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Abstract 

The aim of this paper is to present some computational results  for the 
exterior point simplex algorithm (EPSA). Our implementation was carried out 
under the C environment. This  algorithm seems to be more efficient than the 
classical primal simplex algorithm (PSA), employing Dantzig’s pivoting rule. 
Preliminary computational studies on randomly generated sparse linear 
programs support this belief. Also we use a modification of a recently developed 
procedure for updating inverse matrices and incorporate it with EPSA. This 
calculation requires Θ (m2) operations .In our computational study we use  the 
modification of the product form of the inverse which is faster than the classical 
product form of the inverse. 
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Περίληψη 

Ο  στόχος  αυτού του άρθρου είναι να παρουσιαστούν μερικά  
υπολογιστικά  αποτελέσματα για τον εξωτερικό μονοκατευθυντικό αλγόριθμο 
σημείου (EPSA). Η εφαρμογή μας πραγματοποιήθηκε στο πλαίσιο του 
περιβάλλοντος C. Αυτός ο αλγόριθμος φαίνεται να είναι αποδοτικότερος από τον 
κλασσικό πρωταρχικής σπουδαιότητας μονοκατευθυντικό αλγόριθμο (PSA), 
υιοθέτηση Dantzig’s να περιστρέψει  κανόνας. Οι προκαταρκτικές υπολογιστικές 
μελέτες για τα τυχαία παραγμένα αραιά γραμμικά προγράμματα υποστηρίζουν 
αυτήν την πεποίθηση. Επίσης  χρησιμοποιούμε  μια τροποποίηση μιας πρόσφατα 
αναπτυγμένης διαδικασίας για τις αντίστροφες μήτρες και την ενσωματώνουμε με 
EPSA. Αυτός ο υπολογισμός απαιτεί Θ (m2) διαδικασίες . Ι ν η υπολογιστική  
μελέτη μας  χρησιμοποιούμε την τροποποίηση της μορφής προϊόντων του 
αντιστρόφου που  είναι  γρηγορότερο από την  κλασσική  μορφή προϊόντων του 
αντιστρόφου. 

.  

 

Λέξεις κλειδιά: Γραμμικός προγραμματισμός: Εξωτερικός αλγόριθμος 
σημείου; Αξιολόγηση αλγορίθμου; Αριθμητικά πειράματα 
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1. Introduction 
The simplex method has been studied extensively since its invention in 

1947 by G.B. Dantzig and still remains one of the most efficient methods for 
solving a great majority of practical problems. Although a number of variants of 
the simplex method have been developed, none of them has polynomial time 
complexity [16]. That is, the simplex method may require computational effort 
which grows exponentially with the size of the given problem. 

The first polynomial algorithm was invented by Khachian in 1979 and is 
called the ellipsoid algorithm.The practical performance of this algorithm is poor 
for practical problems compared with the simplex method. In 1984, Karmarkar 
presented a new polynomial algorithm for the linear problems (LP) which 
approaches the optimal solution from the interior of the feasible region [7]. Since 
this Karmarkar’s seminal paper was published, many papers have been written 
about interior point methods [14, 17]. As their theoretical properties show, 
interior point methods work well for real world problems in real life and 
outperform the simplex method for very large-scale problems [8]. 

EPSA was originally developed by Paparrizos [9] for assignment 
problem. Latter, Paparrizos [10] generalized his exterior point method to the 
general linear problem by developing a dual, in nature, algorithm.  
Independently, Anstreicher and Terlaky [1], developed a similar primal 
algorithm solving a sequence of linear sub-problems. Another relevant result 
was developed by Chen et al. [4]. 

A common feature of almost all-simplex type algorithms is that they can 
be interpreted as a procedure following simplex type paths that lead to the 
optimal solution. This algorithm differs radically from the Primal Simplex 
Algorithm (PSA) because its basic solutions are not feasible. It has been pointed 
out by Paparrizos et al. [12]  that the geometry of EPSA reveals that this 
algorithm is faster than the well-known simplex method, a fact that was verified 
by preliminary computational results comparing early dual versions of EPSA on 
specially structured linear problems (see[6]). Recently, Paparrizos et al.[13] 
presented computational results relating  that EPSA is more efficient than the 
classical primal simplex algorithm PSA. 

