Characteristics of primary school students’
Scratch code

Dimitrios Nikolos, dnikolos@upatras.gr

Dept of Educational Sciences and Early Childhood Education, University of Patras, Greece
Vassilis Komis, komis@upatras.gr

Dept of Educational Sciences and Early Childhood Education, University of Patras, Greece

Abstract

In the present study we discuss characteristics of primary school students’ Scratch code.
Characteristics of code that appear in other Scratch code analyses include a) Dead code, b)
Initialization problems, c) Extremely Fine-Grained Programming (EFGP), d) Duplicate code and
e) Long scripts. Does student code reflect code that is found in large Scratch project repositories
or other settings? Does student code have other characteristics? We taught two fifth-grade classes
(23 students each) Scratch for 9 hours. Learning Scratch was part of a compulsory 1 hour per
week ICT course. After each hour we gathered students' projects that comprised our data (code
base). The analysis of the code base showed that many of the characteristics of code that were
found elsewhere were also present in the classroom, namely, dead code, initialization problems
and EFGP. Duplicate code and long scripts did not appear in the code base in a large percentage.
We also discovered that students’ projects featured race conditions and code that had no effect.
Such codes provide learning opportunities. When students create these types of codes, they face
a problematic situation and they will have to reflect on their code. Since Scratch makes tinkering
easy by design, they may find a way to move forward, otherwise the teacher should be able to
assist them.

Keywords
Scratch, code, primary school students, dead code, initialization, EFGP

Constructionism 2020 Papers 188

Introduction

Scratch is a programming language that enables young students to create their own games and
other types of interactive media (Resnick et al., 2009). Scratch originates from Logo and aims in
enabling students to create meaningful artifacts. Doing so, they engage with a wide range of
computational concepts that promote computational thinking (Brennan & Resnick, 2012;
Meerbaum-Salant, 2013). These computational concepts can be found in the code of Scratch
projects and include sequences, loops, parallelism, events, conditionals, operators, and data.

School teachers may use Scratch to extend student knowledge beyond basic office skills (Crook,
2010). Students face problems while programming with Scratch. Every problem that occurs when
students create meaningful artifacts is a learning opportunity. When students overcome such
problems, they construct their own knowledge. If they are unable to do so by themselves, teachers
can look inside student code and help them. In most cases, teachers will find that some of the
code works as intended and some other code has problems or doesn’t work at all.

Code that can cause a Scratch project not to work as intended includes:

= Dead code: code that is not executed (Aivaloglou & Hermans, 2016). Dead code includes
procedures that are not invoked, unmatched broadcast-receive messages, code that is not
invoked and empty event scripts. Static analysis of code can locate dead code and it was
found in more than 25% of the analyzed projects in (Aivaloglou & Hermans, 2016). Dr.
Scratch, a tool that is used for evaluating computational thinking in Scratch projects also
takes dead code into account (Moreno-Ledn & Robles, 2015).

= Problematic initialization: changes in the state of the program that are not restored. An
example of problematic initialization is a Scratch project that hides a sprite but never shows
it again, not even when the program is restarted. The reason for this is that Scratch stores
the state of the program between executions. By convention, a click on the green flag restarts
the program (Franklin et al., 2016). Hairball can detect initialization problems using static
code analysis (Boe et al., 2013).

Code that may hamper learning programming includes:

= Extremely Fine-Grained Programming (EFGP): Code that is fragmented in small logical
blocks (Meerbaum-Salant, 2011).
= Long scripts: Large scripts that are not easily understood (Hermans & Aivaloglou, 2016).
= Duplicate code: Code that is repeated either in the same project or even in the same object
(Hermans & Aivaloglou, 2016).
In the present study we determine a) which of the above code patterns can be found when primary
school students learn Scratch in the classroom and b) what other problematic code, if any,
emerges during the process. In the following section methodology is described, subsequently
results are drawn, discussion and conclusions follow.

Methodology

The study was conducted with two fifth-grade primary school classes, during a compulsory ICT
course. Each class had 23 students and they worked in groups of 2 or 3 students. The course took
place in a primary school computer lab with 13 computers equipped with the Scratch 2.0 software.

