
Implementing

Problem Solving Methods

in CYC

Dimitrios Sklavakis

MSc in Arti�cial Intelligence

Department of Arti�cial Intelligence

University of Edinburgh

1998

2

Abstract

Although the CYC system is very good in answering questions through backtracking in its

large knowledge base (KB), it can be illustrated in the case of systematic fault diagnosis

that this is not enough to solve more complex problems that demand dynamic collection

of information and KB updating. A solution proposed in this thesis is to provide CYC

with a richer set of inference mechanisms and with the means to combine them into more

complex problem-solving procedures.

The KADS methodology provides an excellent source both for inference mechanisms,

its inference types, and ways to combine them, through its inference structures and Gen-

eric Task Models. Therefore, KADS provides the means to develop a rich set of inference

mechanisms which will improve the reasoning power of CYC. In addition, KADS provides

a systematic, task-oriented approach to knowledge acquisition which naturally comple-

ments the task-independent development of CYC's Upper Ontology. The combination of

these two approaches provides the means to �ll in the knowledge gap between these two

extremes of the Ontology pyramid; the task-speci�c knowledge, which forms the base,

and the Upper Ontology, which forms the top. A relevant issue discussed, is the problem

of \brittleness" of Expert Systems, an issue fundamental for the creation and use of CYC.

The actual implementation of the Systematic Diagnosis problem solving method for

faults in PCs and Automobiles, described in this thesis, demonstrates a way to implement

KADS problem solving methods in CYC. The implementation maps directly the various

layers of KADS Expertise model onto CYC's KB and its LISP-like programming language,

SubL. The implemented system thus combines the declarative richness, transparency

and expressiveness of the CYC KB with the conceptual analysis and structured search

represented in the problem solving method.

ii

iii

Acknowledgements

The research reported here was carried out in the Department of Arti�cial Intelligence

(DAI) with the cooperation of the Arti�cial Intelligence Applications Institute (AIAI). I

would like �rst of all to thank my supervisors, Dr Helen Pain, from DAI, and Dr Stuart

Aitken, from AIAI , for their patient and careful guidance during the course of the research

reported here. Finally, I thank the Greek Ministry of National Economy, Directorate of

International Economic Organizations, who provided �nancial support during my year of

study via NATO Science Fellowship 107559/DOO 1094/25-7-97.

iv

Contents

1 Introduction 1

1.1 The Problem . 1

1.2 Motivation . 2

1.3 Summary of Results . 3

2 The Component Technologies: KADS and CYC 5

2.1 Introduction . 5

2.2 The KADS Methodology . 5

2.2.1 Expertise Analysis . 6

2.2.2 Generic Task Models (GTMs) . 12

2.3 The CYC System . 14

2.3.1 The CYC Knowledge Base (KB) 14

2.3.2 The CycL Representation Language 19

2.3.3 The CYC Inference Engine . 22

2.3.4 Interface Tools . 23

2.3.5 Interface Tools - The KB Browser 23

2.3.6 Interface Tools - The Knowledge Editing Text (KE Text) facilities 24

2.3.7 Interface Tools - The SubLanguage (SubL) Interactor 29

2.3.8 Interface Tools - The Functional Interface (FI) 29

2.4 Summary . 29

3 The Analysis Phase 31

3.1 Introduction . 31

3.2 Knowledge Acquisition for the Domain Layer 32

3.3 Selecting a Generic Task Model . 33

3.4 Domain Roles and Domain Layer . 34

3.4.1 The System Model . 36

3.4.2 The Testing Knowledge . 40

3.4.3 The Diagnosis Context . 42

3.5 The Inference Layer . 44

3.6 The Task Layer . 44

3.7 Summary . 46

v

vi CONTENTS

4 The Implementation Phase in CYC 47

4.1 Introduction . 47

4.2 The Overall Model . 48

4.3 The Implementation of The Domain Layer 49

4.3.1 The PC Diagnosis Microtheory. 50

4.3.2 The System Model. 50

4.3.3 The Testing Knowledge . 53

4.4 The Implementation of the Inference and Task Layers 56

4.4.1 Maintaining the Declarative Scheme 63

4.5 Extending the system . 64

4.5.1 Changes of Microtheories . 64

4.5.2 Changes in the Domain Layer . 65

4.5.3 Changes in the Inference and Task Layers 66

4.6 Overview . 68

5 Issues and Results 69

5.1 Introduction . 69

5.2 Problem Solving in CYC . 70

5.2.1 Inferencing in CYC . 71

5.3 Problem Solving Methods in CYC . 72

5.3.1 Implementing the Systematic Diagnosis PSM 72

5.3.2 The Implemented System . 73

5.4 KADS and CYC . 77

5.5 Further Work . 79

5.6 Conclusions . 80

Appendices 86

A The CYC FI Function Reference 87

B The CYC KE-Text for PC Domain 91

C The CYC SubL Code for PC Domain 121

D The CYC KE-Text for PC/Automobile Domains 131

E The CYC SubL Code for PC/Automobile Domains 171

List of Figures

2.1 A hierarchy of Inference types . 9

2.2 An Inference Structure for diagnosing faults in an audio system 10

2.3 Task Structure for Systematic Diagnosis (pseudo-code) 11

2.4 Relationship of Generic Task Model to Expertise Model 12

2.5 A hierarchy of Generic Task Models in the library 13

2.6 An Example of genls and isa . 17

3.1 Inference structures for Systematic Diagnosis (left) and Heuristic Classi-

�cation (right) GTMs . 34

3.2 The Task Structure for Systematic Diagnosis PSM for PCs 45

4.1 The Overall Model (schematic view) . 49

4.2 The System Model Hierarchy in CYC . 51

4.3 The Test Knowledge Hierarchy in CYC 54

4.4 The Overall Model (detailed view) . 58

4.5 Starting the diagnosis session . 61

4.6 Presenting a Test to The User . 61

4.7 New Hypothesis After a \Normal" Result Type 61

4.8 Decomposing a PCSystem After a \Not Normal" Result Type 62

4.9 Con�rming a PCComponent After a \NotNormal" Result Type 62

4.10 New Test After an \Insu�cient" Result Type 62

4.11 Changes in the Microtheories . 65

4.12 The Changes in the Domain Layers . 67

5.1 Filling the Knowledge Gap . 78

vii

viii LIST OF FIGURES

List of Tables

3.1 The Systematic Diagnosis Inference Types and their Domain Roles . . . 35

3.2 Domain Roles for Systematic Diagnosis and the Localisation equivalents . 35

3.3 The Inference Layer of the Systematic Diagnosis PSM for PCs 45

4.1 The SubL Support Functions . 63

ix

x LIST OF TABLES

Chapter 1

Introduction

1.1 The Problem

The principal goal of this thesis is to take a Problem Solving Method (PSM) from the

Knowledge Based System (KBS) development methodology KADS ([Schreiber et al. 93],

[Tansley & Hayball 93]) and implement its component inference steps in Doug Lenat's

CYC KBS ([Lenat & Guha 90]).

Problem Solving Methods (PSMs) are conceptual models of problem solving which

describe the elementary inference steps that must be performed for the solution of vari-

ous tasks such as diagnosis, planning and design. They were developed in the context

of methodologies for KBS design such as KADS. The task considered in this thesis is

diagnosis and especially fault diagnosis in Personal Computers (PC). A small - but con-

ceptually signi�cant - extension of the task in the domain of Automobile fault diagnosis

is also considered.

The implementation medium for the diagnosis PSM is CYC, a large Knowledge Base

(KB) designed to contain enough knowledge to perform common sense reasoning. It is

the product of a ten-year project, started in 1984 and ended in 1995, and is still under

development ([Lenat 95]).The motive for building CYC was to overcome the \brittleness"

of Expert Systems (ES), their inability to fall back on \�rst principles" when they en-

counter novel situations. The key problem was regarded to be analogical reasoning in all

its forms. The overwhelming attempt to develop this kind of reasoning was divided in

1

2 CHAPTER 1. INTRODUCTION

two sub-goals, as they are quoted from [Lenat & Guha 90]:

1. Breaking down the phenomenon, i.e. analogical reasoning, into its various subtypes

and then handling each one.

2. Having a realistically large pool of (millions of) objects, substances, events, sets,

ideas, relationships, etc., to which to analogize.

The development of CYC was directed mostly toward the second goal and much less

to the �rst one. As a result, CYC now contains 10

6

common sense axioms expressed

using a vocabulary of 10

5

concepts and just a handful of inferencing methods (backward

and forward chaining, modus ponens, modus tollens, equality). The main method is

backward chaining with resolution supported by special-purpose heuristic modules. The

implementational details of CYC inferencing are discussed in the next chapter.

1.2 Motivation

The motive for implementing problem solving methods in CYC is to increase its inferen-

cing power through the implementation of more inference types and methods.

Inference types, inference structures and generic tasks, another name for problem

solving methods, are the conceptual products of research for the development of the

second-generation expert systems. This research focused on distinguishing the knowledge-

level ([Newell 82]) of an ES from its implementation level. These issues are very well

illustrated in [Steels 90] and [Chandrasekaran 86].

The KADS methodology incorporates systematically all these concepts through its

Expertise Model, divided into four layers, the Domain, Inference, Task and Structure

layers, and its library of Generic Task Models which are domain-independent models of

problem-solving behaviour. All these concepts are discussed in detail in the next chapter.

Therefore, KADS provides two features in the same time:

� A complete methodology for developing ES independently from its implementation

medium

� Domain-independent problem-solving methods (Generic Task Models) to be imple-

mented

1.3. SUMMARY OF RESULTS 3

The domain independence of both CYC and KADS and the lack of any task-speci�c

problem-solving methods in CYC are the motivating factors for this thesis. A secondary

motive is that, although CYC was built to support the creation of ES, it does not provide

any methodology either for the knowledge acquisition of the expert knowledge or for

the common sense knowledge that underlies the expert knowledge. All these issues are

discussed in the last chapter, under the light of the implementation of one problem-solving

method from KADS for the task of PC fault diagnosis. This latter task was chosen since

it is one of the most well studied and developed tasks.

1.3 Summary of Results

The main result of this thesis is that, the system developed enhances the problem-solving

ability of CYC. A simple argument for this is that now CYC can solve a whole range

of problems (those lending themselves to Systematic Diagnosis) that it could not solve

before. This is because the speci�c problem-solving method demands the dynamic collec-

tion of information from the user, the appropriate update of the KB and the consequent,

dynamic choice of the inferencing path. The system itself has features that are quite

desirable from an ES, like transparency in its reasoning, ability of some justi�cation, ease

of maintenance and extension. The \brittleness" is still there, both in the domain and

inference levels, but this was a rather expected feature. Overcoming \brittleness" is a

promising direction of research rather than a nuisance. This is because this \brittleness"

is due to the \distance" between the expert knowledge needed by the system and the

restricted common sense knowledge base that the speci�c CYC system had

1

. This issue

is also discussed in the last chapter.

In Chapter 2, KADS and CYC are described in the level of detail necessary to under-

stand Chapters 3 and 4. Chapter 3 describes the Analysis phase, as de�ned by KADS,

applied to the problem of PC fault diagnosis. This chapter also describes the speci�c

problem-solving method, Systematic Diagnosis, together with how and why it was se-

lected. Chapter 4 describes the design decisions and the actual implementation of the

1

The CYC system used contained just a part of the Upper Ontology (see at

http://www.cyc.com/cyc-2-1/intro-public.html).

4 CHAPTER 1. INTRODUCTION

problem solving method in CYC. Finally, Chapter 5 discuss the results of the implement-

ation as well as further issues and research directions.

Chapter 2

The Component Technologies:

KADS and CYC

2.1 Introduction

In this chapter the two main components of this thesis will be described, namely the

KADS methodology and the CYC system. Of course, the description will cover only the

parts of these two components that are important for the understanding of the thesis. A

detailed description is beyond the scope of this thesis. For a more detailed description

the reader must refer to [Wielinga et al. 92] and [Tansley & Hayball 93] for KADS and

to [Lenat & Guha 90] and http://www.cycorp.com, the WWW cite of CYCORP, for

CYC.

2.2 The KADS Methodology

The KADS methodology is the result of the corresponding European research project

(ESPRIT-I P1098)

1

. It does not seem that a single interpretation of the KADS ac-

ronym exists. Two possible interpretations are \Knowledge Acquisition and Domain

Structuring" and \Knowledge-based systems Analysis and Design Support". However,

the KADS acronym stands as a name by itself. It is a comprehensive methodology for

1

The main reference is [Hesketh & Barett 90]. It is available from: KADS Information, Touche Ross

Management Consultants, Peterborough Court, 133 Fleet Street, London, EC4A 2TR, UK

5

6 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

the development of KBS. The initiative for the development of KADS was the lack of

any methodology for the development of KBS. Another reason was the awareness from

organisations using KBS that the development of this kind of system had a lot in com-

mon with the development of other information systems. Therefore, KADS is a complete

method for the Analysis and Design of an information system which may be a KBS by

its own or containing a KBS as one of its parts. This fact is re
ected in both its Analysis

and Design phases and the stages they contain:

1. Analysis phase

� Process Analysis

� Cooperation Analysis

� Expertise Analysis

� Constraints Analysis

� System Overview

2. Design phase

� Global Design

� KBS Design

In the Analysis phase, the Expertise Analysis stage is the one concerned with the KBS

part of the information system under development and it is the one that is of interest in

this thesis. On the other hand, the Design phase will not be needed since it is not used;

the pre-selection of the implementation medium, i.e., the CYC KBS, restricts and guides

the design decisions that have to be made. A good overview of KADS can be found in

[Wielinga et al. 92]. For a detailed description of the KADS methodology the reader may

refer to [Tansley & Hayball 93].

2.2.1 Expertise Analysis

Before describing the Expertise Analysis stage of the Analysis phase, a major character-

istic of KADS, which distinguishes it from the usual methods for developing KBS, must

be noted.

2.2. THE KADS METHODOLOGY 7

The main activity when building a KBS is that of Knowledge Acquisition. Tradition-

ally this process was viewed as a process of extracting knowledge from an expert, using

various methods, and transferring (cf. encoding) this knowledge into the KBS. In KADS,

a di�erent view is adopted, regarding knowledge acquisition as a modelling activity. The

KBS is not regarded as a container �lled with knowledge but rather as a computational

implementation of a desired behaviour. This behaviour is described in terms of models.

Each model describes a particular aspect of the overall behaviour of the KBS, emphas-

izing certain characteristics and abstracting from others. Under this view, every stage

of Analysis and Design in KADS produces a corresponding model of the overall KBS.

Therefore, the result of Expertise analysis is the Expertise model.

The Expertise Model de�nes the desired problem solving behaviour (expertise) that

the KBS must exhibit. It is the construction of this model that distinguishes KADS

from other methodologies for information systems' development, such as Structured Ana-

lysis/Structured Design (Yourdon method) or Structured Systems Analysis and Design

Method (SSADM). The construction of this model is based on two major assumptions:

1. The problem solving knowledge can be distinguished in domain knowledge and con-

trol knowledge. Furthermore, control knowledge can be distinguished in inference,

task and strategic knowledge. These distinctions give four di�erent layers of know-

ledge.

2. These four di�erent layers have limited interaction between each other.

These four layers of the Expertise Model are described in more detail below.

The Domain Layer

In this layer a de�nition of the static domain knowledge is made, consisting of domain

concepts, structures of concepts, attributes of concepts and relations between concepts.

This knowledge is static in the sense that it describes some facts about the domain without

specifying how this knowledge is going to be used. Therefore, this kind of description

makes the knowledge implementation-independent to a certain degree, i.e., it may be

used for di�erent reasoning tasks such as diagnosis, teaching, explanation.

8 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

The structures of domain concepts and their relations are known in KADS as Domain

structures. KADS does not provide a de�nitive and exhaustive formalism for what a

Domain Structure should be as this decision depends strongly on the domain and the use

of these structures. However, some general-purpose domain constructs are:

� Concept: the basic objects in the domain knowledge. It may correspond to either

an individual or a collection. E.g., component, system, subsystem.

� Attributes: concepts may have attributes, e.g. age(man), where age is an attrib-

ute of concept man.

� Structure: a complex object consisting of other concepts. E.g. address.

� Set: a collection of other domain constructs. All instances must be of the same

type, i.e., concepts, structures, sets.

� Relation: they may be relations between concepts, e.g. component isa subsystem

or relations between proper expressions, e.g., temperature < 0 IMPLIES frozen

(water).

The Inference Layer

This layer describes the basic inference capability of the KBS in terms of inference types

and inference roles. It identi�es which basic inferences are supported over the knowledge

in the Domain Layer but it does not specify when or in what order these inferences

actually happen.

Inference Types are primitive inference steps that can be performed on the domain

knowledge. They are primitive since they are speci�ed in terms of their input/output

and their name which is a general description of what they do. For example, the decom-

pose inference type takes a structured arrangement of objects and returns a collection

of objects; the select inference type takes a collection (structured or unstructured) of

objects and returns a �ltered collection of objects. Therefore, inference types de�ne ways

the static domain knowledge may be used. See �gure 2.1 for a detailed classi�cation of

inference types.

2.2. THE KADS METHODOLOGY 9

1. Concept Manipulation

Generate Concept

� Instantiate

� Generalise

� Classify (Identify)

Change Concept

� Abstract

� Specialise (Re�ne, Specify)

� Assign Value (Change Value)

Distinguish Between Concepts

� Compare

� Con�rm

� Select

Associate Concepts

� Match (Associate, Relate, Map)

2. Structure Manipulation

Build or Destroy Structure

� Assemble (Aggregate, Compose, Augment)

Re-arrange Structure

� Transform

� Sort

� Parse

Figure 2.1: A hierarchy of Inference types

10 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

Domain roles de�ne functions that domain structures may perform in various infer-

ence types. For example, in a PC fault diagnosis system, a speci�c component may be

either a hypothesis to be selected by a select inference type or a conclusion to be made

by a con�rm inference type. These are two di�erent roles for the same domain concept.

Therefore, domain roles describe the static domain knowledge from a more problem-

solving speci�c point of view. Domain roles may be classi�ed according to the way they

are used: they may be Input, Output and Intermediary (both Input and Output) roles.

Inference types and Domain roles are combined in Inference Structures. An Inference

structure is a network of inference types and domain roles. In �gure 2.2 an inference

structure for fault diagnosis in an audio system is shown.

select

complaint

system model

decompose

select

observable hypothesis specify

finding compare norm

difference

Figure 2.2: An Inference Structure for diagnosing faults in an audio system

The Task Layer

The Task Layer describes how the individual inferences described in the Inference layer

may be sequenced in order to achieve each of the required problem-solving goals. The

knowledge in this layer is de�ned in terms of Task Structures. These are usually written

2.2. THE KADS METHODOLOGY 11

in pseudo-code which comprises simple sequences of inferences combined with some con-

ventional control structures, such as conditionals (IF...THEN...ELSE), repetition (FOR,

WHILE, REPEAT), or more complicated, such as pipelining and recursion. In �gure 2.3

the Task Structure for performing systematic diagnosis is shown. Variables with a '+'

are instantiated (input) while these with a '-' are uninstantiated (output).

Systematic Diagnosis(+complaint,+possible observables,-hypothesis) by

select1(+complaint, -system model)

REPEAT

decompose(+system model, -hypothesis)

WHILE number of hypotheses > 1

select2(+possible observables, -variable value)

select3(+hypothesis, -norm)

compare(+variable value, +norm, -difference)

system model <- current decomposition level of system model

UNTIL confirm(+hypothesis), i.e. system model cannot be decomposed

further

Figure 2.3: Task Structure for Systematic Diagnosis (pseudo-code)

The Strategy Layer

It is the �nal layer of the Expertise Model. It describes the knowledge for Task Structure

selection, sequencing, planning or repairing (when a task fails). This layer will not be

described since it is not used here

2

.

2

The main reference used in this thesis for KADS is [Tansley & Hayball 93], which describes a slightly

modi�ed version of KADS-I. A newer version, KADS-II or CommonKADS is now developed, but it is

compatible with the parts of KADS described in this thesis. The only di�erence is that the Strategy

layer is removed from the Expertise model, which is not important since this layer is not used here.

12 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

2.2.2 Generic Task Models (GTMs)

One of the goals for the KADS methodology was to overcome the knowledge acquisition

bottleneck. This is the inherent di�culty in the process of extracting the problem-solving

knowledge from an expert and encoding it in a computer system. Although the construc-

tion of the Expertise Model as it has been described is a step forward, it still remains a

signi�cant e�ort to construct the Expertise Model from scratch. For this reason KADS

provides a library of Generic Task Models. These are Expertise Models (tested and

veri�ed) but without a Domain Layer. This relationship is shown in �gure 2.4

{Generic
Task Model

Expertise Model

Strategy

Task

Inference

Domain }
Figure 2.4: Relationship of Generic Task Model to Expertise Model

With GTMs provided, the construction of the Expertise model consists of three activ-

ities:

� Analyse Static Knowledge: this is the construction of the Domain Layer.

� Select Initial GTM: the selection of an initial GTM that will guide the construction

of the Expertise Model. This selection is guided by the classi�cation of the GTM

library into a hierarchy of GTMs according to the speci�c problem-solving tasks

that the KBS has to perform. This hierarchy is shown in �gure 2.5. The GTM

de�nes the Inference, Task and Strategy Layer. It also assists in further knowledge

acquisition through the description of Domain roles that are needed for the various

inference types.

� Construct Expertise Model: completion of the Expertise model by �lling in the

details of the three upper layers and putting them together with the Domain layer.

2.2. THE KADS METHODOLOGY 13

1. SYSTEM ANALYSIS

� Identi�cation

- Diagnosis

* Single Model Diagnosis

+ Systematic Diagnosis

* Multiple Model Diagnosis

+ Mixed Mode Diagnosis

- Veri�cation

- Correlation

* Assessment

- Monitoring

- Classi�cation

* Simple Classi�cation

* Heuristic Classi�cation

* Systematic Re�nement

� Prediction

- Prediction of Behaviour

- Prediction of Values

2. SYSTEM MODIFICATION

� Repair

� Remedy

� Control

� Maintenance

3. SYSTEM SYNTHESIS

� Design

- Hierarchical design

- Incremental design

� Con�guration

- Simple Con�guration

- Incremental Con�guration

� Planning

� Scheduling

� Modelling

Figure 2.5: A hierarchy of Generic Task Models in the library

14 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

2.3 The CYC System

CYC is the implementation system for this thesis. CYC is a very large, multi-contextual

knowledge base and inference engine. The project for its development started by the

Microelectronics and Computer Technology Corporation (MCC) in the early 1984 and

ended in 1995. In that year the CYCORP company was created, to work further on

this project. The original idea behind CYC, introduced and developed by Doug Lenat,

is that, to perform any kind of reasoning in a consistent and
exible way, any intelli-

gent agent must have a considerable amount of common-sense, pre-scienti�c knowledge

([Lenat & Guha 90]). This kind of knowledge includes heuristics (rules of thumb) as well

as assertions (facts) about the real world that can be known to a mechanical intelligence

only if it is told about them. This \teaching" is actually implemented through manual

knowledge editing. Using this considerable amount of knowledge - estimated to be at

about 10,000,000 rules and facts - the agent can then perform common-sense reasoning

and furthermore expert-like reasoning. The CYC system includes the following compon-

ents

3

:

� The CYC Knowledge Base (KB)

� The CycL Representation Language (CycL)

� The CYC Inference Engine

� Interface Tools

2.3.1 The CYC Knowledge Base (KB)

The CYC knowledge base (KB) consists of:

� constants, also called terms or units. Constants form the basic vocabulary of the

KB.

� assertions about these constants, which include facts and rules. All the assertions

are formally expressed in a representation language, CycL, described below.

3

In the following sections the version of CYC in the Arti�cial Intelligence Applications Institute

(AIAI) is described and only to the extent necessary to understand the thesis.

2.3. THE CYC SYSTEM 15

Each CYC constant is the representation of a concept. In CycL, by convention, the

names of constants begin with the pre�x '#$' (read \hash dollar"), e.g. #$PCCompon-

ent

4

. A constant can represent a collection (such as the collection of PC components,

#$PCComponent), an individual object (such as a particular PC component, #$Video-

Card), a relation (a predicate, function, e.g., #$functionalPartOf) and so on.

All CYC KB constants form a hierarchy of Collections, subsets of them and instances

of them. These hierarchical relationships are expressed with two special predicates,

#$genls (meaning \subset of") and #$isa (meaning \element of"). This hierarchy is

very important, it forms the CYC Ontology, and therefore must be described in more

detail.

The CYC Ontology

CYC constants can either denote sets, like \the set of all PC components", or individuals,

like \the video card". Every term in CYC is an element of #$Thing, the universal

collection. #$Thing is partitioned into #$Individual and #$SetOrCollection.

#$Individual denotes the set of all things which are not sets. Individuals in the CYC

KB include constants such as #$VideoCard and #$Decompose (inference type).

#$SetOrCollection is partitioned into #$Set-Mathematical and #$Collection. In this

thesis we will not use mathematical sets and therefore their properties as far as it concerns

CYC are not described. In fact, collections are more important in the CYC ontology and

used more often

5

. The important thing to know about collections is that they can have

elements. Therefore, they can enter in set-theoretic relations like \element", \subset"

and \superset".

Membership in a collection is typically expressed as \instance of" or \element of" or

\is a", as in \Monitor is an instance of the collection #$PCComponent," or \Monitor

is an element of #$PCComponent," or \Monitor is a #$PCComponent." If the terms

4

All terms in the examples come from the problem domain of PC fault diagnosis as this is analysed

in the next chapter. If the meaning of any of the terms prevents the understatnding of the examples,

the reader can refer to its de�nition in the next chapter.

5

The di�erence between mathematical sets and collections is that the former are de�ned extensionally,

i.e. by their members, while the latter are de�ned intensionally, i.e. by their criteria for membership.

Therefore, two sets with the same members are equal, while two collections may be still di�erent.

16 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

\subset" and \superset" are used with reference to collections, they typically are intended

to mean \more speci�c collection" and \more general collection", respectively.

The predicate #$genls is used to indicate that one collection is more general than

another, that it is a \superset". For example,

(#$genls #$PCComponent #$PCSubSystem)

indicates that the collection of PC subsystems is a superset of the collection of PC

components.

The predicate #$isa is used to indicate that a thing is an instance of (element of) a

collection, as in

(#$isa #$VideoSystem #$PCSubSystem)

(#$isa #$VideoCard #$PCComponent)

where #$VideoSystem is stated to be an instance of the collection of PC subsystems,

and #$VideoCard as an instance of the collection of PC components.

The predicates #$isa and #$genls are strongly supported by the CYC system code.