In this paper, our aim is to study the standard linear programming form. 
In section 2, we recall some well-known facts about the simplex algorithm in 
revised form. As it is the first algorithm that solves linear programs it is very 
well studied in the literature. Also, we present the EPSA  and a modification of a 
recently developed procedure for updating inverse matrices and incorporate it 
with exterior point algorithm. In Section 3 we give the computational results that 
demonstrate the superiority of our algorithm over simplex algorithm on a class 
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of randomly generated problem. Finally, in Section 4 we give our conclusions 
and discuss possible extensions of the algorithm.   

2. Algorithm description  
We concerned with the following linear programming program 

                                                    minimize       Tc x

                                                    subject to     Ax b=                               (P.1) 

                                                                          
0,x ≥

where A  and  T  denotes transposition. We find it 
convenient to describe the algorithm using the revised form of the simplex 
algorithm. Let us first assume that A is full rank, rank(A)=m, 1 

, , ,m n n mA c x b×∈ ∈ ∈

≤  m≤n . We will 
follow a time-honored traditional abuse of notation and write B instead of AB and 
N instead of A

B

N. Whether B and N stands for a subset of indices or a matrix 
should be clear for the context. With the matrix A partitioned as A= ( B  N ) and 
with a corresponding partitioning and ordering of x and c   

B

N

x
x

x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  (P.1) is written as  B

N

c
c

c
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

min           T
B Bc x + T

N Nc x  

  subject to   B NBx Nx b+ =  

, 0B Nx x ≥  
Here B is an  non-singular submatrix of A called basic matrix. The 
columns of A which belong to B are called basic and the remaining ones are 
called non-basic. Given a basic B the associated solution 

m m×

Bx = 1B b− ,   Nx =  

is called a basic solution. A solution x=(

0

Bx , Nx ) is feasible if  x  0. 
Otherwise it is called infeasible. It is well known that the solution of the dual 
problem, which corresponds to the basis B, is given by  where 

 are the simplex multipliers and s are the dual slack variables. 
The associated basis B is called dual feasible if s . It is well known that 

. 

≥

Ts c A w= −
1( )T T

Bw c B −=
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 In every iteration PSA interchanges a column of the current B with a 
column of the current non-basic N, constructing in this way a new basis. 
Geometrically, this means that PSA moves along the edges of the polyhedron   

. Such a path is known as a simplex path. Οn the other 
hand EPSA generates two paths toward the optimal solution. One path is 
infeasible (exterior) and the other is feasible. So EPSA does not need to proceed 
by following one such edge after another along the polyhedron. Therefore, 
avoiding the feasible region we can follow shorter paths to the optimal solution. 
Note that the total work of one iteration of simplex type algorithms is dominated 
by the determination of the inverse matrix

{ | , 0}P x Ax b x= ≤ ≥

1B − . This inverse however, does not 
have to be computed from scratch in each iteration. The next inverse  
can be computed from the current inverse  with a simple pivoting 
operation. Namely we have     

1 ( 1)( ) rB − +

1 ( )( ) rB −

                                                                                   (1)                                     1 ( 1) 1 1 ( )( ) ( )rB E B− + − −= r

Where  is the inverse of an eta-matrix. We use relation (2) to compute . 1E − 1E −

1 1 ( ) T
q q q

pq

E I a e
a

− = − − e                                                                        (2) 

In the above relation denotes the pivot element, column q is called the pivot 
column and row p is called the pivot row. A formal description of the primal 
EPSA in the revised form is given below. The above technique is called product 
form of the inverse. 

pqa

 
2.1. EPSA algorithm 

 

Step 0 (Initialization). 

 Start with a feasible basic partition (B,N). 

 Compute the vectors and matrices 1B − , Bx , , . Find the sets 
 and 

w Ns
{ : jP j N s= ∈ < 0} 0}{ jQ j N s= ∈ ≥  choose an arbitrary vector 

1 2 | |( , ,..., ) 0pλ λ λ λ= > , compute s0 using the relation 0 j j
j P

s λ
∈

= s∑ and the 

vector B j
j P

d hλ
∈

= − j∑ with 1 .j jh B A−=  
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Step 1 (Test of termination) 
(i)   (Test of optimality) If P =∅ , STOP. Problem (P.1) is optimal. 