The curriculum

We developed a curriculum 9 hours in duration. Students had to create a project that featured a
basic Scratch concept in each hour. The Scratch concepts of each lesson were:

1. Introduction: Students navigate in the Scratch programming environment

2. Views: Students learn to change the appearance of Scratch objects and scene.

3. Interaction: Students learn to program interaction with the use of "if <> then else".

4. Messages: Students learn to program broadcasting and receiving messages for synchronizing.

Constructionism 2020 Papers 189

5. Variables: Students learn to add score in a game.

6. Recap: Students create a project with concepts they have already learned.

7. New blocks: Students create a project that features "New blocks" (procedures).
8. Clones: Students learn to program clones of their objects.

9. Students create their own games and finish the course.

After each lesson, students had to submit a project that featured the basic concept.

The projects

During the nine weeks of the course we gathered 152 projects that the students created (Table
1). We did not study the projects of the first week because they were very basic. The course took
place in a regular school setting and we had common computer lab problems. Some students did
not save their work and some computers malfunctioned during class. That is why there are
different number of projects in each class and lesson.

Table 1. Number of projects

Number of projects

lesson Class 1 Class 2

2. Views 9 8
3. Interaction 9 6
4. Messages 10 13
5. Variables 12 9
6. Recap 12 10
7. New blocks 11 12
8. Clones 6 9
9. Students create

. 10 6
their own games
Total 152

Some of the projects that the students created may not fit into the group of the projects of their
peers. To find these outliers, we scored the projects using Dr. Scratch and created the boxplot of
the scores grouped by lesson (Figure 1). The eleven outliers of the box plot were eliminated from
the code analysis, leaving 141 projects that comprise the data (code base) of the present study.

12

'
o

101
o

@ =
.
B0
]
@
-
by

20 130
*

lesson2 lesson3 lessond lessons lessong lesson’ lessond lesson9

Figure 1. Dr. Scratch score of projects

The projects that the students created are small projects (Table 2). They feature 3.2 sprites on
average, and 6.25 scripts per project, as opposed to projects downloaded from the Scratch

Constructionism 2020 Papers 190

website that featured 5.68 sprites per project and 17.35 scripts per project on average (Aivaloglu
& Hermans, 2016).

Table 2. Description of projects

Average Number of Average number of

Lesson sprites per project scripts per project
2.Views 247 3.70
3.Interaction 3.2 4.90
4.Messages 3.6 3.76
5.Variables 3.05 8.30
6.Recap 4.05 5.91
7.New blocks 1.45 6.14
8.Clones 4.29 9.57
9.0wn programs 3.53 8.33
Average 3.2 6.25

Each project was studied in respect to the following questions:

= How many blocks are never executed (dead code)?
= Does the project feature problematic initialization?
= Does the project feature Extremely Fine-Grained Programming?
= Does the project feature long scripts?
= Does the project feature duplicate code?
= Does the project feature other problematic code?
The results of this analysis are described in the next section.

Results
Dead code

Average dead code blocks per project

6
5
4
3
2
1 1N
A\@&% ’b&oo 4 Qggo .\,50\67 <2g/(g;q \Oagv \O(\Qg—) & 6\{’
v & & @ © & & Q«OQ"
,’)\(\ ™ &t ,\$ OQ\(\
o

Figure 2. Average dead code blocks per project for every lesson

We counted the blocks that are not executed (dead code) in our code base. Projects contained
1.94 dead code blocks in average. Several projects contained no dead code. The maximum
number of dead blocks that appeared in a project was 19. This project was submitted after lesson

Constructionism 2020 Papers 191

7 (New Blocks) where we observed the maximum number of dead code blocks in general (Figure
2).

when clicked

define Square

square
pen down

move €T steps
> =
turn (L@ degrees

Figure 3. Complete example of "New blocks” usage

"New blocks" is the name of the way that Scratch implements procedures. A complete example of
the usage of “New blocks” in a project is shown in figure 3. A new block is comprised of a definition
and an implementation. It then needs to be called on an event in order to be executed.

