinate frames to be 
almost parallel. For this reason, the plane where the track 
line is found in Fig.5 is not completely parallel with the 
XY plane of the world coordinate system and there is a 
small variation of the coordinate RobotBase_Z. 
   The robot base coordinates were tested on the PUMA 
761 robot manipulator, where the end-effector tracked the 
path generated by the proposed method with high 
accuracy. 

 
 
Fig 5. The track of Fig. 3 transformed into robot base coordinates 
(in cm). 
 

VII. CONCLUSION 
 
   A new method of finding a robot path on a plane surface 
is presented. A single camera, mounted on the end-
effector of the robot manipulator, was used as a sensor. 
The robot path points are calculated using an image of a 
static scene of the environment of the manipulator, where 
a desired track was appeared. The calculation of the final 
path points is the result of the combination of two well-
known methods for camera calibration and for hand/eye – 
robot/world calibration. A software application written in 
C, using the previous two methods and simple image 
processing procedures is used to calculate the desired 
robot path points based on the image captured by the 
camera. With the proposed method, the desired robot path 
points can be found with high accuracy. The method was 
used to simulate a gantry system with a robotic 
manipulator.  
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