There are special datastructures and special code routines inside CYC which allow rapid,

e�cient reasoning about collection-membership and collection-supersethood using #$isa

and #$genls.

To summarise, every CYC constant is an element of at least one collection. In fact,

everything that can appear in a CYC expression is an element of some collection. Every

collection, with the exception of #$Thing, is a subset of at least one other collection.

These \subset" and \instance of" relations, expressed with assertions using #$genls and

#$isa, make up the basic framework (ontology) of the CYC KB. Figure 2.6 shows some

constants and the #$genls and #$isa relations between them. In this diagram, the

following conventions are introduced:

� CYC constants are represented as text in rectangular boxes.

� A constant with bold text denotes a collection.

� A constant with normal text denotes an individual.

� Assertions involving binary predicates are shown as lines between constants.

2.3. THE CYC SYSTEM 17

PowerSystem

VideoSystem

CompositeTangible
AndIntangibleObject Individual

Thing

genls

isa

PCSubSystem

PCComponent

Monitor

isaisa

isa

genls

isa

Collection

genls

genls

isa

isa

isa

Figure 2.6: An Example of genls and isa

18 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

� #$isa assertions are shown as thin lines.

� #$genls assertions are shown as thick lines.

� More general collections are placed higher on the page than their subsets.

� Collections are placed higher on the page than their instances.

The diagram therefore indicates the following assertions:

(#$isa #$CompositeTangibleAndIntangibleObject #$Collection)

(#$isa #$PCSubSystem #$Collection)

(#$genls #$PCSubSystem #$CompositeTangibleAndIntangibleObject)

(#$isa #$PCComponent #$Collection)

(#$genls #$PCComponent #$PCSubSystem)

(#$isa #$PowerSystem #$PCSubSystem)

(#$isa #$PowerSystem #$Individual)

(#$isa #$VideoSystem #$PCSubSystem)

(#$isa #$VideoSystem #$Individual)

(#$isa #$Monitor #$PCComponent)

(#$isa #$Monitor Individual)

It is important to notice that, even though not directly indicated by the diagram, the

following assertions also hold:

(#$isa #$Monitor #$PCSubSystem)

(#$isa #$VideoSystem #$CompositeTangibleAndIntangibleObject)

(#$genls #$PCComponent #$CompositeTangibleAndIntangibleObject)

These assertions are implied by two elementary properties:

� If B is a subset of A and X is an element of B, then X is an element of A too. In

CYC terms: (#$genls B A) and (#$isa X B) implies (#$isa X A).

� If B is a subset of A and C is a subset of B, then C is a subset of A too. In CYC

terms: (#$genls B A) and (#$genls C B) implies (#$genls C A).

As mentioned before, CYC has special inference mechanisms for inferring these kind of

relationships.

2.3. THE CYC SYSTEM 19

2.3.2 The CycL Representation Language

CycL is a formal language whose syntax derives from �rst-order predicate calculus (the

language of formal logic) and from Lisp. The vocabulary of CycL consists of terms. The

set of terms can be divided into constants, non-atomic terms (NATs), variables, and a

few other types of objects. Terms are combined into meaningful CycL expressions, which

are used to make assertions in the CYC knowledge base (KB).

Constants

The CycL constants are the same as the KB constants described earlier. They make up

the \vocabulary" of CycL. It must be remembered that they (usually) begin with the

pre�x '#$' (read \hash-dollar"). These characters may be omitted by certain interface

tools, e.g., in the KE text interface described below. Some important naming conventions

are:

� All CYC predicate names must begin with a lowercase character.

� All non-predicate constant names must begin with an uppercase character.

Variables

They are the common variables of any language. A variable may appear (nearly) any-

where a constant can appear. This gives to CycL some
avour of higher-order predicate

calculus but this is not of interest in this thesis. Variable names must begin with a ques-

tion mark and are ordinarily written in capital leters, e.g., ?TEST. Variables in CycL

expressions can be either free or quanti�ed. CycL provides the two main quanti�ers of

�rst-order predicate calculus; the universal quanti�er #$forAll, and the existential quanti-

�er #$thereExists. For expressiveness, it also provides three more existential quanti�ers:

#$thereExistAtLeast, #$thereExistAtMost, and #$thereExistExactly. Free variables are

regarded to be universally quanti�ed.

Formulas

CycL formulas combine terms into meaningful expressions. Every formula has the struc-

ture of a Lisp list: it is enclosed in parentheses, and consists of a list of objects, the

20 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

arguments. The �rst argument may be a predicate, a logical connective, or a quanti�er.

The remaining arguments may be atomic constants, non-atomic terms, variables, num-

bers, strings delimited by double quotes (\), or other formulas. The simplest kind of

formula is an atomic formula, a formula in which the �rst argument is a predicate, and

all the other argument are terms:

(#$functionalPartOf #$VideoSystem #$Monitor)

(#$isa #$PowerSocket #$PCComponent)

(#$testAfter ?SUBSYSTEM1 ?SUBSYSTEM2)

The �rst two of the atomic formulas above are ground atomic formulas (GAFs), since

none of the terms are variables.

Predicates

Every CycL atomic formula must begin with a predicate in order to be well-formed. The

number of arguments a predicate takes is determined by its arity. A predicate is described

as unary, binary, ternary, quaternary, or quinary, according to whether it takes 1, 2, 3, 4,

or 5 arguments. Currently, no CycL predicate takes more than 5 arguments.

The type of each argument must be speci�ed in the de�nition of the predicate, using

the predicates #$arg1Isa, #$arg2Isa, etc. For example, suppose the predicate #$res-

ultOfTest is de�ned by the following:

(#$isa #$resultOfTest #$BinaryPredicate)

(#$arg1Isa #$resultOfTest #$Test)

(#$arg2Isa #$resultOfTest #$PossibleObservableValue)

To be well-formed, every formula which has #$resultOfTest as its �rst argument must

have a term which is an instance of #$Test as the second argument, and a term which is

an instance of #$PossibleObservableValue as its third argument. So,

(#$resultOfTest #$Monitor #$BootTime)

is probably not well-formed. Though we can never be absolutely certain just from the

names, #$BootTime could be an instance of #$PossibleObservableValue, but #$Monitor

is probably not an instance of #$Test.

2.3. THE CYC SYSTEM 21

Logical Connectives

Complex formulas can be built up out of atomic formulas or other complex formulas by

using logical connectives, which are special constants analogous to the logical operators

of formal logic. The most important logical connectives in CycL are #$not, #$and,

#$or, and #$implies. The three former have the obvious interpretation. The connective

#$implies takes exactly two formulas as arguments. Like the \if-then" statement of

formal logic, it returns true if and only if it is not the case that its �rst argument is true

and its second argument is false. Here's an example:

(#$implies

(#$and

(#$diagnosisContext #$BootTime)

(#$possibleHypotheses ?SUBSYSTEM)

(#$testFirst ?SUBSYSTEM))

(#$hypothesis ?SUBSYSTEM))

Assertions involving #$implies are very common in the CYC KB. We also call them

conditionals or rules, and we often refer to the �rst argument as the antecedent and the

second argument as the consequent. In the previous example, the antecedent is

(#$and

(#$diagnosisContext #$BootTime)

(#$possibleHypotheses ?SUBSYSTEM)

(#$testFirst ?SUBSYSTEM))

and the consequent is

(#$hypothesis ?SUBSYSTEM))

Assertions

CycL formulas are used by Knowledge Editors (KEs) to enter assertions in the CYC KB

and to ask questions to the KB. However, KB assertions are more than CycL formulas.

They consist of many elements of which the most important are:

22 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

� a CycL formula: Formulas have been described in the previous section.

� a microtheory: Every assertion is contained in a single microtheory. A particular

formula may be asserted into (or concluded in) more than one microtheory; when

this is the case, there will be an assertion which has that formula in each of those

microtheories. The largest number of assertions are currently in the #$BaseKB.

All the assertions relative to the PC fault diagnosis are in the #$PCDiagnosisMt

microtheory.

� a truth value: Attached to every assertion is a truth value that indicates its degree

of truth. CycL contains �ve possible truth values, of which the most common are

default true and monotonically true.

By default, GAFs which begin with the predicates #$isa and #$genls are mono-

tonically true, while all other assertions (including rules) are default true.

� a direction: Direction is a value associated with every assertion that determines

when inferencing involving that assertion should be performed. There are three

possible values for direction: forward, backward, and code. Inferencing involving

assertions with direction forward is performed at assert time (that is, when a new

assertion is added to the KB), while inferencing involving assertions with direction

backward is postponed until a query occurs and that query allows backward infer-

ence. By default, GAFs have direction forward, while rules have direction backward.

Changing the direction of rules to forward enables forward reasoning.

� a support: CYC uses a Truth Maintenance System (TMS) for its assertions. The

support is the known support list of a TMS.

2.3.3 The CYC Inference Engine

The CYC inference engine handles modus ponens and modus tollens (contrapositive)

inferencing, universal and existential quanti�cation, and mathematical inferencing. It

uses contexts called microtheories to optimize inferencing by restricting search domains.

CYC also includes several special-purpose inferencing modules for handling a few spe-

2.3. THE CYC SYSTEM 23

ci�c classes of inference. One set of modules handles reasoning concerning collection

membership, subsethood, and disjointness. Another handles equality reasoning.

Inferencing is initiated by an ASK operation. An ASK performed with direction

:forward will simply do KB lookup; an ASK performed with direction :backward will

initiate backward inferencing. Backward inferencing can be regarded as a search through

a tree of nodes, where each node represents a CycL formula for which bindings are

sought, and each link represents a transformation achieved by employing an axiom in the

knowledge base.

2.3.4 Interface Tools

The Interface Tools that are of interest for this thesis are:

� The CYC Knowledge Base Browser

� The Knowledge Editing Text (KE Text) facilities

� The SubLanguage Interactor (SubL)

� The Functional Interface (FI-interface)

2.3.5 Interface Tools - The KB Browser

The CYC KB Browser is the main interface tool for accessing the CYC Knowledge Base

(CYC KB). It provides a means for browsing the KB in a number of di�erent ways, a

means for querying the KB, and (for registered users) a means for modifying or adding to

the KB itself. From the KB Browser, it is possible to reach virtually all other areas of the

CYC System simply by following HTML links. Through the KB Browser the following

operations may be performed:

� Creating, Viewing, Searching for and Editing Constants

� Adding, Viewing, Searching for and Editing Assertions

24 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

2.3.6 Interface Tools - The Knowledge Editing Text (KE Text)

facilities

Introduction

KE Text is an ascii text format for specifying changes to a CYC KB. It uses a mixed

\frame and formula" syntax and is batch-processed to add those changes to a CYC Server

machine. KE Text (Knowledge Editing Text) is handled by two facilities: KE-File, which

loads a �le in KE Text format, and the Compose page in the CYC Web Interface.

KE Text Syntax

KE Text syntax is just a syntactic/notational variation of CycL. To some extent, it

is a holdover from when CYC was a frame-based system and CycL was a frame-based

language.

KE Text Syntax - Notation:

Variables

Variables occurring anywhere in a KE text (e.g., inside rule statements) must begin

with a question mark (?).

Constants

Known constants (i.e., constants which CYC already knows to exist) may be written

with a preceding '#$' (e.g., #$Monitor , #$Decompose), but this is in no case necessary

and usually is not desirable. Accepted practice is to write KE text without #$ characters.

Strings

Strings referred to in KE text (such as entries on the #$comment predicate for a

constant) must be delimited by double quotes (e.g., \This is a string."), as in Common

Lisp and C.

Expressions

2.3. THE CYC SYSTEM 25

Expressions in KE Text syntax are analogous to expressions in a programming lan-

guage such as Lisp or C. In KE Text syntax, each expression must end with a period

(.), and the period must be outside of a comment or a string. The general form of an

expression in KE Text syntax is as follows:

<directive>: <data-object-or-object-sequence>.

A directive may be a reserved word (analogous to reserved words in a programming

language) or a predicate. Note that reserved word directive names are not case-sensitive.

For example, \constant" is the same as \Constant".

KE Text Syntax - Reserved Words:

Constant

If the reserved word is \Constant", the data object following the colon delimiter must

be the name of a CYC constant (e.g., PCSubSystem, or TestAction, or some other CYC

constant). For example:

Constant: PCSubSystem.

Constant: TestAction.

If the data object following the colon delimiter is not already known (by CYC) to

be a CYC constant, then this constant is created. The microtheory is set by default to

be BaseKB. The only exception to this is if the microtheory has previously been set via

the Default Mt directive, in which case the use of the Constant directive leaves the

microtheory unchanged.

In Mt

If the reserved word is \In Mt", the data object following the colon delimiter must be

a known (i.e., already existing) microtheory.

Example:

In Mt: PCDiagnosisMt.

26 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

When an expression beginning with an In Mt directive is evaluated, it causes the

default entry microtheory to be set to the named microtheory. This setting persists un-

til the next occurrence of an In Mt directive, Default Mt directive or a Constant directive.

Direction

The Direction directive sets the default direction for the assertion immediately fol-

lowing. It must be followed either by the constant forward or the constant backward.

Note that, by default, ground atomic formulas have a \forward" direction and rules have

\backward" direction. It is most commonly used to assert rules with \forward" direction.

F

If the reserved word is \F" (for \formula"), the data object following the colon de-

limiter must be a well-formed CycL Formula.

The constants referred to in the CycL formula must already be known to CYC (i.e.,

must already exist, perhaps as a result of being created at some previous point in the KE

text).

Examples:

F: (implies

(resultOfTest

(TestFn PCSystem ConfirmSensorily ProblemContext) ?PROBLEM)

(diagnosisContext ?PROBLEM)).

F: (possibleResultOfTest

(TestFn PCSystem ConfirmSensorily ProblemContext) BootTime NotNormal).

F: (functionalPartOf VideoSystem PCSystem).

Default Mt

If the reserved word is \Default Mt", the data object following the colon delimiter

must be a known (i.e., already existing) microtheory. For example:

Default Mt: PCDiagnosisMt.

2.3. THE CYC SYSTEM 27

When an expression beginning with a Default Mt directive is evaluated, it causes the

default microtheory to be set to the named microtheory. This setting persists until the

next occurrence of a Default Mt or In Mt directive, or the end of the �le/text being

processed. Note that this directive is stronger than the In Mt directive, since it pre-

vents each occurrence of a Constant directive from resetting the default microtheory to

BaseKB. This directive makes it easier to process all (or most) of the expressions in a

�le/text segment in the same microtheory.

Predicate Directives

The second type of directive comprises CYC predicates occurring within the scope of

a (previously occurring) Constant directive. The Constant directive sets the \current"

constant, which then is understood to be the �rst argument to assertions generated from

the following predicate directive expressions. Note that predicate directive names, unlike

reserved word directive names, are case-sensitive.

Each predicate directive is followed by a colon delimiter, one or more data objects,

and a period. That is, the form of a predicate expression in KE Text syntax is

<predicate>: <data-object-1> [<data-object-2>...<data-object-n>].

The data objects following the colon delimiter comprise the additional argument(s) to

the predicate in the predicate directive.

Example:

constant: PCSubSystem.

isa: Collection.

genls: CompositeTangibleAndIntangibleObject.

comment: ``The collection of all PC sub-systems, like the

#$VideoSystem, #$PowerSystem, #$KeyboardSystem.''.

In this example, the Constant directive sets the \current" constant to be PCSubSystem.

PCSubSystem is then assumed to be the �rst argument to assertions formed from the

three following predicate directive expressions (the expressions which begin with \isa",

\genls", and \comment").

28 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

If the predicate directive is the name of a binary predicate (such as isa and comment),

each of the data objects following the colon delimiter is assumed to be part of an assertion

in which the predicate directive is the predicate, the default constant is the �rst argument,

and the data object is the second argument. So, when evaluated and processed, the KE

text fragment in the example above would result in the addition of the following three

assertions to the KB:

(#$isa #$PCSubSystem #$Collection)

(#$genls #$PCSubSystem #$CompositeTangibleAndIntangibleObject)

(#$comment #$PCSubSystem ``The collection of all PC sub-systems,

like the #$VideoSystem, #$PowerSystem, #$KeyboardSystem.'')

The same assertions could have been introduced using F: directives

Example:

F: (isa PCSubSystem Collection)

F: (genls PCSubSystem CompositeTangibleAndIntangibleObject)

F: (comment PCSubSystem ``The collection of all PC sub-systems, like the

#$VideoSystem, #$PowerSystem, #$KeyboardSystem, #$FloppySystem .'')

Note that this mechanism cannot be used for assertions involving unary predicates. For

example, #$hypothesis is a such a predicate. Assertions using this predicate could be

entered with an expression such as this:

F: (hypothesis PowerSystem) .

Comments in KE Text

Comments (text to be read by a human, but not interpreted or entered by a program)

are allowed in KE text. The comment indicator is the semi-colon (;), as in Common Lisp.

Lines beginning with a semi-colon will be ignored.

Order of Expressions

Expressions in KE text are evaluated and processed in the order of their occurrence

in the text.

2.4. SUMMARY 29

2.3.7 Interface Tools - The SubLanguage (SubL) Interactor

SubL is a computer language built by members of the CYC team. SubL was written to

support the CYC application, allowing it to run both under Lisp environments and as a

C application generated by a SubL-to-C translator.

SubL

6

is intended to be somewhat similar to Common Lisp, with features that are

complex or rarely-used or di�cult to implement in C excised. Also, unlike Common

Lisp, SubL is not a purely functional language. Several Common Lisp constructs can

only be used procedurally. In order to emphasize this di�erence, the following constructs

have their names preceded either by 'c','p' or 'f' in SubL: pif, pwhen, punless, pcond,

pcase, csetq, cinc, cdec, cpush, cpushnew, cpop, clet, cmultiple-value-bind,

cdo, cdotimes, cdolist, csome, cdohash, ccatch, cunwind-protect, cnot, cand,

cor, fif, fwhen, funless.

The SubL Interactor is an input window for evaluating SubL expressions.

2.3.8 Interface Tools - The Functional Interface (FI)

The CYC Functional Interface (FI) is an API (Application Program Interface) that ex-

ternal programs can use to query and update a version of CYC. The CYC FI provides

the ability to �nd, create, kill, and rename constants, assert, unassert, ask, retrieve justi-

�cations for, and prove propositions, get and set application parameters, and a few other

things. There is also a set of FI extensions for database integration. The commands of

the functional interface can be invoked like normal lisp function calls from a lisp inter-

actor such as the SubL Interactor of the CYC Web Interface as well as from other SubL

functions. For a list of the FI functions used in this thesis see Appendix A.

2.4 Summary

In this chapter, a thorough description of KADS and CYC has been given. Speci�cally,

KADS Expertise model was described with its four layers, namely the Domain, Inference,

Task and Strategy layers, what they consist of, how they are built and what their inter-

6

For more information see www.cyc.com/cyc-2-1/toc.html

30 CHAPTER 2. THE COMPONENT TECHNOLOGIES: KADS AND CYC

relationships are. Also Generic Task Models were described, what they are and how they

are used to build the Expertise model. All these parts of KADS are used in the next

chapter for the Analysis phase of the problem solving method implementation.

For CYC, its Ontology was described, what this Ontology is, what it consists of and

how it is represented through CycL, CYC's representation language. Also CYC's inference

engine was described as well as the various interfaces provided for maintaining the KB

(KB Browser), editing knowledge into the KB (Knowledge Editing Text) and executing

Lisp code (the SubL Interactor and the Functional Interface). These parts of CYC will

be used in chapter 4 to implement the Systematic Diagnosis problem solving method for

PC and Automobile diagnosis.

Chapter 3

The Analysis Phase

3.1 Introduction

In the previous chapter (x2.2) it was noted that the analysis phase of KADS which is

actually concerned with the development of the KBS is the Expertise analysis (x2.2.2)

and that a library of Generic Task Models (GTMs) is provided. The building of the

expertise model consists of three stages:

� the construction of the Domain Layer which contains the static knowledge,

� the selection of an appropriate initial GTM which contains a general description

of the Inference, Task and (probably) the Strategic knowledge. More knowledge

acquisition according to the Domain roles de�ned by the GTM and

� the �lling of the details in the upper three layers and probably some modi�cations

of the GTM.

In the following sections these three stages will be described in detail. But, before this,

it must be made clear that the use of KADS as a methodology for analysing the system

that will implement a problem solving method (PSM) is completely independent from the

implementation medium which is CYC. This independence is twofold:

1. The problem solving method that will be selected should not necessarily come from

KADS. It could have been developed in another context. For example, the Heuristic

31

32 CHAPTER 3. THE ANALYSIS PHASE

Classi�cation PSM ([Clancey 85]) was developed independently from the KADS

methodology, although it can be found in the KADS GTM library (see Figure 2.5).

2. Even if the PSM was taken from KADS GTM library, still another approach for

ES development could be used, e.g. rapid prototype development and further re-

�nement. However, most of the PSM's power as part of KADS would have been

lost, since there would be neither domain roles to guide the knowledge acquisition

nor the Task structure to guide the PSM. If KADS was not used, one could try to

implement the PSM in CYC by extending the ontology with new terms and rules

using general knowledge acquisition techniques, and then using backward inference

to implement the various steps of the PSM.

3.2 Knowledge Acquisition for the Domain Layer

There are two main sources of domain expert knowledge: bibliography and the human

domain experts. The author has relatively good personal experience of PC troubleshoot-

ing, gained in a six month period of assembling and repairing PCs. Therefore, certain

domain knowledge was at hand through self-introspection. However, more systematic

knowledge was needed and it was found in the WWW site of the PCGuide magazine's

Troubleshooting Expert (www.pcguide.com/ts/x/index.htm) developed by Charles M.

Kozierok. This \Expert" is actually a set of menus containing questions about the PC

system status and possible answers in the form of HTML links that guide the user to

�nd any problem related to a PC. From the author's personal experience, and having

studied the \Expert", it can be claimed that it is one of the most complete ever seen.

The \Expert" has three main categories of troubleshooting contexts:

� Troubleshooting Boot Problems

� Troubleshooting The System Overall

� Troubleshooting Speci�c Components

The knowledge analysed is only that related to the �rst context, the boot-time prob-

lems troubleshooting. This may seem a major limitation but it is not, since the develop-

ment of the KBS is only to test the feasibility and e�ectiveness of implementing problem

3.3. SELECTING A GENERIC TASK MODEL 33

solving methods in CYC; therefore, the KBS serves just as an experimental model and

not as a fully functioning expert system per se.

After a thorough study of the \Expert", the following domain structures appeared as

signi�cant in the diagnosis process:

1. A PC system model, a hierarchy of simple components and composite components,

consisting of more simple components.

2. Testing knowledge, consisting of three other, more speci�c, domain structures:

� Questions (Tests) that the \Expert" made about the PC system status,

� Possible results of these Tests and

� Actions taken according to each of these possible results.

It is quite obvious from the description of the emerging domain structures that they

are far from being clearly de�ned. This is the Knowledge Acquisition bottleneck and the

author was caught in it. Necessarily, the author used the help of KADS, its Generic Task

Models and the Domain roles that these provide. Consequently, the second stage had to

be entered, that is the selection of a GTM.

3.3 Selecting a Generic Task Model

One of the main problems when using KADS is the selection of a GTM. In fact, KADS

provides little guidance for this selection and the decision comes back to the knowledge

engineer. Criticism about this lack of guidance as well as about the potential dangers of

selecting the wrong GTM can be found in [Rademakers & Vanwelkenhuysen 93].

The task for selecting a GTM in the case of PC fault diagnosis was quite simple;

in �gure 2.5 from [Tansley & Hayball 93], speci�c GTMs are given for the task of dia-

gnosis. For simplicity reasons, and because of the way the \Expert" was designed,

the Systematic Diagnosis GTM was selected. However, it is important to note that

other GTMs were applicable, such as the Heuristic Classi�cation GTM, a well estab-

lished method for diagnosis, �rst developed by Clancey (see [Clancey 85]). The prob-

lem of more than one GTM applying to a speci�c task can be further explored in

34 CHAPTER 3. THE ANALYSIS PHASE

[Rademakers & Vanwelkenhuysen 93]. The inference structures for the two GTMs are

shown in �gure 3.1.

Possible
observables decompose

select 1

System Model

Complaint

Observables

abstract

Variables match

Solutions

Solution

abstraction

specialize

select 2

Variable
Value

Hypothesis

confirm

compare
Norm

select 3

Conclusion

Difference

Figure 3.1: Inference structures for Systematic Diagnosis (left) and Heuristic Classi�ca-

tion (right) GTMs

The selection of a GTM makes the construction of the Domain layer easier through the

speci�cation of Domain roles for the inference types included in the inference structure

of the GTM. To illustrate this, each inference type and its associated domain roles of the

Systematic Diagnosis GTM (Localisation version) are presented in table 3.1, as adapted

from [Tansley & Hayball 93].

Note, that the Domain roles are customised for the Localisation version of the Sys-

tematic Diagnosis GTM. The actual, generic Domain Roles are given in table 3.2.

3.4 Domain Roles and Domain Layer

After having presented the Domain roles described by the GTM, it is much easier to

construct the Domain layer of the KBS. The �rst domain structure that prevails the whole

procedure is the System model. The Systematic Diagnosis GTM suggests a consists-of

3.4. DOMAIN ROLES AND DOMAIN LAYER 35

Inference Input Role Output Role Method and Knowledge

Select 1 Faulty system description Consists-of model Direct association - System

behaviour and structure

Decompose Consists-of model (Sub)-System Descending consists-of tree

containing faulty Consists-of structure

component

Select 2 (Sub)-System containing Observed Output Generate and test-

faulty component. Value Test methods

Observable Output Values.

Select 3 (Sub)-System containing Expected Output Direct association - System

faulty component behaviour

Compare Observed Output Decision Class Compares values

Value Signi�cance of di�erences

Con�rm (Sub)-System containing Yes/No Primitive part reached

faulty component (+fault location) System structure

Table 3.1: The Systematic Diagnosis Inference Types and their Domain Roles

Domain Role Localisation

Complaint Faulty system description

System model Consists-of model

Possible observables Observable output variables

Hypothesis (Sub)-System containing faulty component

Variable value Observed output value

Norm Expected output

Di�erence Decision class

Conclusion Yes/No (+ fault location)

Table 3.2: Domain Roles for Systematic Diagnosis and the Localisation equivalents

36 CHAPTER 3. THE ANALYSIS PHASE

system model, however, as we will see below, there is a great variety of system models

to choose from and, moreover, a consists-of model is not the best for diagnosis in a

PC system. This signi�cant variation from the proposed model does neither come as

a surprise nor as something unusual. The domain structures proposed by a GTM are

simply general guidelines and are not restricting for the knowledge engineer. They are

another point of view for the domain knowledge, one more task-oriented. The same holds

even for the inference structures of the GTMs as we will see later. This
exibility of the

GTMs is discussed in [Rademakers & Vanwelkenhuysen 93] and [Wielinga et al. 92].