Dead code was present in 18 out of the 22 submitted projects after the "New Blocks" lesson. We
documented the reasons for dead code occurrence in relation to the concept of "New Blocks". We
found four reasons for dead code occurrence: a) students did not attach the blocks of the
implementation to the new block definition, or omitted the definition (4 projects), b) students did
not call the new block at all (5 projects), c) students did not call the new block on an event (10
projects) and d) students called the new block in the wrong sprite (1 project).

Problematic initialization

when clicked

— -

move €I steps
>

if on edge, bounce

Figure 4. Example of code with no need for initialization

As far as initialization is concerned a project can have either:

a) correct initialization: the state of the program resets (usually on green flag click),

b) problematic initialization: the state of the program does not fully reset, or does not reset at all

¢) no need for initialization: the state of the program does not need to reset. An example of a
code that changes the state, i.e. the position, of a sprite without need for initialization is shown
in figure 4. The sprite is continuously moving, and its starting position is unimportant.

Initialization
15
10 | | I I
. II || I I|
Views Interaction = Messages Variables Recap Clones =~ Own project
B Correct initialization ~ M Problematic |n|t|aI|zat|on No need

Constructionism 2020 Papers 192

Figureb. Initialization of projects

We counted the number of projects that featured correct initialization, problematic initialization and
no need for initialization (Figure 5). We noticed that when students created their own games, they
did not implement correct initialization. The reason for the correct initialization in projects of
lessons about messages and variables is that initialization was a vital part of these lessons.

Extremely Fine-Grained Programming

When a component of the program, e.g. a variable, is accessed or modified by two or more scripts
in the same sprite, the script features Extremely Fine-Grained Programming (EFGP). We counted
the occurrences of EFGP (Table 3) and found that around a quarter of the projects featured EFGP.

Table 3. Number of EFGP occurrences

Total Percentage
EFGP Projects projects

2. Views 7 17 41%

3. Interaction 3 10 30%

4. Messages 4 21 19%

5. Variables 4 20 20%
6. Recap 0 22 0

7. New blocks 16 22 72%
8.Clones 0 14 0

9. Own games 1 15 7%

While teaching new blocks (lesson 7) students created code like that of figure 6. The left script
draws a square and the right script draws a triangle. However, if the sprite is clicked an irregular
shape will be drawn because of the concurrent model of execution. Such codes account for the
increased number of EFGP projects in lesson 7.

When this sprite clicked

When this sprite clicked

move €D
»
turn (X @D degrees

move €D steps
turn (X) degrees

Figure 6. Extremely Fine-Grained Programming after lesson 7

We noticed that when students program their own games, EFGP does not occur (lessons 6 and
9). A possible explanation for this is that students created relatively small projects.

Long scripts

In figure 7 the distribution of projects per maximum script size is shown. Most projects feature
maximum script size between 5 and 10 blocks. Only 1 out of the 142 projects featured a very long
script with 32 blocks in one script. This script is shown in figure 8. The code checks if a sprite is
touching one of the five bad apples that existed in the project. This code can be shortened using
logical operators or clones.

Constructionism 2020 Papers 193

Number of projects

30

25

20
15
10
0 I I I m 0 = | |
1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 & & & 32

L

Maximum script size

Figure 7. Distribution of number of projects per maximum script size

when clicked
i for;vcr

if touching Apple4 ? _then

hide
>

»

set apples to (D

[~
if touching Apple5 ? _then

hide
)

:wni't O secs

set apples to (P

: 3 more times

Figure 8. The long script

Duplicate code

Only 5 of the 142 featured projects featured duplicate code. As with long scripts the reason might
be that students created small projects in this course. Interestingly, the three of the five projects
that featured duplicate code were submitted after the students were familiarized with clones. When
the course created the need for multiple sprites, student responded by creating duplicate code.

Other problematic code

We noticed that the already studied problematic code categories (dead code, problematic
initialization, EFPG, long scripts, and duplication) were not the only ones that appeared in our
code base. Others include a) race conditions and b) code without effect.

