

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

1

Some computational results on the
efficiency of an exterior point algorithm

El-Said Badr1, K. Paparrizos, Baloukas Thanasis, G. Varkas
University of Macedonia, Department of Applied Informatics, 156 Egnatia Str., 54006

 Thessaloniki, E-mail: {it02185, thanasis, paparriz }@uom.gr

Abstract

The aim of this paper is to present some computational results for the
exterior point simplex algorithm (EPSA). Our implementation was carried out
under the C environment. This algorithm seems to be more efficient than the
classical primal simplex algorithm (PSA), employing Dantzig’s pivoting rule.
Preliminary computational studies on randomly generated sparse linear
programs support this belief. Also we use a modification of a recently developed
procedure for updating inverse matrices and incorporate it with EPSA. This
calculation requires Θ (m2) operations .In our computational study we use the
modification of the product form of the inverse which is faster than the classical
product form of the inverse.

.

Keywords: Linear programming: Exterior point algorithm; Algorithm
evaluation; Numerical experiments

1 Research supported by the Greek Scholarship Foundation, (I.K.Y).

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

2

Μερικά υπολογιστικά αποτελέσματα για
την αποδοτικότητα ενός εξωτερικού

αλγορίθμου σημείου

El-Said Badr, K. Paparrizos, Baloukas Thanasis, G. Varkas
University of Macedonia, Department of Applied Informatics, 156 Egnatia Str., 54006

 Thessaloniki, E-mail: {it02185, thanasis, paparriz }@uom.gr

Περίληψη

Ο στόχος αυτού του άρθρου είναι να παρουσιαστούν μερικά
υπολογιστικά αποτελέσματα για τον εξωτερικό μονοκατευθυντικό αλγόριθμο
σημείου (EPSA). Η εφαρμογή μας πραγματοποιήθηκε στο πλαίσιο του
περιβάλλοντος C. Αυτός ο αλγόριθμος φαίνεται να είναι αποδοτικότερος από τον
κλασσικό πρωταρχικής σπουδαιότητας μονοκατευθυντικό αλγόριθμο (PSA),
υιοθέτηση Dantzig’s να περιστρέψει κανόνας. Οι προκαταρκτικές υπολογιστικές
μελέτες για τα τυχαία παραγμένα αραιά γραμμικά προγράμματα υποστηρίζουν
αυτήν την πεποίθηση. Επίσης χρησιμοποιούμε μια τροποποίηση μιας πρόσφατα
αναπτυγμένης διαδικασίας για τις αντίστροφες μήτρες και την ενσωματώνουμε με
EPSA. Αυτός ο υπολογισμός απαιτεί Θ (m2) διαδικασίες . Ι ν η υπολογιστική
μελέτη μας χρησιμοποιούμε την τροποποίηση της μορφής προϊόντων του
αντιστρόφου που είναι γρηγορότερο από την κλασσική μορφή προϊόντων του
αντιστρόφου.

.

Λέξεις κλειδιά: Γραμμικός προγραμματισμός: Εξωτερικός αλγόριθμος
σημείου; Αξιολόγηση αλγορίθμου; Αριθμητικά πειράματα

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

3

1. Introduction
The simplex method has been studied extensively since its invention in

1947 by G.B. Dantzig and still remains one of the most efficient methods for
solving a great majority of practical problems. Although a number of variants of
the simplex method have been developed, none of them has polynomial time
complexity [16]. That is, the simplex method may require computational effort
which grows exponentially with the size of the given problem.

The first polynomial algorithm was invented by Khachian in 1979 and is
called the ellipsoid algorithm.The practical performance of this algorithm is poor
for practical problems compared with the simplex method. In 1984, Karmarkar
presented a new polynomial algorithm for the linear problems (LP) which
approaches the optimal solution from the interior of the feasible region [7]. Since
this Karmarkar’s seminal paper was published, many papers have been written
about interior point methods [14, 17]. As their theoretical properties show,
interior point methods work well for real world problems in real life and
outperform the simplex method for very large-scale problems [8].