The prevalence of the PC system model and the inadequacy of a consists-of model

are discussed below.

3.4.1 The System Model

The �rst thing that must be understood for the selection of a system model is the overall

role that this plays in the Systematic Diagnosis problem solving method and especially

in its Localisation version. The outline of the method is:

1. Begin with a general symptom of the system. Select a part of the system that

probably contains the faulty component.

2. Decompose the suspected (sub)system into its parts which may be simple compon-

ents or (sub)systems themselves.

3. Take the �rst/next component/subsystem and check if it is the one that contains the

faulty component. If it does and it is a component then stop; if it is a (sub)system,

go to 2. If it does not contain the faulty component, then repeat step 3 as far as

there are candidate components/(sub)systems.

From the above outline it is clear that the system model should be a hierarchy of

(sub)systems and their parts which in turn can be either simple components or further

decomposable (sub)systems. But there are a lot of hierarchies. In [Steels 90] various such

models are mentioned:

3.4. DOMAIN ROLES AND DOMAIN LAYER 37

� Structural: these models describe the way the parts of the modelled system contain

and form each other, like the model of a subway containing the stations, tracks and

so on [Steels 90],

� Topological: these models describe the way the parts of the modelled system are

connected to each other, like the model of a heating system containing the connect-

ing pipes between the various parts of the system [Borst et al. 97],

� Functional: these models describe which parts are used by each (sub)system in order

to carry out its function(s), like the model of a printed circuit board containing the

circuit operations and the corresponding hardware modules that are involved in

carrying out these operations [Vanwelkenhuysen 92].

The model selected for the Personal Computer (PC) fault diagnosis is a functional

model. This decision is based in the fact that a PC is an information processing ma-

chine with central control and therefore exhibits the following two characteristics which

distinguish it from other mechanical devices:

1. The same components take part in di�erent functions. This results in overlapping

(sub)systems and in di�erent functional roles for the components, and therefore

di�erent behaviours and di�erent possible faults, according to the function of the

component.

2. Because of the central control of the CPU which imposes either prede�ned or dy-

namic sequences of component operations, the physical connections of the compon-

ents do not always de�ne the order of component operations and therefore the order

of diagnosis.

The appropriateness of a functional model in the case of PCs is supported by its use in

troubleshooting of electronic circuits in [Vanwelkenhuysen 92] and [Hamscher 88]. In con-

trast, the reader can refer to another, mereotopological

1

model, presented in [Borst et al. 97].

The two above characteristics mean that the functional model of the PC cannot be ex-

pressed in a static hierarchical structure but rather like a set of rules that describe di�er-

ent decompositions, according to which (sub)system is being decomposed and in which

1

A mereotopological model is a combined structural and topological model

38 CHAPTER 3. THE ANALYSIS PHASE

function it takes part. In addition, it must be noted that the decomposition process

for the Systematic Diagnosis problem solving method requires speci�cation of not only

which (sub)parts of the (sub)system being decomposed are candidates for diagnosis but

also in which order they will be diagnosed. An example will clarify the order's importance:

Example

Suppose that the PC does not produce any video signal on the monitor when it is turned

on. This suggests that the video (sub)system of the PC has a fault. This (sub)system

contains the following components: the motherboard, the video card and the monitor. It

is obvious that the monitor should be checked �rst, otherwise no test can be performed on

either of the other two components due to lack of feedback (control) from the (possibly)

faulty monitor.

To summarise about the desired properties of the PC system model:

� It must provide a di�erent decomposition of the PC (sub)systems in di�erent cases,

� It must provide the order of testing for the components of the decomposed (sub)system

and

� It must distinguish between decomposable (sub)systems and simple components.

All these properties lead to the following domain structures

2

:

CONCEPTS

2

There are many more instances of PCComponent and PCSubSystem to be de�ned as concepts. A

complete list can be found in the KE-text for the CYC KB in Appendix B.

3.4. DOMAIN ROLES AND DOMAIN LAYER 39

PCComponent A simple, non-decomposable PC component. A

PCComponent is the lowest level of the system's ana-

lysis.

PCSubSystem A decomposable PC (sub)system. A PCSubSystem in-

volves one or more PCComponents and/or PCSubSys-

tems and it is an intermediate level of the system's ana-

lysis.

PowerSystem The power system of the PC.

PowerSupply The power supply device of the PC.

ATTRIBUTES

hypothesis(PCSubSystem): The PCSubSystem is the current candidate for diagnosis.

possibleHypotheses(PCSubSystem): The PCSubSystem is one of the next candid-

ates for diagnosis.

testFirst(PCSubSystem): The PCSubSystem is the �rst to be tested from all the

other candidate PC subsystems; it is the next hypothesis.

RELATIONS

subsetOf(PCComponent, PCSubSystem): A PC component is the simplest PC

subsystem

isa(PowerSystem, PCSubSystem): PowerSystem is a PCSubSystem.

isa(PowerSupply, PCComponent): PowerSupply is a PCComponent.

functionalPartOf(PCSubSystem-Whole,PCSubSystem-Part): The PCSubSystem-

Whole involves in its function the PCSubSystem-Part.

testAfter(PCSubSystem-1, PCSubSystem-2): The PCSubSystem-2 must be tested

immediately after the PCSubSystem-1.

40 CHAPTER 3. THE ANALYSIS PHASE

The decomposition rules are missing. This is because their 'if' part - the antecedent

- requires concepts not yet de�ned. These concepts are the subject of the next section.

3.4.2 The Testing Knowledge

The basic tool in the Systematic Diagnosis problem-solving method (PSM), as well as

in any other diagnostic PSM, for carrying out the diagnostic procedure, is various Tests

that must be done to provide information (knowledge) about the state of the system.

This knowledge may concern the actual behaviour of the system's components, e.g. the

absence of electric power or control information produced by the system, e.g., beep codes

or screen messages. Conceptually, a Test is a question that the user must make to the

system under diagnosis to extract knowledge about it. A Test is a structure consisting

of three other concepts:

1. The PC subsystem to which it is related, i.e., to which the question is addressed,

2. The Action that the human user must make to perform the Test and

3. The Possible Observable (system variable) that the Test is asking about.

Although not part of a Test structure, there is a fourth concept related to it, the Possible

Observable Value (system variable value) which is the result (answer) of the Test (ques-

tion). A �nal concept, related to the Test's result, is the Result Type which describes

what the result of a Test means for the diagnosis procedure, that is, what further decision

it entails. All these lead to the following domain structures

3

:

CONCEPTS

3

There are many more instances of TestAction, PossibleObservable, PossibleObservableValue and

ResultType to be de�ned as concepts. A complete list can be found in the KE-text for the CYC KB in

Appendix B.

3.4. DOMAIN ROLES AND DOMAIN LAYER 41

TestAction A physical action that the human user must make to

perform a Test.

PossibleObservable A system variable the values of which give information

about the system status.

PossibleObservableValue A possible value of a system variable.

ResultType The type of a Test's result. These types are charac-

terised from the kind of conclusions they lead relative

to the PCSubSystem being currently diagnosed (hypo-

thesis(PCSubSystem)). E.g., such a type can be Nor-

mal which denotes that the PCSubSystem currently be-

ing diagnosed is not faulty and therefore must be dis-

carded as a hypothesis and a new hypothesis must be

selected.

Con�rmSensorially The action of con�rming the existence of a PossibleOb-

servable only by one's senses, e.g., visually, acoustically.

ElectricPower The electric power that any PCSystem needs to operate.

Yes Most of the Tests have as a possible result only 'Yes' or

'No'.

NotNormal This type of result indicates that the result is not nor-

mally expected when the PCSubSystem related with it

is working properly. Such a kind of result implies that

the fault lies in the PCSubSystem which is the current

hypothesis.

STRUCTURE

Test Constituent concepts

PCSubSystem

TestAction

PossibleObservable

42 CHAPTER 3. THE ANALYSIS PHASE

ATTRIBUTES

possibleTest(Test): Test can be currently performed.

RELATIONS

isa(Con�rmSensorially, TestAction): Con�rmSensorially is a TestAction

isa(ElectricPower, PossibleObservable): ElectricPower is a PossibleObservable

isa(Yes, PossibleObservableValue): Yes is a PossibleObservableValue

isa(NotNormal, ResultType): NotNormal is a ResultType

possibleResultOfTest(Test, PossibleObservableValue, ResultType): The test

Test has as a possible result the PossibleObservableValue which is of type ResultType.

resultOfTest(Test, PossibleObservableValue): The test Test gave as result the Pos-

sibleObservableValue when it was performed.

The rules introducing the possible Test are missing. This is because their 'if' part -

the antecedent - requires a concept not yet de�ne. This concept is the subject of the next

section.

3.4.3 The Diagnosis Context

The Systematic Diagnosis GTM inference structure starts with a SELECT inference

(select 1, see �gure 3.1). A general symptom is entered by the user and an appropriate

system model is chosen. This inference is slightly changed for PC diagnosis. What is

actually asked of the user is to distinguish three major contexts of diagnosis:

1. Boot-time troubleshooting,

2. Run-time troubleshooting and

3. Component-speci�c troubleshooting.

This categorisation is signi�cant since completely di�erent rules are applicable in each

context. This contextual dependency will be embedded in the antecedent part of the

3.4. DOMAIN ROLES AND DOMAIN LAYER 43

rules as an extra condition. The necessary domain structures are:

ATTRIBUTES

isa(BootTime, PossibleObservableValue)

isa(RunTime, PossibleObservableValue)

isa(ComponentSpeci�c, PossibleObservableValue)

diagnosisContext(PossibleObservableValue): The PossibleObservableValue is the

current diagnosis context.

and the way they are used in rules is:

diagnosisContext(BootTime) and ...[more conditions]... implies [consequent].

To satisfy all these speci�cations, the rules for decomposition of the PC system model

will have the following general form:

diagnosisContext(PossibleObservableValue) and

hypothesis(PCSubSystem) and

resultOfTest(Test1, PossibleObservableValue1) and ...

....

and resultOfTest(TestN, PossibleObservableValueN)

IMPLIES

testFirst(PCSubSystem1) and

testAfter(PCSubSystem1, PCSubSystem2) and...

...

and testAfter(PCSubSystemN-1, PCSubSystemN).

while the rules for introducing new Tests and their corresponding results, will have the

form:

diagnosisContext(PossibleObservableValue) and

hypothesis(PCSubSystem) and

44 CHAPTER 3. THE ANALYSIS PHASE

resultOfTest(Test1, PossibleObservableValue1) and ...

.

.

.

resultOfTest(TestN, PossibleObservableValueN)

IMPLIES

possibleTest(Test) and

possibleResultOfTest(Test, PossibleObservableValue1, ResultType1) and ...

.

.

.

and possibleResultOfTest(Test, PossibleObservableValueN, ResultTypeN).

3.5 The Inference Layer

As described in the previous chapter (x2.2.1), the Inference layer de�nes the inference

types that must be performed by the problem solving method. After the description of

the domain layer in the previous section, the inference layer of the Systematic Diagnosis

problem solving method for PCs is given in table 3.3, in terms of the various inference

types as well as their input and output domain structures. Note that the input and

output roles have now been substituted by actual domain structures, and that inferences

Select 2 and Select 3 have been combined in one inference, Select 2-3. These changes

are well situated into the development procedure of the Expertise model as described in

[Wielinga et al. 92].

3.6 The Task Layer

The next layer is the Task layer, where the order of performing the inference types is

described. This is done in terms of the pseudo-code given in �gure 3.2. A comparison

with the Task Structure given in �gure 2.3 can show how this last one was modi�ed.

The last layer of the Expertise model in KADS is the Strategy layer, however the

3.6. THE TASK LAYER 45

INFERENCE INPUT OUTPUT

TYPE Role Role

Select 1 PC symptom's general nature Problem solving Context

(BootTime, RunTime,

ComponentSpeci�c)

Select 2-3 Problem Solving Context Possible Test(s)

Hypothesis Possible Results of Test(s)

Results of previous Tests Types of Possible Results

Decompose Problem Solving Context Hypothesis

Hypothesis Possible Hypotheses

Results of previous Tests

Compare Last Test's Result Type Next inference to be executed

Con�rm Last Test's Result Type Faulty component

Table 3.3: The Inference Layer of the Systematic Diagnosis PSM for PCs

Systematic Diagnosis(+complaint,+possible observables,-hypothesis) by

select1(+complaint nature, -diagnosis context)

REPEAT

decompose(+hypothesis, +diagnosis context, +previous tests' results,

-hypothesis, -possible hypotheses)

WHILE number of possible hypotheses > 1

select2-3(+hypothesis, +diagnosis context, +previous tests' results,

-possible test(s), -possible observables, -result types)

compare(+last test's result type, -inference to be performed)

UNTIL confirm(+hypothesis), i.e. system model cannot be decomposed further

Figure 3.2: The Task Structure for Systematic Diagnosis PSM for PCs

46 CHAPTER 3. THE ANALYSIS PHASE

GTM for Systematic Diagnosis does not provide one and no such layer is needed for the

implementation of this problem solving method.

3.7 Summary

In this chapter, the KADS Analysis phase was described as it was applied on the domain

of PC fault diagnosis. Why the Systematic Diagnosis GTM was selected as the problem

solving method and the guidance this provided for knowledge acquisition through the

domain roles for its constituents inference types. What was the system model and the

testing knowledge needed as domain knowledge for this GTM. Finally, the modi�cations

that were made on some of its constituent inference types to �t the speci�c domain and

the �nal Task structure. All these products will be used in the next chapter to implement

the Systematic Diagnosis PSM in CYC. It is very important to remember that this phase

is completely independent of the implementation medium, which in this thesis is CYC;

however, it could be an expert system shell, CLIPS or PROLOG.

Chapter 4

The Implementation Phase in CYC

4.1 Introduction

The next step to implement the Systematic Diagnosis problem solving method (PSM)

for PCs in CYC was to implement each one of the three layers of the Expertise model,

namely the Domain, Inference and Task layers. Before presenting the implementational

decisions, the main components of CYC, on which this implementation is based, are

repeated:

� The CYC Knowledge Base (KB) consisting of terms structured in a Collection -

Sub-collection - Instance hierarchy as well as rules connecting them,

� The CycL representation language which de�nes the KB terms as well as the rules

between them,

� An 'Ask' interface for querying the KB, in a Prolog-like fashion, using the CycL

language,

� The SubL language, a subset of Common Lisp,

� The Functional Interface (FI), a set of SubL functions that provide the means to

perform all the necessary operations to the KB through SubL code and

� The SubL Interactor, an interface to execute SubL code.

All these CYC components are described in chapter 2.

47

48 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

4.2 The Overall Model

The common use of CYC is through its Ask interface. The user enters a CYC formula,

possibly containing variables, and the CYC inference mechanism tries to �nd matchings

for these variables through uni�cation, using rules and facts in the KB. Under this scheme,

solving a problem consists in de�ning the right knowledge, that is terms, facts and rules,

making the right(?) questions and (probably) modifying the KB. This is a declarative way

to solve problems. On the other hand, SubL provides a more procedural/functional way

to do things. Through CYC's FI, it is possible to perform all the above operations from

SubL code. Having all these in mind, the �rst and crucial problem to solve implementing a

PSM is what goes where. In the case of this research, where the KADS method was used,

this question is which expertise layer is implemented in which component of CYC. The

�nal decisions that the author made in solving this problem were based in the following

considerations:

1. The KADS methodology, through the Expertise model, provides a signi�cant dif-

ferentiation of problem-solving knowledge in domain and control knowledge. Since

this distinction is at the heart of analysing problems, preserving it in the imple-

mentation phase keeps things simple and clear. Moreover, mixing domain and

control knowledge was one of the major drawbacks of the early experts systems,

like MYCIN ([Clancey & Letsinger 82]).

2. CYC's use is mainly through the declarative scheme described above. Although

the goal of implementing PSM's in CYC is to make it more e�ective, the advant-

ages of solving problems in a declarative way should not be lost in the obscurity

of functional descriptions in Lisp (SubL) code. The overall guideline is that the

implementation should permit the problem to be solved by the declarative way too.

How this can be done will be explained later on in this chapter.

At the implementation level, these guidelines led to the following decisions:

1. The Domain layer was encoded in the CYC KB and

2. The Inference and Task layers were encoded in SubL code

This overall model can be seen in �gure 4.1.

4.3. THE IMPLEMENTATION OF THE DOMAIN LAYER 49

STRUCTURES

etc)

DOMAIN

(concepts,
attributes,
domain roles

CYC -KB
SubL code

INFERENCE
&
TASK
STRUCTURES

(FI)

FUNCTIONAL INTERFACE

Figure 4.1: The Overall Model (schematic view)

4.3 The Implementation of The Domain Layer

Representing the Domain layer in the CYC KB is a signi�cant task by itself. This is

mainly for two reasons:

1. Every term in the CYC KB must be an instance of a Collection, except #$Thing,

the top-most collection. Therefore, every domain structure de�ned in the analysis

phase must be represented as the instance of another collection. Consequently,

some domain structures must be �tted somewhere in the CYC Ontology

1

. The

problem here lies in how to integrate the new knowledge that comes from a speci�c

domain, which usually comprises very specialised concepts of the real world, with

the knowledge already in CYC KB, which consists of very general concepts of the

world. A connecting, intermediate ontology is needed to integrate the two kinds of

knowledge in a realistic way.

2. Another dimension of the same problem occurs when di�erent people are develop-

ping expert systems in CYC and consequently create new concepts and try to

integrate them in the already existing CYC Ontology. This raises the issues of con-

sistency, i.e. the same concepts may be de�ned as parts of contradictory parts of

the Ontology, and duplication, i.e. di�erent terms are de�ned that conceptually are

identical. In [Lenat & Guha 90], these issues are discussed in detail.

1

The AIAI version of CYC, on which this project was developed, contained only the upper ontology

which can also be found at www.cyc.com/cyc-2-1/intro-public.html

50 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

The decisions required are quite hard and they primarily demand good knowledge of

the given CYC ontology. However, such knowledge comes more by using than by studying

the terms of the KB. The author studied the given ontology to the extent permissible in

the time available. Therefore, it is not claimed that the solutions are either unique or the

best. This is an issue discussed in the next chapter. However, the major points of these

decisions are discussed below

2

:

4.3.1 The PC Diagnosis Microtheory.

In CYC, microtheories is a way of talking about a group of related assertions by represent-

ing this grouping explicitly with a Cyc unit ([Blair et al. 92]). The default microtheory is

the #$BaseKB and any other microtheory is almost always a superset of this microtheory

in a hierarchy which is constructed using the predicate #$genlMt. For all the reasons

cited in [Blair et al. 92], all the domain knowledge for the Systematic Diagnosis PSM for

PCs was grouped in a special microtheory, the #$PCDiagnosisMt (B:10).

4.3.2 The System Model.

The representation in CYC of the domain structures related to the system model know-

ledge was quite straightforward. Figure 4.2 illustrates the decisions about this represent-

ation. The meaning of all terms can be found in the corresponding part of the KE-text

in Appendix B (B:21-207, B:691-717). Recall that in CYC, the #$isa predicate means

\element of", while the #$genls predicate means \subset of". The important thing here

is that the #$PCComponent collection is a sub-collection of the #$PCSubSystem col-

lection. This is both for grouping every part of a PC in the latter and for distinguishing

the simple, non-decomposable components by the former collection.

Another important aspect of the system model implementation is that, although a

description of it is given in terms of the #$functionalPartOf assertions (B:691-717) and

the general decomposistion rule

3

(B:681-690),

2

Numbers in parentheses refer to number lines of the KE-text listing in Appendix B.

3

Terms preceded by '?' are variables in CYC

4.3. THE IMPLEMENTATION OF THE DOMAIN LAYER 51

Speaker

VideoCard
Monitor
MotherBoard

PowerCable
PowerProtectionDevice
PowerSupply

... (more)

PowerSocket

PCSubSystem

PCComponent

isa

genls

genls

PowerSystem
VideoSystem

PCSystem

BIOSStartupSystem
MemorySystem
FloppySystem
PlugAndPlaySystem
BootSystem

Collection

isa

isa

isa

isa

isa isa

hypothesis (PCSubSystem)

possibleHypotheses (PCSubSystem)

Predicate

functionalPartOf (PCSubSystem, PCSubSystem)

testFirst (PCSubSystem)

testAfter (PCSubSystem, PCSubSystem)

CompositeTangibleAndIntangibleObject

isa

isa

Individual

isa

Figure 4.2: The System Model Hierarchy in CYC

52 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

(implies

(and

(diagnosisContext BootTime)

(hypothesis ?HYPOTHESIS)

(plausibleInference Decompose)

(functionalPartOf ?HYPOTHESIS ?PART))

(possibleHypotheses ?PART)).

the order of testing is given through explicit decomposition rules which are context de-

pendent, that is they have the general form:

(implies

(and

(diagnosisContext BootTime)

(hypothesis HYPOTHESIS)

(plausibleInference Decompose)

(resultOfTest TEST_1 RESULT_1)

...

(resultOfTest TEST_M RESULT_M))

(and

(testFirst PC_SUBSYSTEM_1)

(testAfter PC_SUBSYSTEM_1 PC_SUBSYSTEM_2)

...

(testAfter PC_SUBSYSTEM_N-1 PC_SUBSYSTEM_N))).

Example of Decomposition rule. The rule

(implies

(and

(diagnosisContext BootTime)

(hypothesis VideoSystem)

(resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

(resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No)

(plausibleInference Decompose))

4.3. THE IMPLEMENTATION OF THE DOMAIN LAYER 53

(and

(testFirst MotherBoard)

(testAfter MotherBoard VideoCard))).

means that

IF

1. The problem solving context is Boot-time and

2. The video system is hypothesised as being in fault and

3. Something is written on the screen (VideoSignal=Yes) and

4. There is no video BIOS message and

5. A Decompose inference must be performed

THEN

1. Test �rst the Motherboard and

2. Test the Video card after the Motherboard.

It is the signi�cance in the order of testing that imposes the encoding of explicit de-

composition rules. If the order of testing was not important, the explicit decomposition

rules would not be necessary. This would simplify the implementation of the system

model in just the #$functionalPartOf assertions (B:691-717) and the general decompos-

istion rule(B:681-690). The explicit decomposition rules are grouped in the KE-text by

component/subsystem (B:739-2130).

4.3.3 The Testing Knowledge

The representation of the domain structures related to the system testing knowledge

was quite straightforward in CYC. Figure 4.3 illustrates the decisions about this rep-

resentation. The meaning of all terms can be found in the corresponding part of the

KE-text in Appendix B (B:214-559). There is a technicality concerning the representa-

tion of the Test structure. It is represented via a #$NonPredicateFunction, #$TestFn

54 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

InformationBearingThing

Test

genls

Collection

Predicate

PurposefulAction

TestAction

AttributeType

BootTime
RunTime
ComponentSpecific
Yes
No
RingingOrBuzzing
ConsistentPattern

isa isa isa

PossibleObservableValuePossibleObservable

AttributeValue

genls genls genls

AttributeValue

ResultType

genls

isa

Normal
Notnormal
Insufficient
Distinguishing

CheckIndependently
Remove
Replace
ChangeVoltage
TroubleshootComponent

ProblemContext
ElectricPower
VoltageCorrect
VideoSignal
SpeakerBeep
VideoBIOSMessage
BootContinues...(more)
...(more) ...(more)

possibleTest (Test)

possibleResultOfTest (Test PossibleObservableValue ResultType)

resultOfTest (Test PossibleObservableValue)

diagnosisContext (PossibleObservableValue)

isa

isa isa isa isa isa

isa

ConfirmSensorially

(TestFn PCSubSystem TestAction PossibleObservable)

isa

Figure 4.3: The Test Knowledge Hierarchy in CYC

4.3. THE IMPLEMENTATION OF THE DOMAIN LAYER 55

(B:258), which takes as arguments the three constituent concepts, i.e. #$PCSubSystem,

#$TestAction and #$PossibleObservable, and returns a #$Test instance. Schematically:

(TestFN PCSubSystem TestAction PossibleObservable) -> Test

Once again, the rules that introduce the possible tests, their possible results and their

types, are context dependent:

(implies

(and

(diagnosisContext BootTime)

(hypothesis HYPOTHESIS)

(resultOfTest TEST_1 RESULT_1)

...

(resultOfTest TEST_M RESULT_M))

(and

(possibleTest TEST)

(possibleResultOfTest TEST POSSIBLE_OBSERVABLE_VALUE_1 RESULT_TYPE_1)

...

(possibleResultOfTest TEST POSSIBLE_OBSERVABLE_VALUE_N RESULT_TYPE_N))).

where

TEST:= (TestFn PC_SUBSYSTEM TESTACTION POSSIBLE_OBSERVABLE).

Example of Test introduction rule. The rule

(implies

(and

(diagnosisContext BootTime)

(hypothesis MotherBoard)

(resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

(resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No))

(and

(possibleTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep))

56 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

(possibleResultOfTest

(TestFn MotherBoard ConfirmSensorially SpeakerBeep) No Insufficient)

(possibleResultOfTest

(TestFn MotherBoard ConfirmSensorially SpeakerBeep) ConsistentPattern

Insufficient))).

means that

IF

1. The problem solving context is Boot-time and

2. The Motherboard is hypothesised as being in fault and

3. Something is written on the screen (VideoSignal=Yes) and

4. There is no video BIOS message

THEN

� A possible test is to check if the speaker beeps and

� There are two possible results:

1. No sound comes from the speaker, which is insu�cient and necessitates more

tests (about the speaker itself).

2. A beep with a consistent pattern comes from the speaker, which is insu�cient

and necessitates more tests (about the beep code).

These rules are grouped in the KE-text by component/subsystem (B:763-1678).

4.4 The Implementation of the Inference and Task

Layers

The guidelines for implementing the control knowledge, namely the Inference and Task

layers, are:

1. These layers will be implemented in SubL code and

4.4. THE IMPLEMENTATION OF THE INFERENCE AND TASK LAYERS 57

2. The implementation will allow for the problem-solving method, the Systematic

Diagnosis PSM, to be executed declaratively, i.e. merely in terms of asking and

(possibly) changing facts in the CYC KB.

Under these guidelines, the encoding of the Inference and Task layers in SubL code was

done in the following way

4

:

1. Each inference type was encoded as a single SubL function-inference.

2. The only thing that these functions do is to ask the CYC KB questions (�-ask),

assert (�-assert) and/or retract (�-unassert) facts from the CYC KB (Inference

layer) and - according to the new facts - call the appropriate function-inference

(Task layer).