(ii)  (Choice of leaving variable). If STOP. If s0,Bd ≥ 0 = 0, problem (P.1) is 
optimal. Otherwise, choose the leaving variable [ ]B r kx x=  using the relation 

                         [ ]

[ ]

B r

B r

x
d

α = =
−

min [ ]
[ ]

[ ]

: 0B i
B i

B i

x
d

d
⎧ ⎫⎪ ⎪<⎨ ⎬
−⎪ ⎪⎩ ⎭

 

If α =+  problem (P.1) is unbounded.  Put ∞ B B By x dα= +  

  
Step 2 (Choice of entering variable). 

Compute the vectors  1
. .( )rP r PH B A−=  and . Also find the 

ratios 

1
. .( )rQ r QH B A−=

1θ and  2θ  using the relations 

1
P

rP

s
h

θ −
= =min : 0 and j

rj
rj

s
h j

h
⎧ ⎫−⎪ ⎪> ∈⎨ ⎬
⎪ ⎪⎩ ⎭

P  

2
Q

rQ

s
h

θ
−

= =min : 0 and j
rj

rj

s
h j

h
⎧ ⎫−⎪ ⎪< ∈⎨ ⎬
⎪ ⎪⎩ ⎭

Q  

and determine indexes t1 and t2 such that P(t1) = p and Q(t2) = q. If 1θ ≤  2θ , set 
l = p. Otherwise, set l = q.The non-basic variable xl enter in the basis. 

  
Step 3 (Pivoting). 

Set B[r] = l. If 1θ ≤  2θ  set \{ }P P l=  and { }Q Q k= ∪ . Otherwise, set 
. [ ]Q t k=

Using the new partition (B, N), where N =(P, Q), update the vectors and matrices 
B-1, xB, w, sB N , dBB = yB - xB B 

. Go to step 1. 
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2.2 A Modification of Product Form of the Inverse 
To justify the next algorithm and analysis we need the following notations: 

x⊗y             :       outer product of the vectors x, y∈ℜn

l             :       index of the entering variable 

k                       :       index of the leaving variable 

A.l             :      the lth column of A 
-1
r.B              :     the rth row of basis inverse 

-1
r.B              :     the matrix B-1 with the rth row put to zero 

This updating scheme presented by [3]. The key idea is the following. 
The current basis inverse 1B−  can be computed from the previous inverse  
with a simple outer product of two vectors and one matrix addition. Namely we 
have  

-1B

1 1
r. r.B B v B 1− − −= + ⊗        (3) 

 

A formal description of this method follows. 

Compute the pivot column hl = A.-1B l

Compute the vector 
  
 
 

T

1l ml

rl rl rl

h h1v
h h h

⎡ ⎤
= − −⎢ ⎥
⎣ ⎦

Compute the outer product v ⊗  -1
r.B

Set the rth row of equal to zero. Save the result in -1B -1
r.B   

Compute the new basis inverse using relation (3). 

 

The outer product requires m2 multiplications and the addition of two matrices 
requires m2 additions. The total cost of the above method is 2m2 operations 
(multiplications and additions). Hence, the complexity is Θ(m2).  

The computational study indicates that the modification of the product 
form of the inverse is faster than the product form of the inverse (Badr et al . 
2005)  so that we use the modification of the product form of the inverse in our 
implementation. 

 
 

 



 
 
 
 
 
 
 
 

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων»                                                                .                                                                

8  

 

3. Computational results 
The algorithm described in Section 2 have been experimentally 

implemented. In this section we describe our numerical experiments and present 
computational results, which demonstrate EPSA’s efficiency on random sparse 
linear programs. In this computational analysis we perform a comparison 
between PSA and EPSA.  

Our numerical experiments were performed on a PC with 2.000 MHz 
Pentium 4 processor, RAM 512 Mb and Windows XP operating system. Our 
implementation was done under the C environment. 