Constructionism 2020 Papers 194

Race conditions

When students design games they want to program concurrent events (Kafai, 1995). Scratch
provides a concurrent environment that makes these events possible (Maloney et al., 2010). Even
though concurrency is intuitive, since we live in a concurrent world, problematic concurrent code
emerges in Scratch programming (Meerbaum-Salant, et al., 2011). A case of problematic
concurrent code occurs when the program modifies a component, e.g. a sprite attribute, in scripts
that are executed at the same time. In that case, the code outcome depends on the way Scratch
executes the program. Such codes create race conditions in concurrent programming languages
(Netzer & Miller, 1992). In the example of figure 9 there is no way to determine the costume of the
sprite by inspecting the code. The student cannot predict the outcome of the code, they can only
observe it after execution.

when clicked

when clicked

switch costume to cake-a switch costume to cake-b

Figure 9. Race condition example

Race conditions occur if fragmented code (EFGP) exists. On the other hand, not all fragmented
code leads to race conditions. An example of fragmented code that does not cause race conditions
is shown in figure 10.

touching Shark 2

Figure 10. Fragmented code without race conditions

We counted the projects that created race conditions and we noticed that almost all the projects
that featured EFGP created race conditions (Table 4).

Table 4. Number of projects with race conditions

Projects with EFGP
race conditions Projects

2. Views 7 7

3. Interaction 1 3
4. Messages 4 4
5. Variables 0 4
6. Recap 1 0

7. New blocks 16 16
8.Clones 0 0

9. Own games 0 1

Constructionism 2020 Papers 195

Code without effect

Students get immediate visual feedback when they program with Scratch (Maloney et al., 2010).
They rapidly get used to anticipating changes in the code to reflect on the program outcome.
However, they may create code that runs but has no effect. The "hide" block is code without effect
in the example of figure 11. Since the "show" block is executed immediately after the "hide",
students do not observe the execution of the "hide" block. Notice that this kind of code does not
fall into the dead code category. This code is executed but has no effect.

when clicked

set skor to (I

forever

turn (% pick random to E) degrees

3

mave E steps
b

if touching shark 7 then

ehange skor by 69

Figure 11. "Hide" block has no effect
We counted the projects that featured codes without effect and found 13 such codes. Other

examples of code without effect are shown in figure 12. The "change [ghosts] by (1)" block has no
effect. On the code on the right, the clone is deleted immediately after its creation.

when I start as a clone

change ghosts by 9

to@

forever
move ‘m steps
>

if on edge, bounce
>

set ghosts

if touching Sprite ? ~ then

change score by ‘9

[——
delete this clone

Figure 12. Code without effect

Primary school students created projects that feature dead code, problematic initialization and
EFGP. Long scripts and duplicate code did not appear in a large percentage of the projects. During
the study other problematic code such as race conditions and code without effect emerged.

Discussion

Following the tradition of Logo (Papert, 1980), Scratch programming language enables students
to create artifacts they care about. Students use computer code to program the behaviour of their
objects and when an unintended behaviour occurs, a learning opportunity emerges. In the present
study, we identified such code.

Constructionism 2020 Papers 196

We found that students leave dead code in their projects. Similar results are found in large Scratch
project repositories (Hermans & Aivaloglou, 2016) and dead code is one of the bad smells
detected by Dr. Scratch (Moreno-Ledn & Robles, 2015). Dead code is not confusing in all cases.
In some cases, students leave dead code for further usage and Scratch allows it by design
(Resnick & Rosenbaum, 2013). But it is also possible for students to leave dead code because
they have not constructed a mental model for a concept. In our study, we found that the "New
blocks" concept led to increased dead code. We noticed that besides code that is not executed,
i.e. dead code, students created code that was executed but had no effect. We feel that this type
of code may puzzle students since it sabotages the immediate feedback that Scratch provides by
design (Maloney et al., 2010).

Initialization problems are found in large Scratch project repositories (Aivaloglu & Hermans, 2016).
Initialization is a point of concern in teaching programming either using professional languages,
Logo (Lee & Lehrer, 1988) or Scratch (Franklin et al.,2016). In the present study, we found that
initialization problems exist when students use Scratch in the classroom.

Most Scratch users make use of concurrent execution of stacks of code (Maloney et al., 2008).
When this feature is overused, Extremely Fine-Grained Programming (EFGP) appears
(Meerbaum-Salant et al., 2011). We found that EFGP occurs when students learn Scratch in the
classroom. Furthermore, we noticed that race conditions appear along with EFGP. Race
conditions can be confusing for students since they produce unpredictable results.