3. The Task Structure in �gure 3.2 is encoded in a function, systematic (C:22),

although this is not obvious from the SubL code for technical reasons that will be

explained later.

The description of the implementation for the Inference and Task layer is based on �gure

4.4. According to this �gure, the overall system in CYC works as follows:

1. The function-inference systematic is called (Figure 4.5). When the diagnostic ses-

sion begins, i.e. no #$PCSystem is hypothesised as faulty (number of hupotheses

= 0), then the sd-select1 (C:157) function is called. The latter, asserts to the

KB the fact that the whole #$PCSystem is at fault (C:166). Each time that a

new (hypothesis ...) assertion is entered into the KB, the appropriate rules

concerning possible tests \�re". This is because, in CYC, a rule can have a direc-

tion associated with it. If this direction is forward, then, whenever new assertions

are asserted in the KB, the inference engine of CYC �nds all rules with direction

forward of which the antecedent part is satis�ed by the contents of the KB and

immmediately asserts all the assertions in the consequent part of it. This enables

forward reasoning to be implemented, which is the case for the system developed

in this research. In fact, forward reasoning is implemented by the Task structure.

4

Numbers in parentheses refer to line numbers of the SubL listing in Appendix C.

58 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

- resultOfTest

- hypothesis

- diagnosisContext

- plausibleInference

SubL code

systematic

menu

Diagnosis

sd-select 1

sd-compare

sd-confirm

PCSubsystem

PCComponent

Insufficient

Normal
or

Distingui-
shing

hyp=0

END

hyp>0

sd-new-hypothesis

hyp=0

sd-select 2-3

sd-decompose

Not

Normal

Normal(hyp>0)

Distingui-
shing(hyp>0)

fi-assert

fi-ask

SubL Interactor

eval format

fi-unassert

KB - CycL

- decomposition knowledge rules
- testing knowledge rules

Facts:

Rules (forward):

=+

Figure 4.4: The Overall Model (detailed view)

4.4. THE IMPLEMENTATION OF THE INFERENCE AND TASK LAYERS 59

The forward rules are involved only in answering questions to the KB and they can

be replaced in the KE-text by the usual, backward rules of CYC, with minimal

modi�cations to the SubL code

5

.

2. The aforementioned rules assert in the KB facts about the possible tests that may

be performed, their possible results and the types of these results. Therefore, the

select2-3 inference is actually implemented through these forward rules while the

sd-select2-3 (C:172) function is responsible only for asking the KB which is the

next possible test and present it to the user in the SubL Interactor panel (Figure

4.6).

3. This is the place where a technical problem occured, which had a drawback and a

bene�t. The problem is that SubL code cannot ask for direct input from the user

through the Interactor panel. This is a problem caused by the implementation of

the CYC Web interface. Therefore, for the user to interact with the SubL code, the

code must stop running and the user must enter the input needed by the code as a

parameter to the menu (C:332) function(Figure 4.6). This is re
ected in �gure 4.4

by the dashed arrow to the menu function. The drawback now is that the code of

the systematic (C:28) function does not re
ect the Task Structure in �gure 3.2,

although the structure of the SubL code in �gure 4.4 re
ects the Task Structure

when the menu function is removed and its calling functions are directly connected

to the systematic function. The bene�t is that, since the SubL code execution is

interrupted and the control goes back to the CYC interface, the user can now go

to other panels of the interface, like the Ask interface or the KB Browser interface

and view the contents of the KB as they have been modi�ed by the SubL code, with

the following advantages:

� The user can explicitly view which the current state in the diagnosis problem

solving method is.

5

A version of the SubL code that works with backward rules was developed but it is not included

in this thesis, since the only modi�cations made were just adding some extra arguments to the calls of

fi-ask function, that is, adding some parameters to the fi-ask function to perform backward chaining

(see Appendix A).

60 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

� The user can use the justi�cation mechanism of CYC to get a justi�cation of

the current state of the diagnosis.

� The user can even explicitly change the current state of the diagnosis by chan-

ging the contents of the KB and experiment with the system, although this

will probably lead to system malfunction and would be recommended only to

users experienced with the co-operation of the SubL code and the contents of

the KB.

4. The menu function asserts into the KB the actual result of the last test performed

and the result's type. It then calls function systematic to continue the diagnosis

process. Having performed the select2-3 inference, the next inference to be per-

formed is compare and therefore the corresponding function, sd-compare (C:43) is

called. This function decides which function-inference to perform next according to

the result type:

� If #$Normal or #$Distinguishing, then the subsystem which is the current

hypothesis is not faulty and the next hypothesis, if one exists, must be con-

sidered (Figure 4.7). This is done by the sd-new-hypothesis (C:123) function

which does not correspond to an inference but its a control function added as

a result of the technical problem described above.

� If #$NotNormal, then the subsystem which is the current hypothesis is faulty

and it must be either decomposed, if it is a #$PCSubsystem (Figure 4.8), or

located as the faulty component, if it is a #$PCComponent (Figure 4.9); that

is what the sd-confirm (C:94) function does.

� If #$Insu�cient, then a new test must be performed and therefore, the select2-3

function is called (Figure 4.10) .

It must be noted that the decompose inference is implemented through forward rules

in the same way that the select2-3 inference is implemented, while the sd-decompose

(C:358) function performs only managing work with the KB by asking, asserting and

retracting.

4.4. THE IMPLEMENTATION OF THE INFERENCE AND TASK LAYERS 61

Figure 4.5: Starting the diagnosis session

Figure 4.6: Presenting a Test to The User

Figure 4.7: New Hypothesis After a \Normal" Result Type

62 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

Figure 4.8: Decomposing a PCSystem After a \Not Normal" Result Type

Figure 4.9: Con�rming a PCComponent After a \NotNormal" Result Type

Figure 4.10: New Test After an \Insu�cient" Result Type

4.4. THE IMPLEMENTATION OF THE INFERENCE AND TASK LAYERS 63

In the SubL code listing in Appendix C, some more functions can be found. These

are support functions and a brief description of them is given in table 4.1.

Function Description

get-test-result Presents the test to be performed by calling the appro-

priate functions. It provides to the user HTML links to

every term of the test in the CYC KB (C:214) .

present-test-parameters Presents the test parameters, that is, the #$PCSUbSys-

tem, #$TestAction and #$PossibleObservable (C:246).

present-test-results Presents the test's possible results (C:261).

position-list Provide access to the bindings lists that function fi-ask

returns. These lists are the ones returned when a ques-

tion is made from the Ask interface (C:295, C:314).

get-ask-binding

sd-reset Resets all the assertions concerning the systematic dia-

gnosis problem solving method in CYC's KB. Must be

called once before a diagnostic session begins (C:400).

Table 4.1: The SubL Support Functions

4.4.1 Maintaining the Declarative Scheme

A close examination of the SubL code in Appendix C for the function-inferences reveals

that all they do is managing work:

1. they ask questions to the KB,

2. according to the results of these questions, they retract from the KB knowledge

that is no more valid/necessary, assert knowledge that is valid/necessary and they

decide which inference to perform next.

Therefore, there is not any domain knowledge hard-wired inside the code and the control

knowledge is clearly seen. In turn, this means that a human user could perform the

64 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

problem solving method equally well from the Ask interface, provided that he/she knew

what question to ask to CYC each time and which assertions are valid/needed in each step

of the method. This is the preservation of the declarative scheme in the implementation

of the problem-solving method through SubL code.

4.5 Extending the system

The original goal of this research was to investigate the potential of using KADS as

a methodology for developing problem solving methods (PSMs) in CYC. As far as it

concerns KADS itself, the Generic Task Model (GTM) that forms the frame for devel-

oping the Expertise model is independent of the domain in which it is applied; it is only

dependent on the task that must be performed in this domain. This in turn suggests

that a signi�cant part of the knowledge developed for a task in a speci�c domain should

be easily re-usable for the same task in another domain. But the issue is, how easily?

Moreover, with CYC given as the implementation environment, would this a�ect the ease

of extending the GTM in another domain for the same task?

In order to answer these critical questions, the next step was to implement Systematic

Diagnosis in another domain. The domain was Automobile fault diagnosis, restricted just

to the Ignition system. The changes that occured are discussed below

6

.

4.5.1 Changes of Microtheories

In the implementation of Systematic Diagnosis only for the PC domain, all the know-

ledge was grouped in a single microtheory, #$PCDiagnosisMt. However, this was done

for reasons of simplicity. Despite this simpli�cation, it was obvious, even from the ana-

lysis phase, that a great deal of the knowledge did not have to do with the PC domain

but the problem solving method itself. For example, the general concepts of the testing

knowledge (#$Test, #$TestAction, #$PossibleObservable, #$PossibleObservableValue)

are concepts related with the Systematic Diagnosis PSM rather than with the speci�c

domain. Therefore, by introducing another domain, this knowledge should be seperated

from the PC domain knowledge, and it should also be available to the Automobile domain.

6

Numbers in parentheses refer to the line numbers of the KE text listing in Appendix D.

4.5. EXTENDING THE SYSTEM 65

In CYC terms, a di�erent hierarchy of microtheories was needed. Two new microthe-

ories were created, #$SystematicDiagnosisMt (D:9-18) and #$AutomobileDiagnosisMt

(D:378-385), in addition to the already exisiting microtheory, #$PCDiagnosisMt (D:761-

767). Of course, the latter two, are extensions of the �rst one, which in turn is an

extension of the #$BaseKB microtheory; these relationships are given in Figure 4.11.

It is obvious that there is a nice mapping between KADS and CYC: one microtheory

corresponds to each domain and to each problem solving method.

BaseKB

AutomobileDiagnosisMt PCDiagnosisMt

PCDiagnosisMt

BaseKB

SystematicDiagnosisMt

TWO DOMAINSONE DOMAIN

Figure 4.11: Changes in the Microtheories

4.5.2 Changes in the Domain Layer

Given the implementation of the Systematic Diagnosis PSM, and the three microtheories,

the following changes have to be done in the domain layer (see Figure 4.12) :

1. Generalise concepts, relations and rules in the task-speci�c microtheory (#$Sys-

tematicDiagnosisMt). The generalisation is based on the common use of knowledge

in both domains. Mainly this kind of knowledge is task and not domain dependent.

66 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

The generalisation may demand moving already existing domain structures from

the domain-speci�c microtheories (#$PCDiagnosisMt and #$AutomobileDiagnos-

isMt), e.g. #$Test (D:106), #$hypothesis (D:65), to the task-speci�c one or cre-

ating new domain structures in the task-speci�c microtheory, e.g. #$SubSystem

(D:26), #$Component (D:36).

2. Specialise concepts, relations and rules in the domain-speci�c microtheories. The

specialisation is based either on connection of the domain knowledge with the task

knowledge or on demands for special domain knowledge. In the �rst case, the new

domain structures are specialisations of domain structures in the task microtheory,

e.g. #$AutomobileSubSystem (D:395), #$PCComponent (D:787). In the second

case, the new domain structures express domain-speci�c variations, e.g. #$physical-

Decompositions (D:44, D:500-518) and #$functionalPartOf (D:925), which describe

the system model in a structural and functional way correspondingly.

4.5.3 Changes in the Inference and Task Layers

As expected, the changes in the Inference and Task layers were minimal, practically

ignorable. This fact is supported by the following:

1. The rules for testing and decomposition (D:536-738 for #$AutomobileDiagnosisMt

and D:1208-2134 for #$PCDiagnosisMt), which implement the select2-3 and de-

compose inference types, have exactly the same structure in both domains and

2. The SubL code, which implements the task structure, has changed only to di�er-

entiate the domain microtheory in which the KB operations (fi-ask, fi-assert,

fi-unassert) are performed.

The fact that these two layers which constitute the GTM for Systematic Diagnosis

were practically unchanged, implies that developing problem solving methods in CYC,

with KADS as the developping methodology, provides modularity and ease of extension,

knowledge re-use and analogy-driven knowledge acquisition between existing and new

domains. These issues will be further discussed in the next chapter.

4.5. EXTENDING THE SYSTEM 67

General Domain Instances

LEGEND:
genls

isa

knowledge
sharing
microtheories

possible isa

BaseKB
AttributeValue
AtributeType

InformationBearingThing
CompositeTangibleAnd IntangibleObject

SystematicDiagnosisMt

SubSystem

PCDiagnosisMt

AutomobileDiagnosisMt

PCSubSystem

Component

Test

TestAction

AutomobileSubSystem

AutomobileComponent

TestFn

PossibleObservable

PossibleObservableValue

ResultType

Predicates:
physicalDecompositions

Predicates:
testFirst
testAfter
hypothesis
possibleHypotheses
possibleTest
possibleResultOftest
resultOfTest
diagnosisContext

Domain Specific Instances

Domain Specific Instances
PurposefulAction

PCComponent

functionalPartOf
Predicates:

Figure 4.12: The Changes in the Domain Layers

68 CHAPTER 4. THE IMPLEMENTATION PHASE IN CYC

4.6 Overview

In this chapter, the implementational decisions for the Systematic Diagnosis PSM in the

domain of PC fault diagnosis were discussed. The main decisions were to implement the

Domain layer in CYC's KB (using CycL) and the Inference and Task layers to be imple-

mented in Lisp code (using SubL). The whole task is controlled by the Lisp code which

operates (asks, asserts and retracts facts) on the KB through the Functional Interface.

The main advantage of this implementation is that preserves to a considerable extent

the declarative scheme of knowledge representation and inference in CYC. A small but

conceptually essential extension of the system implemented in the domain of Automobile

fault diagnosis was discussed, pointing out the main issues of reusing PSMs under the

implementation developed.

Chapter 5

Issues and Results

Computers are useless. They can only give you answers.

- Pablo Picasso

An expert is a man who has stopped thinking - he knows!

- Frank Lloyd Wright

5.1 Introduction

The principal goal of this research was to implement in CYC a problem solving method

(PSM) from the KADS methodology and study the issues that arise with this imple-

mentation. The principal issue to study was whether implementing a PSM in CYC

would increase its reasoning power. Other issues were:

1. How well does KADS \�t" into CYC? KADS, as a methodology is implementation-

independent. Its products, the various models from the analysis and design phases,

can potentially be implemented in any implementation environment. CYC provides

a declarative representation language, CycL, and a procedural/functional dialect of

Lisp, SubL. The issue then is what part of CYC implements each product part of

KADS and how.

2. Does KADS contribute to the development of CYC's Ontology and, if so, in what

way?

69

70 CHAPTER 5. ISSUES AND RESULTS

But �rst, let us consider the �rst issue.

5.2 Problem Solving in CYC

The �nal objective of any intelligent agent is to solve problems. Intelligence itself is

de�ned as the ability to solve problems. Expert Systems (ES) are the most developed

problem solvers in the �eld of AI. However, �rst-generation ES su�ered from what was

called \the knowledge brittleness":

� They could not handle missing, incomplete or imprecise data.

� They could not give satisfactory explanations for what they were doing to solve a

problem and how they were doing it.

� They could not handle situations which were not foreseen by their programmers

and did not have explicit knowledge for them.

In general, the aforementioned problems could all be described as inability of the ES to

fall back to \�rst principles", to use common sense. The motive for developing CYC was

overcoming this \brittleness", this lack of common sense ([Lenat & Guha 90]). To build

a system that could perform common sense reasoning, one should provide it both with a

lot of common sense knowledge, facts and rules of thumb that an average person knows

about the world, and common sense inferencing mechanisms like analogical reasoning

that will perform on that knowledge. In their mid-term report book, [Lenat & Guha 90],

the writers admit that the CYC project focused on the development of an Ontology of

common sense knowledge, as

...successful analogizing depends on ... having a realistically large pool of

(millions of) objects, substances, events, sets, ideas, relationships, etc, to

which to analogize.

This focus to the common sense knowledge itself led to an imbalance as far as it

concerns the problem solving abilities of CYC. The author's experience with CYC is

that, although it provides a quite sophisticated environment for developing any kind of

knowledge, it lacks the support for using that knowledge. This imbalance is explained in

more detail below.

5.2. PROBLEM SOLVING IN CYC 71

5.2.1 Inferencing in CYC

Currently, CYC starts its inferencing when a question, expressed in its representation

language CycL, is asked from its Ask interface. To answer a question, CYC uses two

kinds of inference mechanisms:

1. Backward chaining with resolution, as a general, \weak" inference mechanism.

2. Heuristic level, special-purpose inference mechanisms that decide which nodes to

open at each stage of this backward chaining, that is which reasoning path to pursue

next. These heuristic inference mechanisms are based on the syntactic form of each

(sub)goal as well as on the occurrence of special predicates like #$isa, #$genls and

others.

CYC also makes use of microtheories to restrict the search space. However, it is the

author's opinion that these inference mechanisms are simply not enough to produce

what CYC is intended to produce: expertise. \Weak" inference mechanisms are just

to support expertise and not to produce it. A discussion about this issue can be found

in [Luger & Stubble�eld 98]. Moreover, the special-purpose heuristic inference modules

only support the implementational level of inferencing and have nothing to do with the

knowledge-level ([Newell 82]) which primarily concerns an ES. A discussion about this

issue can be found in [Steels 90] and [Chandrasekaran 86]. Most important, the general,

\weak" methods of inferencing, like backward reasonong with resolution, su�er heavily

from the combinatorial explosion of the state space ([Luger & Stubble�eld 98]), and this

is more severe in the case of CYC's huge state space, its KB, containing 10

6

common

sense axioms and still growing ([Lenat 95]). Therefore, it becomes obvious that what is

missing from the inferencing power of CYC is what I would call an Ontology of infer-

ence mechanisms, that is, a large set of elementary inference mechanisms that perform

elementary knowledge transformations and can be combined together to generate more

complex inferencing for more complex problem-solving situations. In [Lenat & Guha 90]

it is explicitly stated that such a set of inference mechanisms should be an indispensable

part of any reasoning system:

...Breaking down the phenomenon [i.e. analogical reasoning] into its vari-

ous subtypes and then handling each one.

72 CHAPTER 5. ISSUES AND RESULTS

5.3 Problem Solving Methods in CYC

Problem Solving Methods (PSMs), as they were described in this thesis, provide a

source for this ontology of inference mechanisms. Although PSMs have been developed

in a background broader than that of KADS, as general building blocks of expertise

([Chandrasekaran 86]), KADS methodology provides an elaborate organisation of these

mechanisms, in the form of:

1. Primitive inference mechanisms, the inference types, with their elementary input

and output, the domain roles

2. Structured entities of these primitive inferences, the Generic Task Models.

Whether this scheme is the best it is not of importance here. The important is that

there are some elementary inferences and a way to combine them together to produce

complex problem solving behaviour. It is obvious that this is the analogous of having a

common sense knowledge base in the knowledge level, in another level (or meta-level),

the inference level. Research in the development of ES has shifted to that level, either

in the form of the knowledge-use level ([Chandrasekaran 86], [Steels 90]) or in the form

of proof plans ([Bundy 88]). This shift cannot be ignored, especially in the case of CYC

which was built as an ES development platform.

I would try a metaphor here to underline the importance of this level. I think that in-

ference mechanisms are to intelligence what the natural laws are to physics and functions

are to mathematics: they describe the fundamental interactions and transformations of

the structural materials of each domain, namely of the knowledge, the matter/energy

and the quantities correspondingly. This metaphor will be useful right below, where the

implementation of the Systematic Diagnosis, the PSM selected for this thesis, is discussed.

5.3.1 Implementing the Systematic Diagnosis PSM

The above discussion gives an answer to the theoretical issue of why implement PSMs in

CYC. In chapters 3 and 4 a thorough description of how this implementation was done

is given.

5.3. PROBLEM SOLVING METHODS IN CYC 73

The most important result of this implementation is that the inferencing power of

CYC improved, as it can now perform systematic fault diagnosis not only in the domain

of PCs, but in a range of domains as it was proved by the extension of the system in the

domain of Automobiles (x4.5). The importance comes from the fact that CYC could not

perform the same task by simply backtracking through its knowledge base; systematic

fault diagnosis demands dynamic gathering of data through queries from the system to the

user and consequent dynamic update of the knowledge base. These dynamic information

collection and manipulation operations do not lend themselves to explicit declarative

reasoning but naturally demand procedural and functional reasoning. Although CycL,

the representation language of CYC, provides the means for calling LISP code (SubL),

these means are not enough either to provide interaction with the user or to dynamically

update the knowledge base of CYC. Hence, the implementation of the Task Structure,

the overall plan of the PSM, in SubL (x4.2), and the use of the functional interface (FI)

to ask and update the CYC KB dynamically, that is, assert or retract facts.

This latter fact, that simple backtracking and matching with the contents of the KB,

in spite of its powerful generality, is not enough to implement any kind of problem solving

task, proves in practice that a general reasoning system must provide both a variety of in-

ference mechanisms and the means to combine and control them. The implementation of

the Systematic Diagnosis problem solving method, as described in this thesis, establishes

both a source for these mechanisms (KADS) and a way to implement them in CYC.

5.3.2 The Implemented System

Despite the lack of a variety of inference mechanisms, the CYC system provides an

excellent platform for developing expert systems (ES). This is re
ected in the expert

system developed for this thesis that performs systematic fault diagnosis. The system

has all parts of a typical ES:

� A menu-driven user interface, which additionally provides HTML links to any term

in the KB, making the system self-explainable and documented by direct reference

to its terms.

� Double inference engine: the built in backward chaining CYC inference engine for

74 CHAPTER 5. ISSUES AND RESULTS

answering questions and the Task Structure encoded in SubL for performing the

overall task of diagnosis.

� An explanation facility. Although not explicitly implemented, there is an explana-

tion sub-system available through the [Justify] option that the CYC KB Browser

provides for assertions in the CYC KB. Since the user can view the contents of the

KB at any time during the diagnostic process, he/she can see the justi�cation of

any assertion in the KB in terms of which rules/facts prove the assertion. From this

limited explanation facility, a more complex could be built by just accumulating in

a list the justi�cations of every assertion relative to the diagnostic process. This

feature can be implemented in the SubL code through the fi-justify function

(see Appendix A).

� A KB editor, built in CYC.

� A general KB, CYC's #$BaseKB microtheory.

� Domain-speci�c knowledge, the #$PCDiagnosisMt and #$AutomobileDiagnosisMt

microtheories.

The implemented system is itself a hybrid rule-based and model-based one (the model of

the diagnosed system is implemented via rules), with all the advantages of such systems:

� Direct use of heuristic, unformalised diagnostic knowledge

� Modularity of rules

� Separation of domain and control knowledge which results to easiness of tracing,

debugging and extending.

� Good performance in a limited domain.

The last characteristic of the system must be discussed more in detail as it touches on

the motivating issue for building CYC itself. The motive was to overcome the \brittle-

ness" of ES. This \brittleness" describes the inability of ES to handle novel or unexpected

situations. Humans can handle these situations generally by falling back on \�rst prin-

ciples" or general (common sense) knowledge. CYC was build to provide this common

5.3. PROBLEM SOLVING METHODS IN CYC 75

sense knowledge as a common substrate for the development of ES. Therefore, one would

expect that the system that was developed in this thesis and any other ES that would

have been developed in CYC would not su�er from this \brittleness". This is not the case

by any means. The system of this thesis and any other ES developed in CYC would su�er

from \brittleness" unless it was explicitly designed to take advantage of CYC's common

sense ontology. The reason for this is simple. An ES has as its purpose to produce the

same behaviour as a human expert. But, most of the time, a human expert uses heuristic

knowledge, that is knowledge which is a \distilled" part of both the general and domain-

speci�c knowledge which has proved to be the most important and useful for the expert

to perform his task. Of course, the human expert is completely aware how he formed this

heuristic knowledge and, in case it is not directly applicable for reasons of novelty, can

review it and reason about it. But to reason about his heuristic knowledge, the human

expert must use the original knowledge from which he formed the heuristic one. These

two levels of knowledge are known in the theory of ES as surface and deep knowledge cor-

respondingly ([Steels 90]). This is where CYC comes. It provides the \deep" knowledge

that is needed for an ES to reason about its heuristic one. But the ES must be designed

to be able to perform that kind of reasoning, that is reason about its heuristic knowledge

using general knowledge. An example from the actual system will make things clear.

In order to perform diagnosis in PCs, the system has heuristic rules about the order

of diagnosis. This is because the order is important for the diagnosis (see x3.4.1). Of

course, the system does not know why the order in its rules is the one encoded. If, for some

reason, this ordering could not be applied, then the system is unable to reason. But, if it

should be able to reason about the rules themselves, that is check them for consistency,

alter them or even infer them, then more knowledge would be needed. Speci�cally, in the

case of the ordering rules, the system would probably need some or all of the following:

1. A structural model of the system, the way the components are connected together

to form the various (sub)systems. This model by itself would need a complete

ontology, like the one found in [Borst et al. 97].

2. A theory of \ordering" in testing, e.g. easiness, that would require certain criteria

(rules) of which systems are easy to test:

76 CHAPTER 5. ISSUES AND RESULTS

� Systems that can be tested sensorially (visually, acoustically) rather than by

instruments.

� Systems that are easy to replace.

� Systems that are easy to test in isolation.

� Systems with simple structure (Components vs. Sub-systems)

� Systems that are easy to access (e.g. terminal systems)

Note that the knowledge outlined above could need more knowledge like knowledge about

serial and parallel connections, control devices, input and output of devices, etc.

It is obvious that for just a simple group of rules, the rules of ordering, the knowledge

of the system would have to grow dramatically. And this can happen for every part

of the system's heuristic knowledge: what test to perform, how to perform it, what

system variable to test, what makes a system variable to be such and so on. The obvious

conclusion is that to overcome \brittleness" two things are needed:

1. A large (huge in the case of CYC) general (and less general) knowledge base and

2. An elaborate connection of the heuristic knowledge of the ES with the appropriate

part of the general knowledge.

Consequently, even with CYC's upper ontology in hand, it requires a tremendous e�ort

to build the part of general knowledge that an ES needs to reason about its heuristic

knowledge and then to put things together, that is design when, why and how the system

will fall back to general knowledge

1

.

With the discussion of the \brittleness" problem concludes the discussion about the

main issue of this thesis and the corresponding results. However, in the introduction of

this chapter two secondary issues were mentioned, concerning KADS and CYC. These

issues are discussed in the next section.

1

This situation is well described in Lenat's report for using CYC in the High Performance Knowledge

Base project, which can be found in http://www.cyc.com/hpkb/proposal-summary-hpkb.html

5.4. KADS AND CYC 77

5.4 KADS and CYC

Problem solving methods (PSMs) were developed in the context of ES development meth-

odologies, such as KADS. Therefore, PSMs can come from somewhere else than KADS.