EPSA was originally developed by Paparrizos [9] for assignment
problem. Latter, Paparrizos [10] generalized his exterior point method to the
general linear problem by developing a dual, in nature, algorithm.
Independently, Anstreicher and Terlaky [1], developed a similar primal
algorithm solving a sequence of linear sub-problems. Another relevant result
was developed by Chen et al. [4].

A common feature of almost all-simplex type algorithms is that they can
be interpreted as a procedure following simplex type paths that lead to the
optimal solution. This algorithm differs radically from the Primal Simplex
Algorithm (PSA) because its basic solutions are not feasible. It has been pointed
out by Paparrizos et al. [12] that the geometry of EPSA reveals that this
algorithm is faster than the well-known simplex method, a fact that was verified
by preliminary computational results comparing early dual versions of EPSA on
specially structured linear problems (see[6]). Recently, Paparrizos et al.[13]
presented computational results relating that EPSA is more efficient than the
classical primal simplex algorithm PSA.

In this paper, our aim is to study the standard linear programming form.
In section 2, we recall some well-known facts about the simplex algorithm in
revised form. As it is the first algorithm that solves linear programs it is very
well studied in the literature. Also, we present the EPSA and a modification of a
recently developed procedure for updating inverse matrices and incorporate it
with exterior point algorithm. In Section 3 we give the computational results that
demonstrate the superiority of our algorithm over simplex algorithm on a class

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

4

of randomly generated problem. Finally, in Section 4 we give our conclusions
and discuss possible extensions of the algorithm.

2. Algorithm description
We concerned with the following linear programming program

 minimize Tc x

 subject to Ax b= (P.1)

0,x ≥

where A and T denotes transposition. We find it
convenient to describe the algorithm using the revised form of the simplex
algorithm. Let us first assume that A is full rank, rank(A)=m, 1

, , ,m n n mA c x b×∈ ∈ ∈

≤ m≤n . We will
follow a time-honored traditional abuse of notation and write B instead of AB and
N instead of A

B

N. Whether B and N stands for a subset of indices or a matrix
should be clear for the context. With the matrix A partitioned as A= (B N) and
with a corresponding partitioning and ordering of x and c

B

N

x
x

x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, (P.1) is written as B

N

c
c

c
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

min T
B Bc x + T

N Nc x

 subject to B NBx Nx b+ =

, 0B Nx x ≥
Here B is an non-singular submatrix of A called basic matrix. The
columns of A which belong to B are called basic and the remaining ones are
called non-basic. Given a basic B the associated solution

m m×

Bx = 1B b− , Nx =

is called a basic solution. A solution x=(

0

Bx , Nx) is feasible if x 0.
Otherwise it is called infeasible. It is well known that the solution of the dual
problem, which corresponds to the basis B, is given by where

 are the simplex multipliers and s are the dual slack variables.
The associated basis B is called dual feasible if s . It is well known that

.

≥

Ts c A w= −
1()T T

Bw c B −=
≥ 0

0Bs =

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

5

 In every iteration PSA interchanges a column of the current B with a
column of the current non-basic N, constructing in this way a new basis.
Geometrically, this means that PSA moves along the edges of the polyhedron

. Such a path is known as a simplex path. Οn the other
hand EPSA generates two paths toward the optimal solution. One path is
infeasible (exterior) and the other is feasible. So EPSA does not need to proceed
by following one such edge after another along the polyhedron. Therefore,
avoiding the feasible region we can follow shorter paths to the optimal solution.
Note that the total work of one iteration of simplex type algorithms is dominated
by the determination of the inverse matrix

{ | , 0}P x Ax b x= ≤ ≥

1B − . This inverse however, does not
have to be computed from scratch in each iteration. The next inverse
can be computed from the current inverse with a simple pivoting
operation. Namely we have

1 (1)() rB − +

1 ()() rB −

 (1) 1 (1) 1 1 ()() ()rB E B− + − −= r

Where is the inverse of an eta-matrix. We use relation (2) to compute . 1E − 1E −

1 1 () T
q q q

pq

E I a e
a

− = − − e (2)

In the above relation denotes the pivot element, column q is called the pivot
column and row p is called the pivot row. A formal description of the primal
EPSA in the revised form is given below. The above technique is called product
form of the inverse.

pqa

2.1. EPSA algorithm

Step 0 (Initialization).