 
Table 1 
Computational results for sparse linear programs n×n (CPU in seconds) 

                n× n                 nnz                PSA________                    EPSA____________ 

                                                               niter                 CPU                   niter                CPU                   

Density 5% 
300 ×  300      4390.0 3683.9 31.7053 2090.0 18.7477          
350 ×  350      6139.5 4908.3 58.6021 2945.5 34.4852  
400 ×  400      7807.2 6276.2 97.9857 2889.7 56.9017   
450 ×  450      10097.8 8351.5 167.0880 3574.3 91.6215 
500 ×  500      12195.8 10086.5 250.6490 4212.6 134.2010 
600 ×  600      17546.0 14713.3 540.0090 5445.5 261.4220     
700 ×  700      23896.4 20107.6 1038.44 0 6930.8 463.7710     
800 ×  800      31213.1 31310.7 2212.4300 8708.9 775.7790    
Density 10% 
300 ×  300 8573.6 3370.1 31.6330 2022.9 20.0335          
350 ×  350 11664.1 4448.5 56.6681 2336.1 34.3671 
400 ×  400 15216.2 5173.4 89.0898 2473.8 53.4746 
450 ×  450 21208.5 7478.7 163.3977 3579.7 97.8625 
500 ×  500 23780.1 8424.7 272.2390 3778.9 129.3933 
600 ×  600 34251.0 12929.5 543.6208 5405.3 274.6750 
700 ×  700 46633.3 17158.6 1001.8940 6752.5 484. 2333 
800 ×  800 60911.2 22861.1 1965.3400 8152.7 778.2910     

       
We run total of 280 random sparse problems of density 5% and 10%. The 

problems we tested were small and medium in size.  
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Table 2 
 
Computational results for sparse linear programs n×2n (CPU in seconds) 

            n×2n                 nnz              PSA_______           EPSA____________________ 

                                                           niter                CPU                  niter                     CPU                   

Density 5% 
300 ×  600 8787.3 5980.2 98.6748 4334.5 82.5895 
350 ×  700 11945.1 8599.7 197.7200 5472.4 155.1030 
400 ×  800 15635.8 10970.4 335.3570 6571.1 256.8260 

Density 10% 
300 ×  600 17117.5 5249.4 89.4705 3911.4 77.5788 
350 ×  700 23295.2 7000.4 170.1536 4830.2 141.2967 
400 ×  800 30440.6 8979.3 294.852 6290.4 231.7487 

  
Table 3 
Computational results for sparse linear programs 2n×n (CPU in seconds) 

      2n× n            nnz                    PSA________________        EPSA_______________ 

                                                     niter             CPU                niter                    CPU                   

Density 5% 
600 ×300 8781.2 4228.3 105.287 232.75 66.0007  
700×  350 12286.3 6117.2 206.368 3015.2 122.935  
800 ×  400 15611.6 8580.4 401.718 3675.1 193.491 
Density 10% 
600 × 300     17135.2 5022.5 133.142 2464.5 75.7136 
700×  350 23325.8 7058.2 278.003 3031.9 132.701 
800 ×  400 30468.7 9302.3 443.655 3680.5 209.991 

 
The sparse linear optimization problems that have been solved are of the form 

minimize       Tc x

      subject to     Ax b=  

0,x ≥
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where  and  T  denotes transposition and an intial 
feasible solution exists. In our computational study we use two different density 
cases of the problems: 5%  and 10%. For each density case there are three  

, , ,m n n mA c x b×∈ ∈ ∈

 

different dimension cases : n n× , 2n n× and 2n n× . The first case , 
include eight different classes of problems corresponding to the values n = 300, 
350, 400, 450, 500, 600, 700,800; each of these classes contains ten random 
sparse linear programs. Those of the other two cases 

n n×

2n n×  and , 
include three different classes of problems corresponding to the values n = 300, 
350, 400. The ranges of values that were used for randomly generated linear 
programs for all densities are c

2n n×

∈[1 500] , A ∈ [-700 1800], = 7 and 
center=35.  

r

For each size and density of the problem we bring together some 
statistics on the LPs used in our computational study and information on the 
performance of the two algorithms, PSA and EPSA. Columns of  Table 1-3 
contain problems size, number of non-zero elements of the constraint matrix 

 ( excluding cost and right-hand size vector) nnz, the average number of 
iterations, niter and the mean CPU time, CPU.  