However, KADS, as a complete ES building methodology, provides the following as far

as it concerns PSMs:

� A hierarchy of PSMs according to the task they are appropriate to (see Figure 2.5).

� A library of more elemenatry inference types that can be combined to build new

PSMs (see Figure 2.1).

� Domain roles for the various inference types that guide the knowledge acquisition

process (see Table 3.1).

� A useful distinction of the four layers of a PSM (domain, inference, task and

strategy) and their interrelationships in the Expertise model which they form (see

Figure 2.4).

It is obvious that KADS provides much more than a simple source of PSMs and therefore

it is worth investigating how much KADS �ts into CYC.

The �rst issue is that of the modelling process of KADS. As described in chapter 2,

this is the Expertise model, consisting of four layers, the Domain, Inference, Task and

Strategy ones. In chapter 4, a mapping between these layers and some parts of CYC was

given, that is:

1. The Domain layer is implemented as a microtheory in CYC KB.

2. The Inference layer is implemented partly in the KB in the form of rules, as far as it

concerns the transformation of the domain structures, and partly in the SubL code

as functions-inferences, as far as it concerns the management of the transformed

domain structures, that is retrieving, asserting and retracting them.

3. The Inference layer is implemented in the SubL code which has the overall inferen-

cing control of the PSM.

78 CHAPTER 5. ISSUES AND RESULTS

4. Knowledge that is speci�c to the PSM is encoded in the KB in a seperate micro-

theory.

The advantages of this mapping is that it distinguishes between the various kinds of

knowledge needed to perform the task of the PSM and that it preserves to a great extent

the declarative scheme of CYC (x4.4.1).

The second issue is how much KADS contributes to the development of CYC's on-

tology. From the description of the Analysis phase (chapter 3), the system extension

(x4.5) and the issue of \brittleness" (x5.3.2), it becomes obvious that KADS provides

an excellent methodology for developing CYC's ontology in a bottom-up manner, that

is from the heuristic, surface, task-speci�c knowledge to the common sense, deep, task-

independent knowledge, through the development of intermediate ontologies that will �ll

the gap between these two kinds of knowledge, as shown in Figure 5.1.

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

specific
task
domains

ontologyupper

intermediate level
ontology and
axioms

concepts
relevant
immediately

task-specific
concepts

Figure 5.1: Filling the Knowledge Gap

In [Lenat & Guha 90] it is explicitly mentioned that CYC's ontology should be neither

an encyclopedia of linearly arranged terms nor a thesaurus of disconnected knowledge.

The main point of KADS is that it views ES building not as �lling a pool of knowledge

but as modelling the expertise behaviour according to speci�c tasks. This approach is

5.5. FURTHER WORK 79

also justi�ed by the way humans acquire their expertise: by tackling a large diversity of

tasks which continuously grow in complexity. Most of our knowledge is task-oriented.

It is acquired and connected with the rest of the already existing knowledge that we

have acquired, according to how, when and for what purposes it is useful. This is the

approach on which KADS is based: KADS supports this approach both by its general

modelling directions and the domain roles that introduces. On the other hand, KADS is

a complete methodology that supports the whole cycle of an ES development, from the

knowledge acquisition ([Kingston 94]), to analysis and design ([Tansley & Hayball 93]);

it is even possible to use KADS for small ES as described in [Kingston 92]. It is therefore

obvious how much KADS can contribute to the development of CYC's ontology in a

bottom-up manner. Of course, the top-down direction of developing a global ontology

is also useful and necessary, with its own advantages and disadvantages ([Guarino 98],

[Smith 98], [Varzi 98]).

5.5 Further Work

It was explained before in this thesis that the implemented system was kept to the

minimum necessary to investigate the main issue, which was the implementation of PSMs

in CYC. However, a number of possible extensions can be considered:

1. Extending the domain knowledge: in section 3.2, it is mentioned that although the

\Expert" used to make the knowledge acquisition included three troubleshooting

contexts for PCs, only the Boot-time context was analysed. It would be a good test

for the implementation to be expanded in the other two domains: the Run-time

and Component-speci�c contexts. In the case of Automobiles this is even more

necessary, since only a small part of the knowledge about the ignition system was

analysed.

2. Developing some \deep" knowledge: in section 5.3.2, in the discussion about the

\brittleness" of the system, it was mentioned that a kind of \ordering theory" would

be needed if the system should be able to reason about the ordering of the tested

systems. Some rules were given but more elaborate work should be carried out.

80 CHAPTER 5. ISSUES AND RESULTS

3. Implementing another PSM either for the same task or for a di�erent one: it was

mentioned that Heuristic Classi�cation could be used for troubleshooting, while a

con�guration task could probably also make use of some of the knowledge encoded

for troubleshooting. Implementing PSMs either for the same task or for a di�erent

one could promote the investigation of issues of knowledge re-use from another PSM

and of how well the decisions for the implementation of Systematic Diagnosis work

for another PSM.

4. The three previous extensions would provide a good paradigm for investigating how

easily KADS contributes to the development of intermediate ontologies in CYC.

5. A more elaborate justi�cation mechanism could be developed, by accessing CYC's

built-in justi�cation mechanism, keeping the necessary justi�cations for every in-

ference step during the diagnosis process.

6. Although improving its reasoning power, the various parts of the PSM like the infer-

ence types, inference structure, task structure and generic task model are not known

to CYC since they were implemented in SubL code. It could be a very interesting

extension to investigate to what degree all these could be encoded declaratively using

CycL, and consequently be used by CYC in its usual reasoning schema. A possible

application could be to develop an ES that would guide a knowledge engineer to

use KADS for developing knowledge-based systems, as described in [Kingston 95].

5.6 Conclusions

From the discussion in this chapter, the following conclusion come out of this thesis:

1. The inference mechanism of CYC, backward chaining with resolution, is not strong

enough to perform more complex tasks that require dynamic information collec-

tion and KB updating, as is the case in the systematic diagnosis of faults in PCs.

Moreover, this \weak" inference mechanism su�ers from the combinatorial explosion

problem.

5.6. CONCLUSIONS 81

2. The implementation of problem solving methods (PSMs) reinforces the inferencing

power of CYC and enriches it with new inference mechanisms.

3. KADS methodology provides a rich source for PSMs and a structured way for using

them in every aspect of problem solving, from knowledge acquisition to analysis and

design of the problem solving model.

4. Moreover, KADS provides a systematic, task-oriented way for developing CYC's

Ontology in a bottom-up way: from the task-speci�c concepts to the task-independent

ones which form CYC's Upper Ontology.

All these conclusions should motivate further research in combining these two very

promising state-of-the-art components of Arti�cial Intelligence.

82 CHAPTER 5. ISSUES AND RESULTS

Bibliography

[Blair et al. 92] P. Blair, R.V. Guha, and W. Pratt. Microtheor-

ies: An Ontological Engineer's Guide. Cyc Tech-

nical Report CYC-050-92, Microelectronics and

Computer Technology Corporation (MCC), March

1992.

[Borst et al. 97] P. Borst, H. Akkerman, and J. Top. Engineering

Ontologies. International Journal of Human Com-

puter Studies, 46(213), 1997.

[Bundy 88] A. Bundy. The use of explicit plans to guide in-

ductive proofs. In R. Lusk and R. Overbeek, ed-

itors, Ninth Conference on Automated Deduction,

pages 111{120. Springer-Verlag, 1988.

[Chandrasekaran 86] B. Chandrasekaran. Generic Tasks in Knowledge-

Based Reasoning: High-Level Building Blocks for

Expert System Design. IEEE Expert, 1(3), 1986.

[Clancey & Letsinger 82] W.J. Clancey and R. Letsinger. Neomycin: Recon-

�guring A Rule-Based Expert System for Applica-

tion to Teaching. Technical Report STAN-CS-82-

908, Department of Computer Science, Stanford

University, May 1982.

[Clancey 85] W.J. Clancey. Heuristic Classi�cation. Arti�cial

Intelligence, (27), 1985.

83

84 BIBLIOGRAPHY

[Guarino 98] N. Guarino. Formal Ontology and Information

Systems. In N. Guarino, editor, Proceedings of

the First International Conference on Formal On-

tology in Information Systems, pages 3{15. IOS

Press, 1998.

[Hamscher 88] W.C. Hamscher. Model-Based Troubleshooting of

Digital Systems. Technical Report AI-TR 1074,

Arti�cial Intelligence Laboratory, MIT, August

1988.

[Hesketh & Barett 90] P.H. Hesketh and T. Barett. An Introduction to

the KADS Methodology. ESPRIT P1098, Deliver-

able M1, STC Technology Ltd., March 1990.

[Kingston 92] J. Kingston. PragmaticKADS: A methodological

approach to a small knowledge based systems pro-

ject. Technical Report AIAI-TR-110, Arti�cial In-

telligence Applications Institute, University of Ed-

inburgh, November 1992.

[Kingston 94] J. Kingston. Linking Knowledge Acquisition with

CommonKADS Knowledge Representation. Tech-

nical Report AIAI-TR-156, Arti�cial Intelligence

Applications Institute, University of Edinburgh,

July 1994.

[Kingston 95] J. Kingston. Applying KADS to KADS: know-

ledge based guidance for knowledge engineering.

Technical Report AIAI-TR-158, Arti�cial Intelli-

gence Applications Institute, University of Edin-

burgh, January 1995.

[Lenat & Guha 90] D.B. Lenat and R.V. Guha. Building large

knowledge-based systems. Representation and in-

BIBLIOGRAPHY 85

ference in the Cyc project. Addison-Wesley, Read-

ing, Massachusetts, 1990.

[Lenat 95] D.B. Lenat. CYC: A Large-Scale Investment in

Knowledge Infrastructure. Communications of the

ACM, 38(11), November 1995.

[Luger & Stubble�eld 98] G.F. Luger and W.W. Stubble�eld. Arti�cial In-

telligence. Structures and Strategies for Complex

Problem Solving. 3rd ed. Addison-Wesley, 1998.

[Newell 82] A. Newell. The Knowledge Level. AI Journal,

19(2), 1982.

[Rademakers & Vanwelkenhuysen 93] P. Rademakers and J. Vanwelkenhuysen. Generic

Models and their Support in Modelling Problem

Solving Behaviour. In Simons R. David, J.M. and

J.P. Krivine, editors, Second Generation Expert

Systems. Springer-Verlag, 1993.

[Schreiber et al. 93] A. Th. Schreiber, B. J. Wielinga, and J.A. Breuker.

KADS: A Principled Approach to Knowledge-

Based System Development. Academic Press, Lon-

don, 1993.

[Smith 98] B. Smith. Basic Concepts of Formal Ontology. In

N. Guarino, editor, Proceedings of the First In-

ternational Conference on Formal Ontology in In-

formation Systems. IOS Press, 1998.

[Steels 90] L. Steels. Components of Expertise. Arti�cial In-

telligence Magazine, 1990.

[Tansley & Hayball 93] D.S.W. Tansley and C.C. Hayball. Knowledge-

Based Systems Analysis and Design. A KADS De-

veloper's Handbook. Prentice Hall, London, 1993.

86 BIBLIOGRAPHY

[Vanwelkenhuysen 92] J. Vanwelkenhuysen. Scaling-up Model-Based

Troubleshooting by Exploiting Design Function-

alities. In Proceedings of the Fifth International

Conference on Industrial and Engineering Applic-

ations and Expert Systems. Springer-Verlag, 1992.

[Varzi 98] A.C. Varzi. Basic Problems of Mereotopology. In

N. Guarino, editor, Proceedings of the First In-

ternational Conference on Formal Ontology in In-

formation Systems, pages 29{38. IOS Press, 1998.

[Wielinga et al. 92] B.J. Wielinga, A.Th. Schreiber, and J.A. Breuker.

KADS: a modelling approach to knowledge engin-

eering. Knowledge Acquisition, (4), 1992.

Appendix A

The CYC FI Function Reference

Core Functions

fi-assert : formula mt &optional (el-tv :default) direction -> [boolean]

function:

Add a local argument for formula to the KB within microtheory mt.

el-tv is either :default or :monotonic.

direction is either :forward, :backward, or NIL.

If direction is NIL,

ground formulas are entered as :forward,

rules are entered as :backward.

If formula is already present in mt with a different "hl truth value" (:true-monotonic, :true-default,

:false-monotonic, or :false-default), change it to the new "hl truth value" determined by formula

and el-tv.

If formula is already present in mt with a different direction, its direction is changed.

If direction is :forward, and formula was not already present in mt with a forward direction, then

forward inference is performed on the formula.

return:

NIL if operation had an error.

T if operation succeeded.

errors:

:arg-error

one of the arguments was invalid

:not-well-formed

formula was not well-formed

warnings:

:redundant-local-assertion

the assertion is already in the KB locally

:change-local-tv

the assertion is already in the KB locally with a different truth value

fi-unassert : formula mt -> [boolean]

function:

Remove any local argument for formula within mt.

return

NIL if operation had an error.

T if operation succeeded.

errors:

:arg-error

one of the arguments was invalid

:not-well-formed

formula was not well-formed

warnings:

87

88 APPENDIX A. THE CYC FI FUNCTION REFERENCE

:assertion-not-present

the formula is not in the KB at all

:assertion-not-local

the formula is in the KB, but has no local support

fi-justify : formula mt &optional full? -> [argument]

function:

Provide an argument justifying belief in formula within mt.

If full? is NIL, only provide one level of argument, which may include non-ground facts.

If full? is non-NIL, follow argument down as far as necessary to reach ground facts.

return

NIL if operation had an error.

NIL if it could not be justified.

Argument if it could be justified.

[argument] ::= list of [support]

[support] ::= ([module] [fomula] [mt])

[module] is one of :axiom :isa :genls :equality :eval :reflexive :symmetric :transitive :external

[fomula] is the formula of the support

[mt] is the microtheory of the support

errors:

:arg-error

one of the arguments was invalid

:not-well-formed

formula was not well-formed

warnings:

:assertion-not-present

the formula is not in the KB at all

fi-ask : formula mt &optional backchain? number time depth -> [ask-result]

function:

Ask for bindings for free variables which will satisfy formula within mt.

If backchain? is NIL, no inference is performed.

If backchain? is T or an integer, inference is performed.

If backchain? is an integer, then at most that many backchaining steps using rules are used.

If number is an integer, then at most number bindings are returned.

If time is an integer, then at most time seconds are spent on the operation.

If depth is an integer, then the inference paths are limited to depth total steps.

return

NIL if operation had an error.

An ask-result if operation completed.

[ask-result]

::= list of [bindings]

::= (((T . T))) if there were no free variables

[bindings] ::= list of [binding]

[binding] ::= ([variable] . [value])

[variable] is a free variable from the formula

[value] is the binding satisfying the formula

errors:

:arg-error

one of the arguments was invalid

:not-well-formed

formula was not well-formed

fi-continue-last-ask : &optional backchain? number time depth reconsider-deep ->

[ask-result]

function:

Continue the last ask that was performed with more resources.

If backchain? is NIL, no inference is performed.

If backchain? is t or an integer, inference is performed.

If backchain? is an integer, then at most that many rules are used.

If number is an integer, then at most number bindings are returned.

If time is an integer, then at most time seconds are spent on the operation.

If depth is an integer, then the inference search cuts off at depth.

89

If reconsider-deep is non-nil, then previous inference paths which were cut off for going past depth

are reconsidered.

return

NIL if operation had an error.

An ask-result if operation completed.

[ask-result]

::= list of [bindings]

::= (((T . T))) if there were no free variables

[bindings] ::= list of [binding]

[binding] ::= ([variable] . [value])

[variable] is a free variable from formula.

[value] is the binding satisfying formula.

errors:

:arg-error

one of the arguments was invalid

:not-well-formed

formula was not well-formed

fi-ask-status : -> [ask-status]

function:

Explain why the last ask completed.

return

an ask-status which is

:EXHAUST if the search space was exhausted.

:DEPTH if the search space was exhausted, but some nodes were too deep.

:NUMBER if the requested number was reached.

:TIME if the time alloted expired.

90 APPENDIX A. THE CYC FI FUNCTION REFERENCE

Appendix B

The CYC KE-Text for PC Domain

1 ;;; PROJECT: 628-Implementing Problem Solving Methods (PSMs) in Cyc

2 ;;; FILENAME: diagnosisKE.txt

3 ;;; AUTHOR: Dimitrios Sklavakis

4 ;;; PURPOSE: Contains Cyc's Knowledge Entering (KE) text defining the

5 ;;; knowledge (Domain and Expertise) for the implementation of the

6 ;;; 'Systematic diagnosis' PSM from KADS methodology, for PC faults

7 ;;; diagnosis.

8 ;;; LAST UPDATED: 04/08/1998.

9 ;**************** DOMAIN KNOWLEDGE ****************

10 ;**************** THE PC DIAGNOSIS MICROTHEORY ****************

11

12 ;;; The whole knowledge for performing PC fault diagnosis will be

13 ;;; entered in the PCDiagnosisMt microtheory, which is a more specific

14 ;;; microtheory of the BaseKB microtheory:

15 ;;; (#$genlMt #$PCDiagnosisMt #$BaseKB).

16 constant: PCDiagnosisMt.

17 isa: Microtheory.

18 genls: BaseKB.

19 comment: "#$PCDiagnosisMt is the #$Microtheory that contains all the assertions

20 about performing Personal Computer(PC) fault diagnosis.".

21 ; **************** THE SYSTEM MODEL ****************

22 Default Mt: PCDiagnosisMt. ;Change default microtheory to #$PCDiagnosisMt.

23 constant: PCSubSystem.

24 isa: Collection.

25 genls: CompositeTangibleAndIntangibleObject.

26 comment: "The collection of all PC sub-systems, like the

27 #$VideoSystem, #$PowerSystem, #$KeyboardSystem. Each instance of

28 #$PCSubSystem may include several #$PCComponents and/or other

29 #$PCSubSystems. Different #$PCSubSystems may include the same

30 #$PCComponents. In the context of #$PCDiagnosisMt any #$PCSubSystem is

31 an intermediate level of analysis for the #$PersonalComputer; the

32 diagnosis continues until a faulty #$PCComponent is located".

33 constant: PCComponent.

34 isa: Collection.

35 genls: PCSubSystem.

36 comment: "The collection of all PC components such as the

37 #$PowerSupply, #$VideoCard, #$FloppyDiskDrive. In the context of

91

92 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

38 #$PCDiagnosisMt any #$PCComponent is the lowest level of analysis for

39 the #$PersonalComputer; the diagnosis terminates when a faulty

40 #$PCComponent is located.".

41

42 constant: PCSystem.

43 isa: Individual PCSubSystem.

44 comment: "The #$PCSystem is used to refer to the #$PersonalComputer as

45 a #$PCSubSystem. It includes the following #$PCComponents:

46 #$PowerSystem, #$VideoSystem, e.t.c.".

47 constant: PowerSystem.

48 isa: Individual PCSubSystem.

49 comment: "The power #$PCSubSystem. Includes the following

50 #$PCComponents: #$PowerSocket, #$PowerCable, #$PowerProtectionDevice

51 (optionally) and #$PowerSupply.".

52 constant: PowerSocket.

53 isa: Individual PCComponent.

54 comment: "#$PowerSocket is the socket that provides electric power to

55 the PC. It is a component of the #$PowerSystem.".

56 constant: PowerCable.

57 isa: Individual PCComponent.

58 comment: "#$PowerCable is the cable that connects the #$PowerSocket

59 with the #$PowerSupply. It is a component of the #$PowerSystem.".

60 constant: PowerProtectionDevice.

61 isa: Individual PCComponent.

62 comment: "#$PowerProtectionDevice is any device (supproccessor, UPS)

63 connected between the #$PowerSocket and the #$PowerSupply to protect

64 the #$PersonalComputer from power failures. It is an optional

65 component of the #$PowerSystem.".

66 constant: PowerSupply.

67 isa: Individual PCComponent.

68 comment: "#$PowerSupply is the component located inside the

69 #$PersonalComputer case that supplies the #$MotherBoard with electriv

70 power. It is a component of the #$PowerSystem.".

71 constant: VideoSystem.

72 isa: Individual PCSubSystem.

73 comment: "The video #$PCSubSystem. Includes the following

74 #$PCComponents: #$MotherBoard, #$VideoCard, #$Monitor (and the

75 #$Speaker).".

76 constant: VideoCard.

77 isa: Individual PCComponent.

78 comment: "The #$VideoCard trasforms the video information to video

79 signal and sends it to the #$Monitor. It is a component of the

80 #$VideoSystem.".

81 constant: Monitor.

82 isa: Individual PCComponent.

83 comment: "The #$Monitor trasforms the video signal sent by the

84 #$VideoCard into visual image. It is a component of the

85 #$VideoSystem.".

86 constant: MotherBoard.

87 isa: Individual PCComponent.

88 comment: "The #$MotherBoard is the main #$PCComponent. Most of the

89 rest #$PCComponents are connected onto the #$MotherBoard and

90 controlled by it. It is actually a sub-system by itself as it includes

91 other components but in the context of PC diagnosis it will be

92 regarded as a #$PCComponent to avoid increasing the complexity of the

93 #$PersonalComputer analysis.".

93

94 constant: Speaker.

95 isa: Individual PCComponent.

96 comment: "The PC speaker. It refers to the

97 internal speaker that is connected on the motherboard and not the

98 external ones that are part of a multi-media system and require a

99 sound-card on which they are connected.".

100 constant: BIOSStartupSystem.

101 isa: Individual PCSubSystem.

102 comment: "The BIOS startup #$PCSubSystem. Includes the following

103 #$PCComponents: #$MotherBoard, #$VideoCard.".

104 constant: BIOSsettings.

105 isa: Individual PCComponent.

106 comment: "The Basic Input Output System (BIOS) settings record the

107 system parameters for all its operations. Wrong BIOS settings can be

108 responsible for a PC malfunction, e.g., the #$FloppyDiskDrive being

109 disabled and therefore being non-existant to the system.".

110 constant: MemorySystem.

111 isa: Individual PCSubSystem.

112 comment: "The memory #$PCSubSystem. Includes the following

113 #$PCComponents: #$RAM, #$MotherBoard.".

114 constant: RAM.

115 isa: Individual PCComponent.

116 comment: "The Random Access Memmory #$PCComponent. Usually, it is a

117 set of Single In-Line Memory Modules (SIMMs), plugged in special

118 positions on the #$MotherBoard.".

119 constant: FloppySystem.

120 isa: Individual PCSubSystem.

121 comment: "The #$FloppySystem consists of the #$FloppyDiskDrive and the

122 #$BIOSsettings for the enabling/disabling of the #$FloppyDiskDrive.".

123 constant: FloppyDiskDrive.

124 isa: Individual PCComponent PossibleObservableValue.

125 comment: "The PC storage device which drives a removable floppy disk to

126 store/retrieve information.".

127 constant: HardDiskDrive.

128 isa: Individual PCComponent PossibleObservableValue.

129 comment: "The PC main mass storage device. Usually it is fixed and

130 non-removable.".

131 constant: CDROMdrive.

132 isa: Individual PCComponent.

133 comment: "".

134 constant: PlugAndPlaySystem.

135 isa: Individual PCSubSystem.

136 comment: "This system comprises all peripherals that are connected to

137 the PC via expansion cards and they are (usually) automatically

138 recognised by MS Windows without any extra software drivers or

139 configuration procedures. However, sometimes there may be some

140 problems with their recognition. This #$PCSubSystem may has as

141 functional parts a wide variety of peripherals. In the current

142 implementation of Systematic diagnosis, it is regarded as consisting

143 of peripherals and their #$ExpansionCards. There isn't any further

144 decomposition into the specific peripherals as these are vary in each

145 configuration.".

146 constant: ExpansionCard.

147 isa: Individual PCComponent.

148 comment: "This PC component is used in conjunction with various

149 peripherals. In the current implementation, it is regarded as a

94 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

150 specific #$PCComponent, although in a specific PC configuration there

151 could be none, one or more expansion cards. Please, refer to the

152 #$PlugAndPlaySystem collection for more information.".

153 constant: PlugAndPlaySystem.

154 isa: Individual PCSubSystem.

155 comment: "It is the system responsible for loading the operating

156 system. In general, it comprises the #$FloppyDiskDrive with a floppy

157 disk containing the operating system (#$OSfloppyDisk) and the

158 #$HardDiskDrive, although a PC can be configured via the

159 #$BIOSsettings to use only one of them or both.".

160 constant: OSfloppyDisk.

161 isa: Individual PCComponent.

162 comment: "It is the floppy disk containing the operating system. It is

163 used by the #$BootSystem to load the OS from the #$FloppyDiskDrive.".

164 constant: BootSystem.

165 isa: Individual PCSubSystem.

166 comment: "It is the system responsible for loading the operating

167 system (OS). It includes the #$FloppyDiskDrive together with the floppy

168 disk containing the OS (#$OSfloppyDisk) and the #$HardDiskDrive. It

169 also includes the #$BootSequence-BIOSsetting which defines the sequence

170 in which these media will be used by the BIOS to load the OS.".

171 constant: functionalPartOf.

172 isa : TransitiveBinaryPredicate.

173 arg1Isa: PCSubSystem.

174 arg2Isa: PCSubSystem.

175 comment : "Predicate functionalPartOf is used to define a functional

176 model of the PC under diagnosis

177 functionalPartOf(WholeSubSystem PartialSubSystem) means

178 that the PCSubSystem WholeSubSystem is using the function of

179 PartialSubsystem to perforn its own function. E.g.,

180 functionalPartOf(PowerSystem PowerSupply) means that for the

181 PowerSystem to function the PowerSupply must function. This

182 predicate is used to systematically disassemble the PC system into

183 simpler PCSubSystems until a PCComponent is reached that it is

184 faulty.".

185 constant: testFirst.

186 isa: UnaryPredicate.

187 arg1Isa: PCSubSystem.

188 comment: "This predicate is used to declare which PCSubSystem from

189 these occuring after a #$Decompose inference type will be the

190 the first to consider for diagnosis, i.e., the #$hypothesis.".

191 constant: testAfter.

192 isa: BinaryPredicate.

193 arg1Isa: PCSubSystem.

194 arg2Isa: PCSubSystem.

195 comment: "This predicate is used to declare the order of considering

196 PC subsystems for diagnosis. For example, (#$testAfter SUBSYSTEM1

197 SUBSYSTEM2) means that that the #$PCSubSystem SUBSYSTEM2 will

198 be considered for diagnosis immmediately after SUBSYSTEM1.".

199 Default Mt: PCDiagnosisMt.

200 constant: hypothesis.

201 isa: UnaryPredicate.

202 arg1Isa: PCSubSystem.

203 comment: "The predicate is used to record in the KB which

204 #$PCSubSystem is currently being diagnosed. E.g.,

205 #$hypothesis(#$VideoSystem) means that it is the #$VideoSystem that is

95

206 currently being checked for possible faults.".