 Start with a feasible basic partition (B,N).

 Compute the vectors and matrices 1B − , Bx , , . Find the sets
 and

w Ns
{ : jP j N s= ∈ < 0} 0}{ jQ j N s= ∈ ≥ choose an arbitrary vector

1 2 | |(, ,...,) 0pλ λ λ λ= > , compute s0 using the relation 0 j j
j P

s λ
∈

= s∑ and the

vector B j
j P

d hλ
∈

= − j∑ with 1 .j jh B A−=

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

6

Step 1 (Test of termination)
(i) (Test of optimality) If P =∅ , STOP. Problem (P.1) is optimal.

(ii) (Choice of leaving variable). If STOP. If s0,Bd ≥ 0 = 0, problem (P.1) is
optimal. Otherwise, choose the leaving variable []B r kx x= using the relation

 []

[]

B r

B r

x
d

α = =
−

min []
[]

[]

: 0B i
B i

B i

x
d

d
⎧ ⎫⎪ ⎪<⎨ ⎬
−⎪ ⎪⎩ ⎭

If α =+ problem (P.1) is unbounded. Put ∞ B B By x dα= +

Step 2 (Choice of entering variable).

Compute the vectors 1
. .()rP r PH B A−= and . Also find the

ratios

1
. .()rQ r QH B A−=

1θ and 2θ using the relations

1
P

rP

s
h

θ −
= =min : 0 and j

rj
rj

s
h j

h
⎧ ⎫−⎪ ⎪> ∈⎨ ⎬
⎪ ⎪⎩ ⎭

P

2
Q

rQ

s
h

θ
−

= =min : 0 and j
rj

rj

s
h j

h
⎧ ⎫−⎪ ⎪< ∈⎨ ⎬
⎪ ⎪⎩ ⎭

Q

and determine indexes t1 and t2 such that P(t1) = p and Q(t2) = q. If 1θ ≤ 2θ , set
l = p. Otherwise, set l = q.The non-basic variable xl enter in the basis.

Step 3 (Pivoting).

Set B[r] = l. If 1θ ≤ 2θ set \{ }P P l= and { }Q Q k= ∪ . Otherwise, set
. []Q t k=

Using the new partition (B, N), where N =(P, Q), update the vectors and matrices
B-1, xB, w, sB N , dBB = yB - xB B

. Go to step 1.

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

7

2.2 A Modification of Product Form of the Inverse
To justify the next algorithm and analysis we need the following notations:

x⊗y : outer product of the vectors x, y∈ℜn

l : index of the entering variable

k : index of the leaving variable

A.l : the lth column of A
-1
r.B : the rth row of basis inverse

-1
r.B : the matrix B-1 with the rth row put to zero

This updating scheme presented by [3]. The key idea is the following.
The current basis inverse 1B− can be computed from the previous inverse
with a simple outer product of two vectors and one matrix addition. Namely we
have

-1B

1 1
r. r.B B v B 1− − −= + ⊗ (3)

A formal description of this method follows.

Compute the pivot column hl = A.-1B l

Compute the vector

T

1l ml

rl rl rl

h h1v
h h h

⎡ ⎤
= − −⎢ ⎥
⎣ ⎦

Compute the outer product v ⊗ -1
r.B

Set the rth row of equal to zero. Save the result in -1B -1
r.B

Compute the new basis inverse using relation (3).

The outer product requires m2 multiplications and the addition of two matrices
requires m2 additions. The total cost of the above method is 2m2 operations
(multiplications and additions). Hence, the complexity is Θ(m2).