In order to show more clearly the superiority of EPSA over PSA we 
provide now some tables showing for each case of density relative with the 
above tables. 

 

Table 4 

Ratios for sparse linear programs n×n__________________________________

 n×n                                   niter PSA/EPSA                     CPU PSA/EPSA

Density 5% 

300 ×  300 1.7626 1.6912 
350 ×  350 1.6664 1.6993 
400 ×  400 2.1719 1.7220 
450 ×  450 2.3365 1.8237 
500 ×  500 2.3944 1.8677 
600 ×  600 2.7019 2.0657 
700 ×  700 2.9012 2.2391 
800 ×  800 3.5953 2.8519 
Mean value 2.4413 1.9951 
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         Density 10% 

300 ×  300 1.6660 1.5790 
350 ×  350 1.9042 1.6489 
400 ×  400 2.0913 1.6660 
450 ×  450 2.0892 1.6697 
500 ×  500 2.2294 1.7562 
600 ×  600 2.3920 1.9791 
700 ×  700 2.5411 2.0690 
800 ×  800 2.8041 2.5252 
Mean value 2.2147 1.8616 

 

Table 5 

Ratios for sparse linear programs 2n×n_________________________________ 

  n×n                                    niter PSA/EPSA                     CPU PSA/EPSA 

      Density 5% 

300 ×  600 3.7728 1.5962 
350 ×  700 4.0748 1.6787 
400 ×  800 4.2479 2.0762 

Mean value 4.0318 1.7837 
Density 10% 

300 ×  600 2.0379 1.7585 
350 ×  700 2.3280 2.0950 
400 ×  800 2.5275 2.1194 

Mean value 2.2978 1.9910 
Table 6 

Ratios for sparse linear programs n×2n_________________________________ 

            n×n                               niter PSA/EPSA                   CPU PSA/EPSA 

Density 5% 

300 ×  600 2.0273 1.1948 
350 ×  700 2.1828 1.2748 
400 ×  800 2.3795 1.3058 

Mean value 2.1965 1.2585 
       Density 10% 

300 ×  600 1.3421 1.1533 
350 ×  700 1.4493 1.2042 
400 ×  800 1.4275 1.2729 

Mean value 1.4063 1.2101 
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 In Tables 4-6 were present the ratios (iterations of  PSA)/(iterations of 
EPSA) and (CPU time of PSA)/(CPU time of EPSA) for the corresponding 
densities and dimensions. At the end of each density case we give the mean 
values of the above ratios for each class of test problem. We now plot the ratios 
taken from Table 4 (Fig.1). The plot is for the sparse n×n liner programs for all 
density cases.   
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Fig.1 Ratios of  PSA over EPSA for optimal sparse problems n×n 

From the plot above we can see that as the problem dimension increases the 
superiority of EPSA over PSA increases. We can see for example, in case of 
sparse LPs of dimension n×n that as the problem density decreases, the 
superiority of our algorithm over PSA increases. This conclusion is crucial 
because all the real life problems are extremely sparse. Particularly, in 
dimension 800×800 of density 5%, EPSA is 3.5953 times faster than PSA in 
terms of iterations and solves the problems 2.8519 times faster than PSA in 
terms of CPU time. Although the computational effort required in each step of 
EPSA requires more time compared to n iteration step of PSA, the improvement 
of EPSA comes from the fact that it requires adequately less iterations than PSA. 
Moreover, as the problem size increase and the problem density decrease, EPSA 
gets relatively faster. 

4. Conclusion 
 In this paper we have resented a computational attractive approach to 
solving sparse linear programming problems. In the previous section we have 
addressed the most issue of an efficient implementation of our algorithm EPSA. 
The computational study of Section 3 indicates that as the problem size increases 
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and the density of problem decreases the frequency when EPSA outperforms the 
simplex algorithm increases. In our opinion this is a good practical performance 
that gives much promise to the approach. EPSA’s algorithm experimental 
implementation in randomly generated LPs proved that the algorithm is fast; 
there is still room for its further improvement. These possible improvements will 
be the subject of our future work. 
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