207 constant: possibleHypotheses.

208 isa: UnaryPredicate.

209 arg1Isa: PCSubSystem.

210 comment: "The predicate is used to record in the KB which

211 #$PCSubSystems are currently candidates for being diagnosed. E.g.,

212 #$possibleHypotheses(#$VideoCard) means that the #$VideoCard is

213 a candidate to be checked for possible faults.".

214 ;**************** SYSTEM TESTING KNOWLEDGE ****************

215 ;;; The basic tool in the Systematic Diagnosis problem-solving method

216 ;;; (PSM), as well as in any other diagnostic PSM, for carrying out

217 ;;; the diagnostic procedure, is various TESTS that must be done to

218 ;;; provide information (knowledge) about the state of the

219 ;;; system. This knowledge may concern the actual behaviour of the

220 ;;; system's components, e.g. the absence of electric power, control

221 ;;; information produced by the system, e.g., beep codes or screen

222 ;;; messages. Conceptually, a TEST is a question that the user must

223 ;;; make to the system under diagnosis to extract knowledge about

224 ;;; it. Here, it is implemented as a structure consisting of three

225 ;;; other concepts:

226 ;;; 1. The #$PCSubSystem to which it is related, i.e., to which the

227 ;;; question is adressed.

228 ;;; 2. The #$TestAction which is the action one has really to perform

229 ;;; for the test

230 ;;; 3. The #$PossibleObservable (system variable) that the TEST is

231 ;;; asking about .

232 ;;; Although not part of a TEST structure, there is a fourth concept

233 ;;; related with it, the #$PossibleObservableValue (system variable

234 ;;; value) which is the result (answer) of the TEST's question.

235 ;;; Each TEST is represented as a non-atomic term (NAT) in CycL with

236 ;;; the use of a #$NonPredicateFunction, #$TestFn, which takes as

237 ;;; arguments instances of the three constituent concepts and returns

238 ;;; a TEST structure, Schematically:

239 ;;; (#$TestFN #$PCSubSystem #$TestAction #$PossibleObservable) -> #$Test

240 Default Mt: PCDiagnosisMt.

241 constant: Test.

242 isa: Collection.

243 genls: InformationBearingThing.

244 comment: "The basic tool in the Systematic Diagnosis problem-solving

245 method (PSM), as well as in any other diagnostic PSM, for carrying out

246 the diagnostic procedure, is various TESTS that must be done to

247 provide information (knowledge) about the state of the system. This

248 knowledge may concern the actual behaviour of the system's components,

249 e.g. the absence of electric power, control information produced by

250 the system, e.g., beep codes or screen messages. Conceptually, a TEST

251 is a question that the user must make to the system under diagnosis to

252 extract knowledge about it. Here, it is implemented as a structure

253 consisting of three other concepts: 1. The #$PCSubSystem to which it

254 is related, i.e., to which the question is adressed, 2. The

255 #$TestAction which is the action one has really to perform for the

256 test and 3. The #$PossibleObservable (system variable) that the TEST

257 is asking about.".

258 constant: TestFn.

259 isa: NonPredicateFunction.

260 arity: 3.

96 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

261 arg1Isa: PCSubSystem.

262 arg2Isa: TestAction.

263 arg3Isa: PossibleObservable.

264 resultIsa: Test.

265 comment: "Every #$Test is a structure consisting of three

266 concepts. The #$PCSubSystem to which it is related, the actual

267 #$TestAction that must be performed and the #$PossibleObservable

268 (system variable) that is being observed.Each TEST is represented as a

269 non-atomic term (NAT) in CycL

270 with the use of the #$NonPredicateFunction, #$TestFn, which takes as

271 arguments instances of the three constituent concepts and returns a

272 TEST structure, Schematically:

273 (#$TestFN #$PCSubSystem #$TestAction #$PossibleObservable) -> #$Test".

274 constant: possibleTest.

275 isa: UnaryPredicate.

276 arg1Isa: Test.

277 comment: "The #$Tests available to be performed in any stage of the

278 Diagnosis.".

279 constant: TestAction.

280 isa: Collection.

281 genls: PurposefulAction.

282 comment: "The collection of all possible test actions that may be

283 performed from the user on a #$PCSubSystem to determine the

284 #$PossibleObservableValues of

285 a #$PossibleObservable. These values are compared to the expected

286 ones. If they are different, the fault lies somewhere in the

287 #$PCSubSystem which is further decomposed and its functional parts are

288 checked one by one. If not, the fault lies in another #$PCSubSystem.".

289

290 constant: PossibleObservable.

291 isa: Collection.

292 genls: AttributeType.

293 comment: "The colection of system variables (possible observables)

294 which are used to decide if the currently checked #$PCSubSystem actually

295 contains a faulty #$PCComponent or not.".

296 constant: PossibleObservableValue.

297 isa: Collection.

298 genls: Thing.

299 comment: "The collection of all possible values of all

300 #$PossibleObservables. In terms of the Systematic Diagnosis

301 problem-solving method, the instances of #$PossibleObservable

302 correspond to the system variables that one can test during diagnosis and the

303 instances of #$PossibleObservableValue correspond to the possible

304 outcomes of these tests. These outcomes can be anything, therefore a

305 #$PossibleObservableValue is a sub-collection of #$Thing, the topmost

306 #$Collection ".

307 constant: ResultType.

308 isa: Collection.

309 genls: AttributeValue.

310 comment: "The collection of all various types of

311 #$PossibleObservableValues. These types are characterised from the

312 kind of conclusions they lead relative to the #$PCSubSystem being

313 currently diagnosed (#$hypothesis(#$PCSubSystem)). E.g., such a type

314 can be #$Normal which denotes that the #$PCSubSystem currently being

315 diagnosed is not faulty and therefore must be discarded as a

316 hypothesis and a new hypothesis must be selected.".

317 constant: possibleResultOfTest.

318 isa: Predicate.

319 arity: 3.

320 arg1Isa: Test.

321 arg2Isa: PossibleObservableValue.

97

322 arg3Isa: ResultType.

323 comment: "The predicate is correlating an individual #$Test with its

324 actual result and the type of this result. The assertion

325 possibleResultOfTest(TEST VALUE TYPE)

326 express the fact that for the specific TEST, VALUE is a possible

327 result of type TYPE. E.g., possibleResultOfTest((TestFn

328 PowerSystem ConfirmSensorially ElectricPower) Yes Normal) indicates that

329 it is #$Normal to observe the existence of #$ElectricPower when

330 diagnosing the #$PowerSystem. Of course, this immediately would imply

331 that the #$PowerSystem is not faulty and therefore should be discarded

332 as a #$hypothesis.".

333 constant: resultOfTest.

334 isa: BinaryPredicate.

335 arg1Isa: Test.

336 arg2Isa: PossibleObservableValue.

337 comment: "The predicate is correlating an individual #$Test with its

338 actual result. The assertion resultOfTest(?TEST ?VALUE) means that

339 ?VALUE is the actual result of ?TEST.".

340 ;******** DEFINITIONS OF INSTANCES FOR #$TestAction COLLECTION ********

341 constant: ConfirmSensorially.

342 isa: TestAction.

343 comment: "The action of confirming the existence of a

344 #$PossibleObservable only by one's senses, e.g., visually,

345 acoustically.".

346 constant: CheckIndependently.

347 isa: TestAction.

348 comment: "This #$TestAction means that the user performing

349 diagnosis must check the function of the related #$PCSubSystem

350 isolated from the rest of the #$PCSubSystem of which it is a

351 #$functionalPartOf. The way to do that is not specifically described

352 by the name of the action. It is assumed that the user has some

353 knowledge for performing such isolated tests. E.g., to test the

354 #$PowerSocket one can plug another device - known to be working - in

355 it and confirm that the device has #$ElectricPower.".

356 constant: Remove.

357 isa: TestAction.

358 comment: "This #$TestAction means that the user must remove the

359 related #$PCSubSystem from the #$PCSubSystem of which it is a

360 #$functionalPartOf".

361 constant: Replace.

362 isa: TestAction.

363 comment: "This #$TestAction means that the user must replace the

364 related #$PCSubSystem with a new one".

365 constant: ChangeVoltage.

366 isa: TestAction.

367 comment: "This #$TestAction means that the user must change the

368 voltage setting in the #$PowerSupply. It is a specific #$TestAction

369 related only to the #$PowerSupply".

370 constant: TroubleshootComponent.

371 isa: TestAction.

372 comment: "This #$TestAction means that the diagnosis reached at the

373 level of a specific PCComponent but there is not sufficient

374 information to confirm that it is faulty. Therefore, the user must

375 enter the stage of troubleshooting it specifically.".

98 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

376 ;****** DEFINITIONS OF INSTANCES FOR #$PossibleObservable COLLECTION ********

377 constant: ProblemContext.

378 isa: PossibleObservable.

379 comment: "This #$PossibleObservable refers to the general context of

380 diagnosis, i.e., #$BootTime, #$RunTime, #$ComponentSpecific. The

381 value of this #$PossibleObservable determines which rules are

382 applicable, appearing as a condition in their antecedent part".

383 constant: ElectricPower.

384 isa: PossibleObservable.

385 comment: "The electric power that any #$PCSystem needs to operate.".

386 constant: VoltageCorrect.

387 isa: PossibleObservable.

388 comment: "This #$PossibleObservable refers to the voltage setting in

389 the #$PowerSupply being correct, i.e., 110V or 220V.".

390 constant: VideoSignal.

391 isa: PossibleObservable.

392 comment: "This #$PossibleObservable refers to the existence of any

393 video signal on the #$Monitor screen.".

394 constant: SpeakerBeep.

395 isa: PossibleObservable.

396 comment: "This #$PossibleObservable refers to any beep pattern coming

397 out of the #$Speaker.".

398 constant: VideoBIOSMessage.

399 isa: PossibleObservable.

400 comment: "This #$PossibleObservable refers to the display of the

401 video BIOS message.".

402 constant: BootContinues.

403 isa: PossibleObservable.

404 comment: "This #$PossibleObservable refers to the booting process

405 cointinuing normally.".

406 constant: StartupScreen.

407 isa: PossibleObservable.

408 comment: "This #$PossibleObservable refers to the display of the BIOS

409 stratup screen.".

410 constant: MemoryTest.

411 isa: PossibleObservable.

412 comment: "This #$PossibleObservable refers to the memeory test

413 performed by the BIOS during boot-time.".

414 constant: ErrorMessage.

415 isa: PossibleObservable.

416 comment: "This #$PossibleObservable refers to the display of an error

417 message on the screen.".

418 constant: ComponentProblem.

419 isa: PossibleObservable.

420 comment: "This #$PossibleObservable refers to the occasion where a

421 specific #$PCComponent has reached which is possibly faulty and the

422 only way to decide about this involves elaborate and complex #$Tests,

423 which the current implementation of the Systematic diagnosis problem

424 solving method does not cover. Therefore, the user has to perform

425 these #$Tests either based on his knowledge or have a human expert

426 perform them.".

427 constant: AutoDetection-BIOSsetting.

428 isa: PossibleObservable.

429 comment: "This #$PossibleObservable refers to the #$HardDiskDrive

99

430 auto-detection setting in the PC BIOS. It may be set to #$Auto for

431 automatic detection or to #$Manual, usually the first one.".

432 constant: BootSequence-BIOSsetting.

433 isa: PossibleObservable.

434 comment: "This #$PossibleObservable refers to the BIOS setting which

435 controls the sequence of the media used to load the operating

436 system. It may be A:-C: for using first the #$FloppyDiskDrive and then

437 the #$HardDiskDrive or C:-A: for the reverse.".

438 constant: BootSource.

439 isa: PossibleObservable.

440 comment: "This #$PossibleObservable refers to the actual medium from

441 which the operating system is loaded, independently from what the

442 #$BootSequence-BIOSsetting is.".

443 constant: FloppyAccess.

444 isa: PossibleObservable.

445 comment: "This #$PossibleObservable refers to whether the

446 #$FloppyDiskDrive is actually accessed by the BIOS during boot-time

447 system test.".

448 constant: DetectionMessage.

449 isa: PossibleObservable.

450 comment: "This #$PossibleObservable is related to BIOS messages

451 concerning the autodetection of the #$HardDiskDrives.".

452 constant: InFloppy.

453 isa: PossibleObservable.

454 comment: "This #$PossibleObservable is related to the #$OSfloppyDisk

455 being inside the #$FloppyDiskDrive.".

456 ;***** DEFINITIONS OF INSTANCES FOR $PossibleObservableValue COLLECTION ****

457 constant: BootTime.

458 isa: PossibleObservableValue.

459 comment: "This #$PossibleObservableValue is related to the

460 #$ProblemContext #$PossibleObservable. It means that the fault being

461 diagnosed occured during boot-time, i.e., from the time the power is

462 turned on until the Operating System starts being loaded.".

463 constant: RunTime.

464 isa: PossibleObservableValue.

465 comment: "This #$PossibleObservableValue is related to the

466 #$ProblemContext #$PossibleObservable. It means that the fault being

467 diagnosed occured during run-time, i.e., from the time the Operating

468 System starts being loaded until the PC is switched off.".

469 constant: ComponentSpecific.

470 isa: PossibleObservableValue.

471 comment: "This #$PossibleObservableValue is related to the

472 #$ProblemContext #$PossibleObservable. It means that the fault being

473 diagnosed is identified to be related with a specific #$PCComponent,

474 e.g., the #$Monitor, #$MotherBoard, #$HardDisk e.t.c.".

475 constant: Yes.

476 isa: PossibleObservableValue.

477 comment: "Most of the #$Tests have as a possible result only 'Yes' or 'No'.".

478 constant: No.

479 isa: PossibleObservableValue.

480 comment: "Most of the #$Tests have as a possible result only 'Yes' or 'No'.".

481 constant: None.

482 isa: PossibleObservableValue.

483 comment: "This kind of result indicates that none of the alternative

100 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

484 results of a specific #$Test is observed.".

485 constant: SingleBeep.

486 isa: PossibleObservableValue.

487 comment: "This #$PossibleObservableValue is related to the

488 #$SpeakerBeep #$PossibleObservable. It means that the #$Speaker

489 produced a single beep".

490 constant: RingingOrBuzzing.

491 isa: PossibleObservableValue.

492 comment: "This #$PossibleObservableValue is related to the

493 #$SpeakerBeep #$PossibleObservable. It means that the #$Speaker is

494 producing a ringing or buzzing sound.".

495 constant: ConsistentPattern.

496 isa: PossibleObservableValue.

497 comment: "This #$PossibleObservableValue is related to the

498 #$SpeakerBeep #$PossibleObservable. It means that the #$Speaker is

499 producing a consistent pattern (code) of beeps, e.g., one beep, then

500 two more.".

501 constant: Complete.

502 isa: PossibleObservableValue.

503 comment: "This #$PossibleObservableValue is related to some tests

504 performed by the BIOS, e.g., the memory test. It means that the

505 corresponding test is succesfully completed.".

506 constant: InComplete.

507 isa: PossibleObservableValue.

508 comment: "This #$PossibleObservableValue is related to some tests

509 performed by the BIOS, e.g., the memory test. It means that the

510 corresponding test is not succesfully completed.".

511 constant: CannotFind-Message.

512 isa: PossibleObservableValue.

513 comment: "This #$PossibleObservableValue is related to BIOS error

514 messages concerning the autodetection of IDE/ATAPI devices,

515 e.g. #$HardDiskDrive, #$CDROMdrive. This kind of messages indicate

516 that the BIOS cannot detect the corresponding device.".

517 ;"This #$PossibleObservableValue is related to BIOS error messages

518 ;concerning the autodetection of the #$HardDiskDrives. This kind of

519 ;messages indicate that the BIOS cannot detect any #$HardDiskDrive.".

520 constant: Auto.

521 isa: PossibleObservableValue.

522 comment: "This #$PossibleObservableValue indicates that some

523 action/process/procedure is (set to be) done automatically.".

524 constant: Manual.

525 isa: PossibleObservableValue.

526 comment: "This #$PossibleObservableValue indicates that some

527 action/process/procedure is (set to be) done manually.".

528 constant: FloppyThenHard.

529 isa: PossibleObservableValue.

530 comment: "This #$PossibleObservableValue is related to the

531 #$BootSequence-BIOSsetting #$PossibleObservable. It indicates that

532 this setting is set to A:-C:.".

533 constant: HardThenFloppy.

534 isa: PossibleObservableValue.

535 comment: "This #$PossibleObservableValue is related to the

536 #$BootSequence-BIOSsetting #$PossibleObservable. It indicates that

537 this setting is set to C:-A:.".

101

538 ;***** DEFINITIONS OF INSTANCES FOR $ResultType COLLECTION ****

539 constant: Normal.

540 isa: ResultType.

541 comment: "This type of result indicates that the result is normally

542 expected when the #$PCSubSystem related with it is working

543 properly. Such a kind of result implies that the #$PCSubSystem must be

544 discarded as a #$hypothesis.".

545 constant: NotNormal.

546 isa: ResultType.

547 comment: "This type of result indicates that the result is not normally

548 expected when the #$PCSubSystem related with it is working

549 properly. Such a kind of result implies that the fault lies in the

550 #$PCSubSystem which is the current #$hypothesis.".

551 constant: Insufficient.

552 isa: ResultType.

553 comment: "This type of result indicates that the result cannot

554 undoubtedly indicate either the normal function or the malfunction of

555 the #$PCComponent related with it. Such a kind of result implies that

556 further testing is necessary to decide about the functional status of

557 the #$PCComponent which is the current #$hypothesis.".

558 constant: Distinguishing.

559 isa: ResultType.

560 comment: "This type of result occurs in a situation where there are

561 two components that are probably faulty and the only way to find

562 which, is to test one of them. In this case, a result of type

563 #$Distinguishing indicates simultaneously two things. First, that the

564 #$PCSubSystem hypothesised as faulty is not such and second, that the faulty

565 one is the other alternative #$PCSubSystem.".

566 ;;; ********* IMPLEMENTATION OF KADS SYSTEMATIC DIAGNOSIS PSM ********

567 ;;; The Task Structure for Systematic Diagnosis (pseudo-code) is:

568 ;;; Systematic Diagnosis(+complaint,+possible observables,-hypothesis) by

569 ;;; select1(+complaint, -system model)

570 ;;; REPEAT

571 ;;; decompose(+system model, -hypothesis)

572 ;;; WHILE number of hypotheses > 1

573 ;;; select2(+possible observables, -variable value)

574 ;;; select3(+hypothesis, -norm)

575 ;;; compare(+variable value, +norm, -difference)

576 ;;; system model <- current decomposition level of system model

577 ;;; UNTIL confirm(+hypothesis), i.e. system model cannot be decomposed further

578 ;;; The user interaction in CYC will be done from the SubL Interactor

579 ;;; interface, as it is not possible to get any input/output

580 ;;; interaction between the user and the SubL code from the ASK

581 ;;; interface. The whole Task Structure will be implemented as a SubL

582 ;;; function, 'systematic', which will be responsible for calling the

583 ;;; appropriate SubL functions that will implement the corresponding

584 ;;; inferences. In fact, the 'select1', 'select2', and 'select3'

585 ;;; inferences will be implemented as FORWARD rules in the

586 ;;; CYC KB. "Forward" means that, according to the results of 'Tests'

587 ;;; that the user is asked to give, these rules automatically assert

588 ;;; new facts in the KB. These facts describe which are the next

589 ;;; #$PossibleObservables and Variables that must be tested ('select2'

102 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

590 ;;; inference), what should be done according to the result ('select3'

591 ;;; and 'compare' inferences), e.g., if another test for the same

592 ;;; hypothesis should be performed or if the current hypothesis should

593 ;;; be rejected or the current hypothesis must be decomposed further

594 ;;; or if the faulty component was found ('confirm' inference).

595 ;;; The following three (3) constant definitions introduce the

596 ;;; #$plausibleInference predicate and #$Decompose inference type of

597 ;;; KADS. These two are used in the antecendent part of the

598 ;;; "decomposition" rules. They do not constitute control knowledge

599 ;;; but domain role knowledge. In terms of implementation, they cause

600 ;;; the forward "decomposition" rules to fire only when a Decompose

601 ;;; inference has to be made.

602 Default Mt: PCDiagnosisMt.

603 constant: InferenceType-KADS.

604 isa: Collection.

605 genls: PropositionalInformationThing.

606 comment: "The collection of all Inference Types of KADS methodology,

607 e.g., 'select', 'decompose', 'confirm'.".

608 constant: Decompose.

609 isa: InferenceType-KADS.

610 comment: "The #$Decompose inference type of KADS takes a structured

611 hierarchy of objects and gives a less or completely unstructured

612 collection of these objects. In its simplest form it is used for

613 breaking down existing knowledge structures, like hierarchies, where

614 there is no loss of objects but only the structure is removed.".

615 constant: plausibleInference.

616 isa: UnaryPredicate.

617 arg1Isa: InferenceType-KADS.

618 comment: "The #$plausibleInference predicate is used to record in the

619 KB which inference(s) can be next performed during the 'execution' of

620 a problem solving method.".

621 ;;; During the Systematic Diagnosis problem solving method (PSM) as

622 ;;; well as during any other PSM, there are certain decisions/choices

623 ;;; that must be done. According to the structure of the PSMs as

624 ;;; Generic Task Models in KADS, these decisions/choices occur during

625 ;;; the performance of specific Inferences. The implementation of

626 ;;; these decisions/choices has to be declarative since this is the

627 ;;; main principle in CYC. Therefore, the implementation of them will

628 ;;; be in terms of FORWARD rules: the ANTECENDENT of each rule will be

629 ;;; the conditions under which a decision is made ant the CONSEQUENT

630 ;;; will be the knowledge that is becoming known to the system when

631 ;;; this decision is made. Then, the newly added information will be

632 ;;; used by the SubL code to guide the whole procedure. In the

633 ;;; following, we will examine in detail which these decisions/choices

634 ;;; are, when and where do they occur and how the are actually

635 ;;; implemente as forward rules.

636 ;;; The PSM starts with a SELECT inference. A general symptom is

637 ;;; entered by the user and an appropriate system model is

638 ;;; chosen. This inference is slightly changed for PC diagnosis. What

639 ;;; is actually asked from the user is to distinguish three (3) major

640 ;;; contexts of diagnosis: (i) Boot-time troubleshooting, (ii)

641 ;;; Run-time troubleshooting and (iii) Component-specific

642 ;;; troubleshooting. This categorisation is significant since

643 ;;; completely different rules are applicable in each

644 ;;; context. Although this contextual dependency of the rules could be

645 ;;; implemented as different #$Microtheory contexts, this would make

646 ;;; context shifting more complicated - any ASK operation would have

103

647 ;;; to define the #$Microtheory. Instead, this dependency will be

648 ;;; embedded in the antecedent part of the rules as an extra

649 ;;; condition. The special predicate diagnosisContext will be used, e.g.,

650 ;;;

651 ;;; (implies

652 ;;; (and

653 ;;; (diagnosisContext BootTime)

654 ;;; (...<more conditions>...)) ;end of antecedent

655 ;;; (<consequent>))

656 constant: diagnosisContext.

657 isa: UnaryPredicate.

658 arg1Isa: PossibleObservableValue.

659 comment: "This predicate records the current problem-solving context,

660 i.e. #$BootTime, #$RunTime or #$ComponentSpecific.".

661 ;;; Rule to assert a (#$diagnosisContext ...) assertion. This assertion

662 ;;; is introduced as a "shorthand" for the assertion:

663 ;;;

664 ;;; (resultOfTest (TestFn PCSystem ConfirmSensorially ProblemContext) ?PROBLEM)

665 ;;;

666 ;;; It is used as a premise in every rule which is applicable to the

667 ;;; corresponding diagnosis context, i.e., #$BootTime, #$RunTime or

668 ;;; #$ComponentSecific.

669 Default Mt: PCDiagnosisMt.

670 Direction: forward.

671 F: (implies

672 (resultOfTest (TestFn PCSystem ConfirmSensorially ProblemContext) ?PROBLEM)

673 (diagnosisContext ?PROBLEM)).

674 ;;; The 'decompose' inference in KADS Systematic Diagnosis PSM takes as input

675 ;;; the current #$PCSubSystem (#$hypothesis PC_SUBSYSTEM) and decomposes it

676 ;;; into its functional subsystems (#$functionalPartOf PC_SUBSYSTEM PART),

677 ;;; generating new hypotheses (#$possibleHypotheses PART).

678 ;;; ***********************************

679 ;;; ** Rules and Facts for Decompose **

680 ;;; ***********************************

681 ;; Every PART which is a functional part of the hypothesis, HYP, is a

682 ;; possible hypothesis.

683 direction: forward.

684 F: (implies

685 (and

686 (diagnosisContext BootTime)

687 (plausibleInference Decompose)

688 (hypothesis ?HYP)

689 (functionalPartOf ?HYP ?PART))

690 (possibleHypotheses ?PART)).