The computational study indicates that the modification of the product
form of the inverse is faster than the product form of the inverse (Badr et al .
2005) so that we use the modification of the product form of the inverse in our
implementation.

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

8

3. Computational results
The algorithm described in Section 2 have been experimentally

implemented. In this section we describe our numerical experiments and present
computational results, which demonstrate EPSA’s efficiency on random sparse
linear programs. In this computational analysis we perform a comparison
between PSA and EPSA.

Our numerical experiments were performed on a PC with 2.000 MHz
Pentium 4 processor, RAM 512 Mb and Windows XP operating system. Our
implementation was done under the C environment.

Table 1
Computational results for sparse linear programs n×n (CPU in seconds)

 n× n nnz PSA________ EPSA____________

 niter CPU niter CPU

Density 5%
300 × 300 4390.0 3683.9 31.7053 2090.0 18.7477
350 × 350 6139.5 4908.3 58.6021 2945.5 34.4852
400 × 400 7807.2 6276.2 97.9857 2889.7 56.9017
450 × 450 10097.8 8351.5 167.0880 3574.3 91.6215
500 × 500 12195.8 10086.5 250.6490 4212.6 134.2010
600 × 600 17546.0 14713.3 540.0090 5445.5 261.4220
700 × 700 23896.4 20107.6 1038.44 0 6930.8 463.7710
800 × 800 31213.1 31310.7 2212.4300 8708.9 775.7790
Density 10%
300 × 300 8573.6 3370.1 31.6330 2022.9 20.0335
350 × 350 11664.1 4448.5 56.6681 2336.1 34.3671
400 × 400 15216.2 5173.4 89.0898 2473.8 53.4746
450 × 450 21208.5 7478.7 163.3977 3579.7 97.8625
500 × 500 23780.1 8424.7 272.2390 3778.9 129.3933
600 × 600 34251.0 12929.5 543.6208 5405.3 274.6750
700 × 700 46633.3 17158.6 1001.8940 6752.5 484. 2333
800 × 800 60911.2 22861.1 1965.3400 8152.7 778.2910

We run total of 280 random sparse problems of density 5% and 10%. The

problems we tested were small and medium in size.

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

9

Table 2

Computational results for sparse linear programs n×2n (CPU in seconds)

 n×2n nnz PSA_______ EPSA____________________

 niter CPU niter CPU

Density 5%
300 × 600 8787.3 5980.2 98.6748 4334.5 82.5895
350 × 700 11945.1 8599.7 197.7200 5472.4 155.1030
400 × 800 15635.8 10970.4 335.3570 6571.1 256.8260

Density 10%
300 × 600 17117.5 5249.4 89.4705 3911.4 77.5788
350 × 700 23295.2 7000.4 170.1536 4830.2 141.2967
400 × 800 30440.6 8979.3 294.852 6290.4 231.7487

Table 3
Computational results for sparse linear programs 2n×n (CPU in seconds)

 2n× n nnz PSA________________ EPSA_______________

 niter CPU niter CPU

Density 5%
600 ×300 8781.2 4228.3 105.287 232.75 66.0007
700× 350 12286.3 6117.2 206.368 3015.2 122.935
800 × 400 15611.6 8580.4 401.718 3675.1 193.491
Density 10%
600 × 300 17135.2 5022.5 133.142 2464.5 75.7136
700× 350 23325.8 7058.2 278.003 3031.9 132.701
800 × 400 30468.7 9302.3 443.655 3680.5 209.991

The sparse linear optimization problems that have been solved are of the form

minimize Tc x

 subject to Ax b=

0,x ≥

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

10

where and T denotes transposition and an intial
feasible solution exists. In our computational study we use two different density
cases of the problems: 5% and 10%. For each density case there are three