We did not find many projects with long scripts or with duplicate code in our code base, though
students have been found to develop such code (Meerbaum-Salant et al., 2011). One possible
explanation for this is the small size of students' projects. It is possible that both these types of
code would appear if students created more complex projects. Code duplication was one of the
code smells that was detected in higher numbers in large projects using Dr. Scratch (Vargas-Alba
et al., 2019).

Conclusions

Discussing Scratch code is not about bad practices, professional habits, software maintenance or
performance. Discussing Scratch code is about what students may find counterintuitive and what
learning opportunities appear in the process of creating a project. While Scratch is taught in the
classroom, students tinker and try out code in a constructionist approach. But, even with a
programming language that is designed for novices, the produced code can be confusing.

Teachers may use the code that was described in this study as grounds for fruitful discussion with
the student, ideally when the student stumbles upon it by themselves like our students did. It is
possible that manifestations of such code are the result of the student's understanding of Scratch
code, further research is needed to provide insights about this connection.

References

Aivaloglou, E., & Hermans, F. (2016). How Kids Code and How We Know: An Exploratory Study
on the Scratch Repository. Proceedings of the 2016 ACM Conference on International Computing
Education Research (ICER '16). pp. 53—-61.

Boe, B., Dreschler, G., Barbara, U. C. S., Hill, C., Conrad, P., Barbara, U. C. S., & Franklin, D.
(2013). Hairball: Lint-inspired Static Analysis of Scratch Projects. In Proceeding of the 44th ACM
technical symposium on Computer science education (SIGCSE '13). pp. 215-220.

Crook, S. (2010). Embedding Scratch in the Classroom. International Journal of Learning and
Media, 1(4). pp. 17-21.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development
of computational thinking. Annual American Educational Research Association Meeting. pp. 1-25.

Constructionism 2020 Papers 197

Franklin, D., Hill, C., Dwyer, H. A., Hansen, A. K., Iveland, A., & Harlow, D. B. (2016). Initialization
in Scratch: Seeking Knowledge Transfer. SIGCSE '16. pp. 217-222.

Hermans, F., & Aivaloglou, E. (2016). Do code smells hamper novice programming? A controlled
experiment on Scratch programs. IEEE International Conference on Program Comprehension,
2016. pp. 1-10.

Kafai, Y. (1995). Minds in play. New Jersey: Lawrence Erlbaum.

Lee, O., & Lehrer, R. (1988). Conjectures concerning the origins of misconceptions in LOGO.
Journal of Educational Computing Research, 4(1), pp. 87-105.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice:
urban youth learning programming with Scratch. ACM SIGCSE Bulletin, 40(1), pp. 367-371.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch
Programming Language and Environment. ACM Transactions on Computing Education, 10(4),
pp. 1-15.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming in Scratch. In
Proceedings of the 16th annual joint conference on Innovation and technology in computer science
education. pp. 168-172.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with
Scratch. Computer Science Education, 23, pp. 239-264.

Moreno-Leodn, J., & Robles, G. (2015). Analyze your Scratch projects with Dr. Scratch and assess
your computational thinking skills. In 2015 Scratch conference. pp. 12-15.

Netzer, R. H., & Miller, B. P. (1992). What are race conditions? Some issues and formalizations.
ACM Letters on Programming Languages and Systems (LOPLAS) 1(1). pp. 74-88.

Papert, S. (1980). Mindstorms: Mindstorms: Children, Computers, and
Powerful Ideas. Basic books: NY.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafali,
Y. B. (2009). Scratch: Programming for all. Commun. Acm, 52(11), pp. 60-67.

Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. Design, make, play: Growing
the next generation of STEM innovators, pp. 163-181.

Vargas-Alba, A., Troiano, G.M., Chen, Q., Harteveld, C., & Robles, G. (2019). Bad Smells in
Scratch Projects: A Preliminary Analysis. In Proceedings of the 2nd Systems of Assessments for
Computational Thinking Learning Workshop (TACKLE@EC-TEL 2019).

Constructionism 2020 Papers 198