691 F: (functionalPartOf PCSystem PowerSystem).

692 F: (functionalPartOf PCSystem VideoSystem).

693 F: (functionalPartOf PCSystem BIOSStartupSystem).

694 F: (functionalPartOf PCSystem MemorySystem).

695 F: (functionalPartOf PCSystem FloppySystem).

696 F: (functionalPartOf PCSystem HardDiskDrive).

697 F: (functionalPartOf PCSystem CDROMdrive).

698 F: (functionalPartOf PCSystem PlugAndPlaySystem).

699 F: (functionalPartOf PCSystem BootSystem).

104 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

700 F: (functionalPartOf PowerSystem PowerSocket).

701 F: (functionalPartOf PowerSystem PowerCable).

702 F: (functionalPartOf PowerSystem PowerProtectionDevice).

703 F: (functionalPartOf PowerSystem PowerSupply).

704 F: (functionalPartOf VideoSystem MotherBoard).

705 F: (functionalPartOf VideoSystem VideoCard).

706 F: (functionalPartOf VideoSystem Monitor).

707 F: (functionalPartOf BIOSStartupSystem MotherBoard).

708 F: (functionalPartOf BIOSStartupSystem VideoCard).

709 F: (functionalPartOf MemorySystem RAM).

710 F: (functionalPartOf MemorySystem MotherBoard).

711 F: (functionalPartOf FloppySystem FloppyDiskDrive).

712 F: (functionalPartOf FloppySystem BIOSsettings).

713 F: (functionalPartOf PlugAndPlaySystem ExpansionCard).

714 F: (functionalPartOf PlugAndPlaySystem MotherBoard).

715 F: (functionalPartOf BootSystem FloppyDiskDrive).

716 F: (functionalPartOf BootSystem OSfloppyDisk).

717 F: (functionalPartOf BootSystem HardDiskDrive).

718 ;;; **

719 ;;; ** **

720 ;;; ** Facts and rules about PC subsystems and components **

721 ;;; ** **

722 ;;; **

723 ;;; ******************************

724 ;;; ** TEST(S) for the PCSystem **

725 ;;; ******************************

726 Default Mt: PCDiagnosisMt.

727 Direction: forward.

728 F: (implies

729 (hypothesis PCSystem) ;if diagnosis just started, ask for the context

730 (and

731 (possibleTest (TestFn PCSystem ConfirmSensorially ProblemContext))

732 (possibleResultOfTest

733 (TestFn PCSystem ConfirmSensorially ProblemContext) BootTime NotNormal)

734 (possibleResultOfTest

735 (TestFn PCSystem ConfirmSensorially ProblemContext) RunTime NotNormal)

736 (possibleResultOfTest

737 (TestFn PCSystem ConfirmSensorially ProblemContext)

738 ComponentSpecific NotNormal))).

739 ;; **

740 ;; ** DECOMPOSITION knowledge for the PCSystem **

741 ;; **

742 Direction: forward.

743 F: (implies

744 (and

745 (diagnosisContext BootTime)

746 (hypothesis PCSystem)

747 (plausibleInference Decompose))

748 (and

749 (testFirst PowerSystem)

105

750 (testAfter PowerSystem VideoSystem)

751 (testAfter VideoSystem BIOSStartupSystem)

752 (testAfter BIOSStartupSystem MemorySystem)

753 (testAfter MemorySystem FloppySystem)

754 (testAfter FloppySystem HardDiskDrive)

755 (testAfter HardDiskDrive CDROMdrive)

756 (testAfter CDROMdrive PlugAndPlaySystem)

757 (testAfter PlugAndPlaySystem BootSystem))).

758 ;; *********************************

759 ;; ** TEST(S) for the PowerSystem **

760 ;; *********************************

761 Direction: forward.

762 F: (implies

763 (and

764 (diagnosisContext BootTime)

765 (hypothesis PowerSystem)) ;

766 (and

767 (possibleTest (TestFn PowerSystem ConfirmSensorially ElectricPower))

768 (possibleResultOfTest

769 (TestFn PowerSystem ConfirmSensorially ElectricPower) Yes Normal)

770 (possibleResultOfTest

771 (TestFn PowerSystem ConfirmSensorially ElectricPower) No NotNormal))).

772 ;; ***

773 ;; ** DECOMPOSITION knowledge for the PowerSystem **

774 ;; ** ElectricPower=No **

775 ;; ***

776 Direction: forward.

777 F: (implies

778 (and

779 (diagnosisContext BootTime)

780 (hypothesis PowerSystem)

781 (resultOfTest (TestFn PowerSystem ConfirmSensorially ElectricPower) No)

782 (plausibleInference Decompose))

783 (and

784 (testFirst PowerSocket)

785 (testAfter PowerSocket PowerProtectionDevice)

786 (testAfter PowerProtectionDevice PowerCable)

787 (testAfter PowerCable PowerSupply))).

788 ;; *********************************

789 ;; ** TEST(S) for the PowerSocket **

790 ;; *********************************

791 Direction: forward.

792 F: (implies

793 (and

794 (diagnosisContext BootTime)

795 (hypothesis PowerSocket)) ;

796 (and

797 (possibleTest (TestFn PowerSocket CheckIndependently ElectricPower))

798 (possibleResultOfTest

799 (TestFn PowerSocket CheckIndependently ElectricPower) Yes Normal)

800 (possibleResultOfTest

801 (TestFn PowerSocket CheckIndependently ElectricPower) No NotNormal))).

802 ;;**

803 ;; ** TEST(S) for the PowerProtectionDevice **

804 ;;**

805 Direction: forward.

106 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

806 F: (implies

807 (and

808 (diagnosisContext BootTime)

809 (hypothesis PowerProtectionDevice))

810 (and

811 (possibleTest (TestFn PowerProtectionDevice Remove ElectricPower))

812 (possibleResultOfTest

813 (TestFn PowerProtectionDevice Remove ElectricPower) Yes NotNormal)

814 (possibleResultOfTest

815 (TestFn PowerProtectionDevice Remove ElectricPower) No Normal))).

816 ;;*********************************

817 ;; ** TEST(S) for the PowerCable **

818 ;;*********************************

819 Direction: forward.

820 F: (implies

821 (and

822 (diagnosisContext BootTime)

823 (hypothesis PowerCable)) ;

824 (and

825 (possibleTest (TestFn PowerCable Replace ElectricPower))

826 (possibleResultOfTest

827 (TestFn PowerCable Replace ElectricPower) Yes NotNormal)

828 (possibleResultOfTest

829 (TestFn PowerCable Replace ElectricPower) No Normal))).

830 ;;*********************************

831 ;;** TEST(S) for the PowerSupply **

832 ;;*********************************

833 Direction: forward.

834 F: (implies

835 (and

836 (diagnosisContext BootTime)

837 (hypothesis PowerSupply))

838 (and

839 (possibleTest (TestFn PowerSupply ConfirmSensorially VoltageCorrect))

840 (possibleResultOfTest

841 (TestFn PowerSupply ConfirmSensorially VoltageCorrect) Yes NotNormal)

842 (possibleResultOfTest

843 (TestFn PowerSupply ConfirmSensorially VoltageCorrect) No Insufficient))).

844 ;;*********************************

845 ;;** TEST(S) for the PowerSupply **

846 ;;** VoltageCorrect=No **

847 ;;*********************************

848

849 Direction: forward.

850 F: (implies

851 (and

852 (diagnosisContext BootTime)

853 (hypothesis PowerSupply)

854 (resultOfTest (TestFn PowerSupply ConfirmSensorially VoltageCorrect) No)) ;

855 (and

856 (possibleTest (TestFn PowerSupply ChangeVoltage ElectricPower))

857 (possibleResultOfTest

858 (TestFn PowerSupply ChangeVoltage ElectricPower) Yes Normal)

859 (possibleResultOfTest

860 (TestFn PowerSupply ChangeVoltage ElectricPower) No NotNormal))).

861 ;;**********************************

862 ;;** TEST(S) for the VideoSystem **

863 ;;**********************************

107

864 Direction: forward.

865 F: (implies

866 (and

867 (diagnosisContext BootTime)

868 (hypothesis VideoSystem))

869 (and

870 (possibleTest (TestFn VideoSystem ConfirmSensorially VideoSignal))

871 (possibleResultOfTest

872 (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes Insufficient)

873 (possibleResultOfTest

874 (TestFn VideoSystem ConfirmSensorially VideoSignal) No NotNormal))).

875 ;; ***

876 ;; ** DECOMPOSITION knowledge for the VideoSystem **

877 ;; ** VideoSignal=No **

878 ;; ***

879 Direction: forward.

880 F: (implies

881 (and

882 (diagnosisContext BootTime)

883 (hypothesis VideoSystem)

884 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) No)

885 (plausibleInference Decompose))

886 (and

887 (testFirst Monitor)

888 (testAfter Monitor MotherBoard)

889 (testAfter MotherBoard Speaker))).

890 ;;*********************************

891 ;;** TEST(S) for the VideoSystem **

892 ;;** VideoSignal=Yes **

893 ;;*********************************

894 Direction: forward.

895 F: (implies

896 (and

897 (diagnosisContext BootTime)

898 (hypothesis VideoSystem)

899 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes))

900 (and

901 (possibleTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage))

902 (possibleResultOfTest

903 (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) Yes Insufficient)

904 (possibleResultOfTest

905 (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No NotNormal))).

906 ;; ***

907 ;; ** TEST(S) for the VideoSystem **

908 ;; ** VideoSignal=Yes, VideoBIOSMessage=Yes **

909 ;; ***

910 Direction: forward.

911 F: (implies

912 (and

913 (diagnosisContext BootTime)

914 (hypothesis VideoSystem)

915 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

916 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) Yes))

917 (and

918 (possibleTest (TestFn VideoSystem ConfirmSensorially BootContinues))

919 (possibleResultOfTest

920 (TestFn VideoSystem ConfirmSensorially BootContinues) Yes Normal)

921 (possibleResultOfTest

922 (TestFn VideoSystem ConfirmSensorially BootContinues) No NotNormal))).

108 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

923 ;; ***

924 ;; ** DECOMPOSITION knowledge for the VideoSystem **

925 ;; ** VideoSignal=Yes, VideoBIOSMessage=Yes, BootContinues=No **

926 ;; ***

927 Direction: forward.

928 F: (implies

929 (and

930 (diagnosisContext BootTime)

931 (hypothesis VideoSystem)

932 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

933 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) Yes)

934 (resultOfTest (TestFn VideoSystem ConfirmSensorially BootContinues) No)

935 (plausibleInference Decompose))

936 (and

937 (testFirst VideoCard)

938 (testAfter VideoCard MotherBoard))).

939 ;; **

940 ;; ** DECOMPOSITION knowledge for the VideoSystem **

941 ;; ** VideoSignal=Yes, VideoBIOSMessage=No **

942 ;; **

943 Direction: forward.

944 F: (implies

945 (and

946 (diagnosisContext BootTime)

947 (hypothesis VideoSystem)

948 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

949 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No)

950 (plausibleInference Decompose))

951 (and

952 (testFirst MotherBoard)

953 (testAfter MotherBoard VideoCard))).

954 ;; *****************************

955 ;; ** TEST(S) for the Monitor **

956 ;; ** VideoSignal=No **

957 ;; *****************************

958 Direction: forward.

959 F: (implies

960 (and

961 (diagnosisContext BootTime)

962 (hypothesis Monitor)

963 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) No))

964 (and

965 (possibleTest (TestFn Monitor CheckIndependently VideoSignal))

966 (possibleResultOfTest

967 (TestFn Monitor CheckIndependently VideoSignal) Yes Normal)

968 (possibleResultOfTest

969 (TestFn Monitor CheckIndependently VideoSignal) No NotNormal))).

970 ;; **

971 ;; ** TEST(S) for the MotherBoard **

972 ;; ** VideoSignal=No, Monitor_Working =Yes **

973 ;; **

974 Direction: forward.

975 F: (implies

976 (and

977 (diagnosisContext BootTime)

978 (hypothesis MotherBoard)

109

979 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) No)

980 (resultOfTest (TestFn Monitor CheckIndependently VideoSignal) Yes))

981 (and

982 (possibleTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep))

983 (possibleResultOfTest

984 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) SingleBeep NotNormal)

985 (possibleResultOfTest

986 (TestFn MotherBoard ConfirmSensorially SpeakerBeep)

987 ConsistentPattern NotNormal)

988 (possibleResultOfTest

989 (TestFn MotherBoard ConfirmSensorially SpeakerBeep)

990 RingingOrBuzzing NotNormal)

991 (possibleResultOfTest

992 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No Insufficient))).

993 ;; **

994 ;; ** TEST(S) for the MotherBoard **

995 ;; ** VideoSignal=No, Monitor_Working =Yes, SpeakerBeep=No **

996 ;; **

997 Direction: forward.

998 F: (implies

999 (and

1000 (diagnosisContext BootTime)

1001 (hypothesis MotherBoard)

1002 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) No)

1003 (resultOfTest (TestFn Monitor CheckIndependently VideoSignal) Yes)

1004 (resultOfTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No))

1005 (and

1006 (possibleTest (TestFn Speaker CheckIndependently SpeakerBeep))

1007 (possibleResultOfTest

1008 (TestFn Speaker CheckIndependently SpeakerBeep) Yes NotNormal)

1009 (possibleResultOfTest

1010 (TestFn Speaker CheckIndependently SpeakerBeep) No Distinguishing))).

1011 ;;; Important notice: Although the PCSusbSystem related to the Test is

1012 ;;; the Speaker, however, the PCSubSystem hypothesised as faulty is

1013 ;;; the MotherBoard. Therefore, the Result Type is defined by what it

1014 ;;; indicates about the MotherBoard and not the Speaker itself. This

1015 ;;; rather peculiar situation is due to the controlling function of

1016 ;;; the Speaker. This means that the Speaker functions as a control

1017 ;;; device for the MotherBoard and we must make sure that this device

1018 ;;; is working properly. If it does, then the lack of any sound is due

1019 ;;; to the MotherBoard and we can deduce that it is faulty. Otherwise,

1020 ;;; we cannot deduce anything before we are certain that the Speaker

1021 ;;; is working properly.

1022 ;; **

1023 ;; ** TEST(S) for the MotherBoard **

1024 ;; ** VideoSignal=Yes, VideoBIOSMessage=No **

1025 ;; **

1026 Direction: forward.

1027 F: (implies

1028 (and

1029 (diagnosisContext BootTime)

1030 (hypothesis MotherBoard)

1031 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1032 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No))

1033 (and

1034 (possibleTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep))

1035 (possibleResultOfTest

1036 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No Insufficient)

1037 (possibleResultOfTest

1038 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) ConsistentPattern

110 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

1039 Insufficient))).

1040 ;; ***

1041 ;; ** TEST(S) for the MotherBoard **

1042 ;; ** VideoSignal=Yes, VideoBIOSMessage=No, SpeakerBeep=ConsistentPattern **

1043 ;; ***

1044 Direction: forward.

1045 F: (implies

1046 (and

1047 (diagnosisContext BootTime)

1048 (hypothesis MotherBoard)

1049 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1050 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No)

1051 (resultOfTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep)

1052 ConsistentPattern))

1053 (and

1054 (possibleTest (TestFn MotherBoard TroubleshootComponent ComponentProblem))

1055 (possibleResultOfTest

1056 (TestFn MotherBoard TroubleshootComponent ComponentProblem) Yes

1057 NotNormal)

1058 (possibleResultOfTest

1059 (TestFn MotherBoard TroubleshootComponent ComponentProblem) No

1060 Distinguishing))).

1061 ;; **

1062 ;; ** TEST(S) for the MotherBoard **

1063 ;; ** VideoSignal=Yes, VideoBIOSMessage=No, SpeakerBeep=No **

1064 ;; **

1065 Direction: forward.

1066 F: (implies

1067 (and

1068 (diagnosisContext BootTime)

1069 (hypothesis MotherBoard)

1070 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1071 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No)

1072 (resultOfTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No))

1073 (and

1074 (possibleTest (TestFn MotherBoard TroubleshootComponent ComponentProblem))

1075 (possibleResultOfTest

1076 (TestFn MotherBoard TroubleshootComponent ComponentProblem) Yes

1077 NotNormal)

1078 (possibleResultOfTest

1079 (TestFn MotherBoard TroubleshootComponent ComponentProblem) No

1080 Distinguishing))).

1081 ;; *********************************

1082 ;; ** TEST(S) for the MotherBoard **

1083 ;; ** StartupScreen=No **

1084 ;; *********************************

1085 Direction: forward.

1086 F: (implies

1087 (and

1088 (diagnosisContext BootTime)

1089 (hypothesis MotherBoard)

1090 (resultOfTest

1091 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) No))

1092 (and

1093 (possibleTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep))

1094 (possibleResultOfTest

1095 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) Yes NotNormal)

1096 (possibleResultOfTest

1097 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No Insufficient))).

111

1098 ;; **************************************

1099 ;; ** TEST(S) for the MotherBoard **

1100 ;; ** StartupScreen=No, SpeakerBeep=No **

1101 ;; **************************************

1102 Direction: forward.

1103 F: (implies

1104 (and

1105 (diagnosisContext BootTime)

1106 (hypothesis MotherBoard)

1107 (resultOfTest

1108 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) No)

1109 (resultOfTest

1110 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No))

1111 (and

1112 (possibleTest (TestFn MotherBoard ConfirmSensorially ErrorMessage))

1113 (possibleResultOfTest

1114 (TestFn MotherBoard ConfirmSensorially ErrorMessage) Yes NotNormal)

1115 (possibleResultOfTest

1116 (TestFn MotherBoard ConfirmSensorially ErrorMessage) No Insufficient))).

1117 ;; ***

1118 ;; ** TEST(S) for the MotherBoard **

1119 ;; ** StartupScreen=No, SpeakerBeep=No, ErrorMessage=No **

1120 ;; ***

1121 Direction: forward.

1122 F: (implies

1123 (and

1124 (diagnosisContext BootTime)

1125 (hypothesis MotherBoard)

1126 (resultOfTest

1127 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) No)

1128 (resultOfTest

1129 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No)

1130 (resultOfTest

1131 (TestFn MotherBoard ConfirmSensorially ErrorMessage) No))

1132 (and

1133 (possibleTest (TestFn MotherBoard TroubleshootComponent ComponentProblem))

1134 (possibleResultOfTest

1135 (TestFn MotherBoard TroubleshootComponent ComponentProblem) Yes

1136 NotNormal)

1137 (possibleResultOfTest

1138 (TestFn MotherBoard TroubleshootComponent ComponentProblem) No

1139 Distinguishing))).

1140

1141 ;; ***

1142 ;; ** TEST(S) for the VideoCard **

1143 ;; ** VideoSignal=Yes, VideoBIOSMessage=Yes, BootContinues=No **

1144 ;; ***

1145 Direction: forward.

1146 F: (implies

1147 (and

1148 (diagnosisContext BootTime)

1149 (hypothesis VideoCard)

1150 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1151 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) Yes)

1152 (resultOfTest (TestFn VideoSystem ConfirmSensorially BootContinues) No))

1153 (and

1154 (possibleTest (TestFn VideoCard TroubleshootComponent ComponentProblem))

1155 (possibleResultOfTest

1156 (TestFn VideoCard TroubleshootComponent ComponentProblem) Yes NotNormal)

1157 (possibleResultOfTest

112 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

1158 (TestFn VideoCard TroubleshootComponent ComponentProblem) No

1159 Distinguishing))).

1160 ;;; Important notice: The '#$TroubleshootComponent' TestAction and the

1161 ;;; '#$ComponentProblem' PossibleObservable are too general and

1162 ;;; complex to be of actual use. They are used here as artificial

1163 ;;; "terminating points" of the Systematic Diagnosis procedure at the

1164 ;;; level of #$PCComponent. In a

1165 ;;; complete PC faults diagnosis expert system, more elaborate

1166 ;;; 'Test(s)' should follow to troubleshoot a specific #$PCComponent

1167 ;;; (here the #$VideoCard), instead of the user having to know how to

1168 ;;; test the specific #$PCComponent. However, these 'Tests' are so

1169 ;;; elaborate and complicated that are beyond the scope of this

1170 ;;; implementation. Such 'Test(s)' could be identifying a beep code

1171 ;;; according to the specific version of BIOS (American Megatrends

1172 ;;; Inc., Pheonix or Other) or interpreting an error message (there

1173 ;;; are 120 error messages documented in the PCGuide Troubleshoot

1174 ;;; expert that was used as a knowledge acquisistion source).

1175 ;; ***************************************

1176 ;; ** TEST(S) for the BIOSStartupSystem **

1177 ;; ** PowerSystem=ok, VideoSystem=ok **

1178 ;; ***************************************

1179 Direction: forward.

1180 F: (implies

1181 (and

1182 (diagnosisContext BootTime)

1183 (hypothesis BIOSStartupSystem))

1184 (and

1185 (possibleTest (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen))

1186 (possibleResultOfTest

1187 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) Yes Normal)

1188 (possibleResultOfTest

1189 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) No NotNormal))).

1190 ;; ***

1191 ;; ** DECOMPOSITION knowledge for the BIOSStartupSystem **

1192 ;; ** StartupScreen=No **

1193 ;; ***

1194 Direction: forward.

1195 F: (implies

1196 (and

1197 (diagnosisContext BootTime)

1198 (hypothesis BIOSStartupSystem)

1199 (resultOfTest

1200 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) No)

1201 (plausibleInference Decompose))

1202 (and

1203 (testFirst MotherBoard)

1204 (testAfter MotherBoard VideoCard))).

1205 ;; **

1206 ;; ** TEST(S) for the MemorySystem **

1207 ;; ** PowerSystem=ok, VideoSystem=ok, StartupSystem=ok **

1208 ;; **

1209 Direction: forward.

1210 F: (implies

1211 (and

1212 (diagnosisContext BootTime)

1213 (hypothesis MemorySystem))

1214 (and

1215 (possibleTest (TestFn MemorySystem ConfirmSensorially MemoryTest))

1216 (possibleResultOfTest

113

1217 (TestFn MemorySystem ConfirmSensorially MemoryTest) Complete Normal)

1218 (possibleResultOfTest

1219 (TestFn MemorySystem ConfirmSensorially MemoryTest) InComplete NotNormal))).

1220

1221 ;; **

1222 ;; ** DECOMPOSITION knowledge for the MemorySystem **

1223 ;; ** MemoryTest=Incomplete **

1224 ;; **

1225 Direction: forward.

1226 F: (implies

1227 (and

1228 (diagnosisContext BootTime)

1229 (hypothesis MemorySystem)

1230 (resultOfTest

1231 (TestFn MemorySystem ConfirmSensorially MemoryTest) InComplete)

1232 (plausibleInference Decompose))

1233 (and

1234 (testFirst RAM)

1235 (testAfter RAM MotherBoard))).

1236 ;; ***************************

1237 ;; ** TEST(S) for the RAM **

1238 ;; ** MemoryTest=Incomplete **

1239 ;; ***************************

1240 Direction: forward.

1241 F: (implies

1242 (and

1243 (diagnosisContext BootTime)

1244 (hypothesis RAM)

1245 (resultOfTest

1246 (TestFn MemorySystem ConfirmSensorially MemoryTest) InComplete))

1247 (and

1248 (possibleTest (TestFn RAM ConfirmSensorially ErrorMessage))

1249 (possibleResultOfTest

1250 (TestFn RAM ConfirmSensorially ErrorMessage) Yes NotNormal)

1251 (possibleResultOfTest

1252 (TestFn RAM ConfirmSensorially ErrorMessage) No Insufficient))).

1253 ;; **

1254 ;; ** TEST(S) for the RAM **

1255 ;; ** MemoryTest=Incomplete, ErrorMessage=No **

1256 ;; **

1257 Direction: forward.

1258 F: (implies

1259 (and

1260 (diagnosisContext BootTime)

1261 (hypothesis RAM)

1262 (resultOfTest

1263 (TestFn MemorySystem ConfirmSensorially MemoryTest) InComplete)

1264 (resultOfTest

1265 (TestFn RAM ConfirmSensorially ErrorMessage) No))

1266 (and

1267 (possibleTest (TestFn RAM TroubleshootComponent ComponentProblem))

1268 (possibleResultOfTest

1269 (TestFn RAM TroubleshootComponent ComponentProblem) Yes NotNormal)

1270 (possibleResultOfTest

1271 (TestFn RAM TroubleshootComponent ComponentProblem) No

1272 Distinguishing))).

1273 ;; **

1274 ;; ** TEST(S) for the FloppySystem **

1275 ;; ** PowerSystem=ok, VideoSystem=ok, StartupSystem=ok **

1276 ;; ** MemorySystem=ok **

114 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

1277 ;; **

1278 Direction: forward.

1279 F: (implies

1280 (and

1281 (diagnosisContext BootTime)

1282 (hypothesis FloppySystem))

1283 (and

1284 (possibleTest (TestFn FloppySystem ConfirmSensorially FloppyAccess))

1285 (possibleResultOfTest

1286 (TestFn FloppySystem ConfirmSensorially FloppyAccess) Yes Normal)

1287 (possibleResultOfTest

1288 (TestFn FloppySystem ConfirmSensorially FloppyAccess) No NotNormal))).

1289 ;; **

1290 ;; ** DECOMPOSITION knowledge for the FloppySystem **

1291 ;; ** FloppyAccess=No **

1292 ;; **

1293 Direction: forward.

1294 F: (implies

1295 (and

1296 (diagnosisContext BootTime)

1297 (hypothesis FloppySystem)

1298 (resultOfTest

1299 (TestFn FloppySystem ConfirmSensorially FloppyAccess) No)

1300 (plausibleInference Decompose))

1301 (and

1302 (testFirst FloppyDiskDrive)

1303 (testAfter FloppyDiskDrive BIOSsettings))).

1304 ;; *************************************

1305 ;; ** TEST(S) for the FloppyDiskDrive **

1306 ;; ** FloppyAccess=No **

1307 ;; *************************************

1308

1309 Direction: forward.

1310 F: (implies

1311 (and

1312 (diagnosisContext BootTime)

1313 (hypothesis FloppyDiskDrive)

1314 (resultOfTest

1315 (TestFn FloppySystem ConfirmSensorially FloppyAccess) No))

1316 (and

1317 (possibleTest (TestFn FloppyDiskDrive ConfirmSensorially BootContinues))

1318 (possibleResultOfTest

1319 (TestFn FloppyDiskDrive ConfirmSensorially BootContinues) Yes

1320 Distinguishing)

1321 (possibleResultOfTest

1322 (TestFn FloppyDiskDrive ConfirmSensorially BootContinues) No NotNormal))).

1323 ;; ***

1324 ;; ** TEST(S) for the OSfloppyDisk **

1325 ;; ** BootSequence-BIOSsetting=FloppyThenHard, BootSource=Hard/None **

1326 ;; ***

1327 Direction: forward.

1328 F: (implies

1329 (and

1330 (diagnosisContext BootTime)

1331 (hypothesis OSfloppyDisk)

1332 (resultOfTest

1333 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1334 FloppyThenHard)

1335 (or

115

1336 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource)

1337 HardDiskDrive)

1338 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource) None)))

1339 (and

1340 (possibleTest (TestFn OSfloppyDisk ConfirmSensorially InFloppy))

1341 (possibleResultOfTest

1342 (TestFn OSfloppyDisk ConfirmSensorially InFloppy) Yes Insufficient)

1343 (possibleResultOfTest

1344 (TestFn OSfloppyDisk ConfirmSensorially InFloppy) No NotNormal))).