, , ,m n n mA c x b×∈ ∈ ∈

different dimension cases : n n× , 2n n× and 2n n× . The first case ,
include eight different classes of problems corresponding to the values n = 300,
350, 400, 450, 500, 600, 700,800; each of these classes contains ten random
sparse linear programs. Those of the other two cases

n n×

2n n× and ,
include three different classes of problems corresponding to the values n = 300,
350, 400. The ranges of values that were used for randomly generated linear
programs for all densities are c

2n n×

∈[1 500] , A ∈ [-700 1800], = 7 and
center=35.

r

For each size and density of the problem we bring together some
statistics on the LPs used in our computational study and information on the
performance of the two algorithms, PSA and EPSA. Columns of Table 1-3
contain problems size, number of non-zero elements of the constraint matrix

 (excluding cost and right-hand size vector) nnz, the average number of
iterations, niter and the mean CPU time, CPU.

In order to show more clearly the superiority of EPSA over PSA we
provide now some tables showing for each case of density relative with the
above tables.

Table 4

Ratios for sparse linear programs n×n__________________________________

 n×n niter PSA/EPSA CPU PSA/EPSA

Density 5%

300 × 300 1.7626 1.6912
350 × 350 1.6664 1.6993
400 × 400 2.1719 1.7220
450 × 450 2.3365 1.8237
500 × 500 2.3944 1.8677
600 × 600 2.7019 2.0657
700 × 700 2.9012 2.2391
800 × 800 3.5953 2.8519
Mean value 2.4413 1.9951

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

11

 Density 10%

300 × 300 1.6660 1.5790
350 × 350 1.9042 1.6489
400 × 400 2.0913 1.6660
450 × 450 2.0892 1.6697
500 × 500 2.2294 1.7562
600 × 600 2.3920 1.9791
700 × 700 2.5411 2.0690
800 × 800 2.8041 2.5252
Mean value 2.2147 1.8616

Table 5

Ratios for sparse linear programs 2n×n_________________________________

 n×n niter PSA/EPSA CPU PSA/EPSA

 Density 5%

300 × 600 3.7728 1.5962
350 × 700 4.0748 1.6787
400 × 800 4.2479 2.0762

Mean value 4.0318 1.7837
Density 10%

300 × 600 2.0379 1.7585
350 × 700 2.3280 2.0950
400 × 800 2.5275 2.1194

Mean value 2.2978 1.9910
Table 6

Ratios for sparse linear programs n×2n_________________________________

 n×n niter PSA/EPSA CPU PSA/EPSA

Density 5%

300 × 600 2.0273 1.1948
350 × 700 2.1828 1.2748
400 × 800 2.3795 1.3058

Mean value 2.1965 1.2585
 Density 10%

300 × 600 1.3421 1.1533
350 × 700 1.4493 1.2042
400 × 800 1.4275 1.2729

Mean value 1.4063 1.2101

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

12

 In Tables 4-6 were present the ratios (iterations of PSA)/(iterations of
EPSA) and (CPU time of PSA)/(CPU time of EPSA) for the corresponding
densities and dimensions. At the end of each density case we give the mean
values of the above ratios for each class of test problem. We now plot the ratios
taken from Table 4 (Fig.1). The plot is for the sparse n×n liner programs for all
density cases.

ratios for optimal of density 5%

0
0.5

1
1.5

2
2.5

3
3.5

4

30
0

45
0

70
0

problem size nxn

ra
tio

s niter
CPU

ratios optimal LPs off density10%

0
0.5

1
1.5

2
2.5

3

30
0

45
0

70
0

problem size, nxn

ra
tio

s niter
CPU

Fig.1 Ratios of PSA over EPSA for optimal sparse problems n×n

From the plot above we can see that as the problem dimension increases the
superiority of EPSA over PSA increases. We can see for example, in case of
sparse LPs of dimension n×n that as the problem density decreases, the
superiority of our algorithm over PSA increases. This conclusion is crucial
because all the real life problems are extremely sparse. Particularly, in
dimension 800×800 of density 5%, EPSA is 3.5953 times faster than PSA in
terms of iterations and solves the problems 2.8519 times faster than PSA in
terms of CPU time. Although the computational effort required in each step of
EPSA requires more time compared to n iteration step of PSA, the improvement
of EPSA comes from the fact that it requires adequately less iterations than PSA.
Moreover, as the problem size increase and the problem density decrease, EPSA
gets relatively faster.

4. Conclusion
 In this paper we have resented a computational attractive approach to
solving sparse linear programming problems. In the previous section we have
addressed the most issue of an efficient implementation of our algorithm EPSA.
The computational study of Section 3 indicates that as the problem size increases

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

13

and the density of problem decreases the frequency when EPSA outperforms the
simplex algorithm increases. In our opinion this is a good practical performance
that gives much promise to the approach. EPSA’s algorithm experimental
implementation in randomly generated LPs proved that the algorithm is fast;
there is still room for its further improvement. These possible improvements will
be the subject of our future work.

References:
 [1]Anstreich, G. ,Terlaky, T. A monotonic build-up simplex algorithm
for linear programming,Operation Research 42 (1994) 556-561.

[2]Badr, E., Paparrizos, K., Samaras, N., Sifaleras, A. (2005) .On the
basis inverse of the exterior point simplex algorithm.17ο Εθνικό Συνέδριο
Ελληνικής Εταιρίας ΕπιχειρησιακώνΕρευνών.

[3]Benhamadou, M. (2002). On the simplex algorithm ‘revised form’,
Advances in Engineering Software, 33, 769-777.

[4]Chen, H. ,Pardalos, P. Saunders, M. The simplex algorithm with a new
primal and dual pivot rule, Operations Research etters 16 (1994) 121-127.

[5]Dantzig, G.B. Linear programming and extensions. Princeton, NJ:
Princeton University Press; 1963.

[6]Dosios K., Paparrizos K., Resolution of problem of degeneracy in a
primal and dul simplex algorithm, Operation Research Letters 20 (1997)
45-50.
 [7] Karmarkar, N.K. (1984).A new polynomial-time algorithm for linear
programming. Combinatorica, 4(4), 373–395.

[8] Lustig, L.J., Marsten R.E. and Shanno, D.F. (1994). Interior point methods
for linear programming: computational state of the art. ORSA Journal on
Computing, 6(1), 1–14.

[9]Paparrizos, K. An infeasible exterior point simplex algorithm for
assignment problems,Mathematical Programming 51 (1991) 45-54.

[10]Paparrizos, K. A generalization of an exterior point simplex algorithm
for linear programming problems, Technical Report,University of
Macedonia, 1990.

[11]Paparrizos, K. An exterior point simplex algorithm for general linear
problems, nnals of Operation Research 47 (1993) 497-508.

18ο Συνέδιο της Ε.Ε.Ε.Ε. – «Διαχείριση Κινδύνων» .

14

[12]Paparrizos, K., Samaras, N., Tsiplidis, K. Pivoting algorithm for (LP)
generating two paths,in: M. P. Pardalos, A. C. Fluodas (Eds.),
Encyyclopedia of Optimization, vol 4, Kluwer Academic Publishers,
2001, pp. 302-306.

[13]Paparrizos, K., Samaras, Stephanides G., An efficient simplex type
algorithm for sparse and dense linear programs, European Journal of
Operational Research 148 (2003) 323-334.
[14] Roos, C., Terlaky, T. and J.-Ph. Vial (1997).Theory and Algorithms for
Linear Optimization. John Wiley & Sons, New York, USA.

[15]Strang, G. Introduction to applied mathematics. Wellesley, MA:
Wellesley-Cambridge Press; 1990.
[16] Terlaky, T.and Zhang, S. (1993). Pivot rules for linear programming: a
survey on recent theoretical developments. Annals of Operations Research, 46,
203–233.

[17] Wright,S.J.(1997).Primal-Dual Interior-Point Methods.SIAM, Philadelphia.