1345 ;; ***

1346 ;; ** TEST(S) for the OSfloppyDisk **

1347 ;; ** BootSequence-BIOSsetting=FloppyThenHard, BootSource=Hard/None **

1348 ;; ** InFloppy=Yes **

1349 ;; ***

1350 Direction: forward.

1351 F: (implies

1352 (and

1353 (diagnosisContext BootTime)

1354 (hypothesis OSfloppyDisk)

1355 (resultOfTest

1356 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1357 FloppyThenHard)

1358 (or

1359 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource)

1360 HardDiskDrive)

1361 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource) None))

1362 (resultOfTest

1363 (TestFn OSfloppyDisk ConfirmSensorially InFloppy) Yes))

1364 (and

1365 (possibleTest

1366 (TestFn OSfloppyDisk TroubleshootComponent ComponentProblem))

1367 (possibleResultOfTest

1368 (TestFn OSfloppyDisk TroubleshootComponent ComponentProblem) Yes

1369 NotNormal)

1370 (possibleResultOfTest

1371 (TestFn OSfloppyDisk TroubleshootComponent ComponentProblem) No

1372 Distinguishing))).

1373 ;; **

1374 ;; ** TEST(S) for the HardDiskDrive **

1375 ;; ** PowerSystem=ok, VideoSystem=ok, StartupSystem=ok **

1376 ;; ** MemorySystem=ok, FloppySystem=ok **

1377 ;; **

1378 Direction: forward.

1379 F: (implies

1380 (and

1381 (diagnosisContext BootTime)

1382 (hypothesis HardDiskDrive))

1383 (and

1384 (possibleTest (TestFn HardDiskDrive ConfirmSensorially DetectionMessage))

1385 (possibleResultOfTest

1386 (TestFn HardDiskDrive ConfirmSensorially DetectionMessage) Yes Normal)

1387 (possibleResultOfTest

1388 (TestFn HardDiskDrive ConfirmSensorially DetectionMessage) No Insufficient)

1389 (possibleResultOfTest

1390 (TestFn HardDiskDrive ConfirmSensorially DetectionMessage)

1391 CannotFind-Message NotNormal))).

1392 ;; ***********************************

1393 ;; ** TEST(S) for the HardDiskDrive **

1394 ;; ** DetectionMessage=No **

1395 ;; ***********************************

116 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

1396 Direction: forward.

1397 F: (implies

1398 (and

1399 (diagnosisContext BootTime)

1400 (hypothesis HardDiskDrive)

1401 (resultOfTest

1402 (TestFn HardDiskDrive ConfirmSensorially DetectionMessage) No))

1403 (and

1404 (possibleTest

1405 (TestFn HardDiskDrive CheckIndependently AutoDetection-BIOSsetting))

1406 (possibleResultOfTest

1407 (TestFn HardDiskDrive CheckIndependently AutoDetection-BIOSsetting)

1408 Manual Normal)

1409 (possibleResultOfTest

1410 (TestFn HardDiskDrive CheckIndependently AutoDetection-BIOSsetting)

1411 Auto NotNormal))).

1412 ;; ***

1413 ;; ** TEST(S) for the HardDiskDrive **

1414 ;; ** BootSequence-BIOSsetting=HardThenFloppy, BootSource=Floppy/None **

1415 ;; ***

1416 Direction: forward.

1417 F: (implies

1418 (and

1419 (diagnosisContext BootTime)

1420 (hypothesis HardDiskDrive)

1421 (resultOfTest

1422 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1423 HardThenFloppy)

1424 (or

1425 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource)

1426 FloppyDiskDrive)

1427 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource) None)))

1428 (and

1429 (possibleTest

1430 (TestFn HardDiskDrive TroubleshootComponent ComponentProblem))

1431 (possibleResultOfTest

1432 (TestFn HardDiskDrive TroubleshootComponent ComponentProblem) Yes

1433 NotNormal)

1434 (possibleResultOfTest

1435 (TestFn HardDiskDrive TroubleshootComponent ComponentProblem) No

1436 Normal))).

1437 ;; **

1438 ;; ** TEST(S) for the CDROMdrive **

1439 ;; ** PowerSystem=ok, VideoSystem=ok, StartupSystem=ok **

1440 ;; ** MemorySystem=ok, FloppySystem=ok, HardDisk=ok **

1441 ;; **

1442 Direction: forward.

1443 F: (implies

1444 (and

1445 (diagnosisContext BootTime)

1446 (hypothesis CDROMdrive))

1447 (and

1448 (possibleTest (TestFn CDROMdrive ConfirmSensorially DetectionMessage))

1449 (possibleResultOfTest

1450 (TestFn CDROMdrive ConfirmSensorially DetectionMessage) Yes Normal)

1451 (possibleResultOfTest

1452 (TestFn CDROMdrive ConfirmSensorially DetectionMessage) No Insufficient)

1453 (possibleResultOfTest

1454 (TestFn CDROMdrive ConfirmSensorially DetectionMessage) CannotFind-Message

1455 NotNormal))).

1456 ;; ***********************************

117

1457 ;; ** TEST(S) for the CDROMdrive **

1458 ;; ** DetectionMessage=No **

1459 ;; ***********************************

1460 Direction: forward.

1461 F: (implies

1462 (and

1463 (diagnosisContext BootTime)

1464 (hypothesis CDROMdrive)

1465 (resultOfTest

1466 (TestFn CDROMdrive ConfirmSensorially DetectionMessage) No))

1467 (and

1468 (possibleTest (TestFn CDROMdrive ConfirmSensorially BootContinues))

1469 (possibleResultOfTest

1470 (TestFn CDROMdrive ConfirmSensorially BootContinues) Yes Normal)

1471 (possibleResultOfTest

1472 (TestFn CDROMdrive ConfirmSensorially BootContinues) No NotNormal))).

1473 ;; **

1474 ;; ** TEST(S) for the PlugAndPlaySystem **

1475 ;; ** PowerSystem=ok, VideoSystem=ok, StartupSystem=ok **

1476 ;; ** MemorySystem=ok, FloppySystem=ok, HardDisk=ok **

1477 ;; ** CDROMdrive=ok **

1478 ;; **

1479 Direction: forward.

1480 F: (implies

1481 (and

1482 (diagnosisContext BootTime)

1483 (hypothesis PlugAndPlaySystem))

1484 (and

1485 (possibleTest (TestFn PlugAndPlaySystem ConfirmSensorially BootContinues))

1486 (possibleResultOfTest

1487 (TestFn PlugAndPlaySystem ConfirmSensorially BootContinues) Yes Normal)

1488 (possibleResultOfTest

1489 (TestFn PlugAndPlaySystem ConfirmSensorially BootContinues) No NotNormal))).

1490 ;; ***

1491 ;; ** DECOMPOSITION knowledge for the PlugAndPlaySystem **

1492 ;; ** BootContinues=No **

1493 ;; ***

1494 Direction: forward.

1495 F: (implies

1496 (and

1497 (diagnosisContext BootTime)

1498 (hypothesis PlugAndPlaySystem)

1499 (resultOfTest

1500 (TestFn PlugAndPlaySystem ConfirmSensorially BootContinues) No)

1501 (plausibleInference Decompose))

1502 (and

1503 (testFirst ExpansionCard)

1504 (testAfter ExpansionCard MotherBoard))).

1505 ;; ***********************************

1506 ;; ** TEST(S) for the ExpansionCard **

1507 ;; ** BootContinues=No **

1508 ;; ***********************************

1509 Direction: forward.

1510 F: (implies

1511 (and

1512 (diagnosisContext BootTime)

1513 (hypothesis ExpansionCard)

1514 (resultOfTest

1515 (TestFn PlugAndPlaySystem ConfirmSensorially BootContinues) No))

118 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

1516 (and

1517 (possibleTest

1518 (TestFn ExpansionCard TroubleshootComponent ComponentProblem))

1519 (possibleResultOfTest

1520 (TestFn ExpansionCard TroubleshootComponent ComponentProblem) Yes

1521 NotNormal)

1522 (possibleResultOfTest

1523 (TestFn ExpansionCard TroubleshootComponent ComponentProblem) No

1524 Distinguishing))).

1525 ;; **********************************

1526 ;; ** TEST(S) for the BootSystem **

1527 ;; ** Everything else=ok **

1528 ;; **********************************

1529 Direction: forward.

1530 F: (implies

1531 (and

1532 (diagnosisContext BootTime)

1533 (hypothesis BootSystem))

1534 (and

1535 (possibleTest

1536 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting))

1537 (possibleResultOfTest

1538 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1539 FloppyThenHard Insufficient)

1540 (possibleResultOfTest

1541 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1542 HardThenFloppy Insufficient))).

1543 ;; **

1544 ;; ** TEST(S) for the BootSystem **

1545 ;; ** BootSequence-BIOSsetting=FloppyThenHard **

1546 ;; **

1547 Direction: forward.

1548 F: (implies

1549 (and

1550 (diagnosisContext BootTime)

1551 (hypothesis BootSystem)

1552 (resultOfTest

1553 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1554 FloppyThenHard))

1555 (and

1556 (possibleTest (TestFn BootSystem ConfirmSensorially BootSource))

1557 (possibleResultOfTest

1558 (TestFn BootSystem ConfirmSensorially BootSource) FloppyDiskDrive Normal)

1559 (possibleResultOfTest

1560 (TestFn BootSystem ConfirmSensorially BootSource)

1561 HardDiskDrive NotNormal)

1562 (possibleResultOfTest

1563 (TestFn BootSystem ConfirmSensorially BootSource) None NotNormal))).

1564 ;; **

1565 ;; ** DECOMPOSITION knowledge for the BootSystem **

1566 ;; ** BootSequence-BIOSsetting=FloppyThenHard, BootSource=Hard **

1567 ;; **

1568 Direction: forward.

1569 F: (implies

1570 (and

1571 (diagnosisContext BootTime)

1572 (hypothesis BootSystem)

1573 (resultOfTest

1574 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1575 FloppyThenHard)

119

1576 (resultOfTest

1577 (TestFn BootSystem ConfirmSensorially BootSource) HardDiskDrive)

1578 (plausibleInference Decompose))

1579 (and

1580 (testFirst OSfloppyDisk)

1581 (testAfter OSfloppyDisk FloppyDiskDrive))).

1582

1583 ;; **

1584 ;; ** DECOMPOSITION knowledge for the BootSystem **

1585 ;; ** BootSequence-BIOSsetting=FloppyThenHard, BootSource=None **

1586 ;; **

1587 Direction: forward.

1588 F: (implies

1589 (and

1590 (diagnosisContext BootTime)

1591 (hypothesis BootSystem)

1592 (resultOfTest

1593 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1594 FloppyThenHard)

1595 (resultOfTest

1596 (TestFn BootSystem ConfirmSensorially BootSource) None)

1597 (plausibleInference Decompose))

1598 (and

1599 (testFirst OSfloppyDisk)

1600 (testAfter OSfloppyDisk FloppyDiskDrive))).

1601

1602 ;; **

1603 ;; ** TEST(S) for the BootSystem **

1604 ;; ** BootSequence-BIOSsetting=HardThenFloppy **

1605 ;; **

1606 Direction: forward.

1607 F: (implies

1608 (and

1609 (diagnosisContext BootTime)

1610 (hypothesis BootSystem)

1611 (resultOfTest

1612 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1613 HardThenFloppy))

1614 (and

1615 (possibleTest (TestFn BootSystem ConfirmSensorially BootSource))

1616 (possibleResultOfTest

1617 (TestFn BootSystem ConfirmSensorially BootSource) HardDiskDrive Normal)

1618 (possibleResultOfTest

1619 (TestFn BootSystem ConfirmSensorially BootSource)

1620 FloppyDiskDrive NotNormal)

1621 (possibleResultOfTest

1622 (TestFn BootSystem ConfirmSensorially BootSource) None NotNormal))).

1623 ;; **

1624 ;; ** DECOMPOSITION knowledge for the BootSystem **

1625 ;; ** BootSequence-BIOSsetting=HardThenFloppy, BootSource=Floppy **

1626 ;; **

1627 Direction: forward.

1628 F: (implies

1629 (and

1630 (diagnosisContext BootTime)

1631 (hypothesis BootSystem)

1632 (resultOfTest

1633 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1634 HardThenFloppy)

1635 (resultOfTest

1636 (TestFn BootSystem ConfirmSensorially BootSource) FloppyDiskDrive)

120 APPENDIX B. THE CYC KE-TEXT FOR PC DOMAIN

1637 (plausibleInference Decompose))

1638 (testFirst HardDiskDrive)).

1639

1640 ;; **

1641 ;; ** DECOMPOSITION knowledge for the BootSystem **

1642 ;; ** BootSequence-BIOSsetting=HardThenFloppy, BootSource=None **

1643 ;; **

1644 Direction: forward.

1645 F: (implies

1646 (and

1647 (diagnosisContext BootTime)

1648 (hypothesis BootSystem)

1649 (resultOfTest

1650 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1651 HardThenFloppy)

1652 (resultOfTest

1653 (TestFn BootSystem ConfirmSensorially BootSource) None)

1654 (plausibleInference Decompose))

1655 (testFirst HardDiskDrive)).

1656

Appendix C

The CYC SubL Code for PC

Domain

1 ;;; ******** FUNCTION DEFINITIONS ********

2 ;;; ******** GLOBAL VARIABLES ****************

3 (csetq *use-local-queue?* NIL) ;CYC variable

4 (defvar *defaultMt* '#$PCDiagnosisMt) ;the microtheory for the fi-ask function

5 (defvar *test* nil) ; the current Test (needed by the 'menu' function)

6 (defvar *results* nil) ; a list of the Possible Results of the current Test

7 ; (needed by the 'menu' function)

8 (defvar *no_of_choices* 0) ;the number of Possible Results of the current Test

9 ; (needed by the 'menu' function)

10 ;;; The global variable *terms* is used to record in a list - and in

11 ;;; parallel with what the 'format' expressions print to the CYC SubL

12 ;;; Interactor panel - the CYC terms involved in each step of the

13 ;;; Systematic diagnosis. This variable is returned to the Interactor

14 ;;; panel as the 'Results' of the 'Last Form Evaluated' (see the CYC

15 ;;; SubL Interactor panel). The Interactor panel converts any CYC

16 ;;; term, i.e. symbols starting with '#$' (hash-dollar), as an HTML

17 ;;; link to this term in the CYC KB. This way, the user can browse to

18 ;;; any of the CYC terms appearing on the screen.

19 (defvar *terms* nil)

20 ;;; **

21 ;;; ******** SubL CODE FOR SYSTEMATIC ************

22 ;;; **

23 ;;; Function : SYSTEMATIC

24 ;;; Arguments: The system that is going to be diagnosed, i.e. '#$PCSystem'.

25 ;;; Result : Implements the Inference Structure for the Systematic

26 ;;; Diagnosis problem solving method of KADS applied in PC

27 ;;; faults diagnosis.

28 ;;; Remarks :

29 (define systematic (system)

30 (pcond

31 ((cnot (eql system '#$PCSystem)) (error "DIAGNOSIS: argument must be

32 '#$PCSystem'"))

33 (t (pcond

34 ;; if there isn't any hypothesis then start diagnosis

35 ((cnot (fi-ask '(#$hypothesis ?HYP) *defaultMt*))

121

122 APPENDIX C. THE CYC SUBL CODE FOR PC DOMAIN

36 (csetf *terms* nil)

37 (sd-select1))

38 (t (sd-compare)) ;end of innermost 't' clause

39)) ;end of innermost 'pcond' and outermost 't' clause

40) ;end of outermost 'pcond'

41)

42 ;;; **

43 ;;; ******** SubL CODE FOR SD-COMPARE * *************

44 ;;; **

45 ;;; Function : SD-COMPARE

46 ;;; Arguments: None

47 ;;; Result : Calls the appropriate Systematic Diagnosis Inference

48 ;;; Remarks : The *test* global variable holds the last 'Test' that

49 ;;; was performed. It is used to retrieve the result of

50 ;;; this 'Test' and its type. According to the 'ResultType'

51 ;;; of the 'Test', the following decisions may be made:

52 ;;;

53 ;;; RESULT_TYPE DECISION

54 ;;;

55 ;;; Normal Reject hypothesis; backtrack

56 ;;; NotNormal Decompose/Confirm hypothesis

57 ;;; Insufficient Perform another 'Test' (Select2-3)

58 ;;; Distinguishing Reject hypothesis, backtrack

59 ;;; and confirm next hypothesis.

60 (define sd-compare ()

61 (csetf *terms* nil)

62 ;; get the 'ResultType' for the most recently performed 'Test'

63 (csetq ask-result

64 (fi-ask (list '#$and

65 (list '#$resultOfTest *test* '?RES)

66 (list '#$possibleResultOfTest *test* '?RES '?TYPE)) *defaultMt*))

67 (format t "LAST TEST: ~S, ~%RESULT: ~S," *test* (get-ask-binding

68 (first ask-result) 1))

69 (csetf *terms* (cons (cons 'LAST (cons 'TEST: *test*)) *terms*))

70 (csetq result (get-ask-binding (first ask-result) 1))

71 (csetq result-type (get-ask-binding (first ask-result) 2))

72

73 ;; according to the 'ResultType' value, decide the next inference

74 (pcond

75 ((eql result-type '#$NotNormal)

76 (format t " RESULT TYPE: #$NotNormal, INFERENCE: Confirm/Decompose")

77 (csetf *terms* (cons (list 'RESULT: result 'RESULT 'TYPE:

78 result-type 'INFERENCE:CONFIRM) *terms*))

79 (sd-confirm))

80 ((eql result-type '#$Insufficient)

81 (format t " RESULT TYPE: #$Insufficient, INFERENCE: Select2-3")

82 (csetf *terms* (cons (list 'RESULT: result 'RESULT 'TYPE:

83 result-type 'INFERENCE:SELECT2-3) *terms*))

84 (sd-select2-3))

85 ((cor (eql result-type '#$Normal) (eql result-type '#$Distinguishing))

86 (format t " RESULT TYPE: ~S, INFERENCE: NewHypothesis" result-type)

87 (csetf *terms* (cons (list 'RESULT: result 'RESULT 'TYPE:

88 result-type 'INFERENCE:New_Hypothesis) *terms*))

89 (sd-new-hypothesis result-type))

90 (t (format t " RESULT TYPE: UNKNOWN!, INFERENCE: Diagnosis interrupted"))

91) ;end of 'pcond'

92)

93 ;;; **

94 ;;; ******** SubL CODE FOR SD-CONFIRM ************

95 ;;; **

123

96 ;;; Function : SD-CONFIRM

97 ;;; Arguments: None

98 ;;; Result : If the current 'hypothesis' is a 'PCSUbSystem', it

99 ;;; is decomposed by calling function 'sd-decompose';

100 ;;; otherwise, it is a PCComponent and the diagnosis

101 ;;; terminates reporting this 'PCComponent' as faulty.

102 ;;; Remarks :

103 (define sd-confirm ()

104 (csetq ask-result

105 (fi-ask '(#$and

106 (#$hypothesis ?HYP)

107 (#$isa ?HYP #$PCComponent)) *defaultMt*))

108 (pcond

109 (ask-result

110 (format t "~%~% DIAGNOSIS ENDED. FAULTY COMPONENT: ~S"

111 (get-ask-binding (first ask-result) 1))

112 (csetf *terms* (cons (list 'DIAGNOSIS 'ENDED. 'FAULTY 'COMPONENT:

113 (get-ask-binding (first ask-result) 1)) *terms*))

114 (reverse *terms*))

115 (t (format t " Decomposing...")

116 (safe-fi :assert '(#$plausibleInference #$Decompose) *defaultMt*)

117 (sd-decompose)

118 (sd-select2-3))

119)

120)

121

122 ;;; **

123 ;;; ******** SubL CODE FOR SD-NEW-HYPOTHESIS *****

124 ;;; **

125 ;;; Function: SD-NEW-HYPOTHESIS

126 ;;; Arguments: 1. A #$ResultType

127 ;;; Results:

128 ;;; Remarks: This function is called by 'sd-confirm' with two types of

129 ;;; results, #$Normal and #$Distinguishing. If the result is

130 ;;; #$Normal, the function just changes the current

131 ;;; 'hypothesis' to the next one (if one exists) and performs

132 ;;; the appropriate 'Test' by calling 'sd-select2-3'. If the result is

133 ;;; #$Distinguishing, then it changes the current

134 ;;; 'hypothesis' as before, but doesn't perform any 'Test', as

135 ;;; the last 'Test' performed indicates that the next

136 ;;; 'hypothesis' is faulty. Therefore, it calls the

137 ;;; 'sd-confirm' function.

138 (define sd-new-hypothesis (result-type)

139 ;; get the next hypothesis from the 'testAfter' assertions, if anyone

140 ;; is left

141 (csetq ask-result

142 (fi-ask '(#$and

143 (#$hypothesis ?HYP)

144 (#$testAfter ?HYP ?NEW)HYP)) *defaultMt*))

145 (pcond

146 ((null ask-result) (format t "~% ~%I'M SORRY. THERE IS NO ALTERNATIVE

147 SYSTEM TO BE CONSIDERED. DIAGNOSIS FAILED"))

148 (t (csetq hypothesis (get-ask-binding (first ask-result) 1))

149 (csetq new_hypothesis (get-ask-binding (first ask-result) 2))

150 (fi-unassert (list '#$hypothesis hypothesis) *defaultMt*)

151 (fi-unassert (list '#$testAfter hypothesis new_hypothesis) *defaultMt*)

152 (safe-fi :assert (list '#$hypothesis new_hypothesis) *defaultMt*)

153 (pcond

154 ((eql result-type '#$Normal) (sd-select2-3))

155 ((eql result-type '#$Distinguishing) (sd-confirm))

156)) ;end of inner 'pcond' and 't' clause

157) ;end of 'pcond'

124 APPENDIX C. THE CYC SUBL CODE FOR PC DOMAIN

158)

159 ;;; **

160 ;;; ******** SubL CODE FOR SD-SELECT1 ********

161 ;;; **

162 ;;; Function: SD-SELECT1

163 ;;; Arguments: None.

164 ;;; Results: Asserts the '(#$hypothesis #$PCSystem)' fact to start the

165 ;;; Systematic Diagnosis problem solving method

166 ;;; Remarks:

167 (define sd-select1 ()

168 (safe-fi :assert '(#$hypothesis #$PCSystem) *defaultMt*)

169 (sd-select2-3) ; ask the user what the general complaint is

170)

171 ;;; **

172 ;;; ******** SubL CODE FOR SD-SELECT2-3 *************

173 ;;; **

174 ;;; Function : SD-SELECT2-3

175 ;;; Arguments: None

176 ;;; Result :

177 ;;; Remarks : According to the situation, there may be a lot of

178 ;;; 'possibleTest' assertions in the KB, but only one of them is the

179 ;;; one that must be performed next. This Test is distinguished by the

180 ;;; fact that it is the only one that doesn't have a corresponding

181 ;;; 'resultOfTest' assertion as it is not yet carried out. The

182 ;;; 'sd-select2-3' function must therefore find this Test and pass it and

183 ;;; its possible results ('possibleresultOfTest' assertions) to the

184 ;;; 'get-test-result' function.

185 (define sd-select2-3 ()

186 ;;get the current 'hypothesis'

187 (csetq hypothesis (fi-ask '(#$hypothesis ?HYP) *defaultMt*))

188 (csetq hypothesis (get-ask-binding (first hypothesis) 1))

189 (format t "~%~%HYPOTHESIS: ~S" hypothesis)

190 (csetf *terms* (cons (list 'HYPOTHESIS: hypothesis) *terms*))

191 ;; Get all possible tests

192 (csetq possible-tests

193 (fi-ask '(#$possibleTest ?TEST) *defaultMt*))

194 ;; keep the one that doesn't have a corresponding 'resultOfTest' assertion

195 (cdo

196 ((test

197 (get-ask-binding (first possible-tests) 1)

198 (get-ask-binding (first possible-tests) 1))

199) ; end of variables

200 ((cnot (fi-ask (list '#$resultOfTest test '?R) *defaultMt*)) t) ;exit condition

201 (csetq possible-tests (rest possible-tests))

202)

203 (csetq test (get-ask-binding (first possible-tests) 1))

204 (csetf *test* test)

205 ;; Get the possible results for this test

206 (csetq possible-results

207 (fi-ask

208 (list

209 '#$possibleResultOfTest (list '#$TestFn (second test) (third test)

210 (fourth test)) '?VAL '?TYPE) *defaultMt*))

211 (get-test-result test possible-results)

125

212)

213 ;;; **

214 ;;; ******** SubL CODE FOR GET-TEST-RESULT *****

215 ;;; **

216 ;;; Function : GET-TEST-RESULT

217 ;;; Arguments: 1. A 'Test' structure, which is a list of the form:

218 ;;;

219 ;;; (TestFn PC_SUBSYSTEM TEST_ACTION POSSIBLE_OBSERVABLE)

220 ;;;

221 ;;; 2. A list of the form:

222 ;;;

223 ;;; (

224 ;;; ((?VAL . RESULT_1) (?TYPE . TYPE_1))

225 ;;; ...

226 ;;; ((?VAL . RESULT_n) (?TYPE . TYPE_n))

227 ;;;)

228 ;;;

229 ;;; Result : An 'resultOfTest' Assertion in the KB with the actual result of

230 ;;; the test.

231 ;;; Remarks : For the moment, it is the 'menu' function that performs

232 ;;; the actual task as there in no way to get input from

233 ;;; the user when in the SubL interactor.

234 (define get-test-result (test possible-results)

235 (present-test-parameters test)

236 (present-test-results possible-results)

237 (format t "~%~%Please, type '(menu [number_of_result])'")

238 ; (input-test-result no_of_choices)

239 (reverse *terms*) ;return as RESULT a list of all CYC terms appearing on the screen

240 ;;; For the moment, we don't know how to interact with the user when in the

241 ;;; SubL Interactor interface. Therefore, the user must give the command

242 ;;; '(menu <number_of_result>)' to interact with the SubL code.

243)

244

245 ;;; ***

246 ;;; ******** SubL CODE FOR PRESENT-TEST-PARAMETERS*

247 ;;; ***

248 ;;; Function : PRESENT-TEST-PARAMETERS

249 ;;; Arguments: A 'Test' structure, which is a list of the form:

250 ;;;

251 ;;; (TestFn PC_SUBSYSTEM TEST_ACTION POSSIBLE_OBSERVABLE)

252 ;;;

253 ;;; Result : Prints to the screen the current 'test' parameters, i.e,

254 ;;; the PCSubSystem, TestAction and PossibleObservable.

255 ;;; Remarks :

256 (define present-test-parameters (test)

257 (format t "~%NEW TEST: ~%PCSubSystem: ~S ~%TestAction: ~S

~%Observable: ~S ~%" (second test) (third test) (fourth test))

258 (csetf *terms* (cons (cons 'NEW (cons 'TEST test)) *terms*))

259)

260 ;;; **

261 ;;; ******** SubL CODE FOR PRESENT-TEST-RESULTS **

262 ;;; **

263 ;;; Function : PRESENT-TEST-RESULTS

264 ;;; Arguments: A list of the form:

265 ;;;

266 ;;; (

267 ;;; ((?VAL . RESULT_1) (?TYPE . TYPE_1))

268 ;;; ...

126 APPENDIX C. THE CYC SUBL CODE FOR PC DOMAIN

269 ;;; ((?VAL . RESULT_n) (?TYPE . TYPE_n))

270 ;;;)

271 ;;;

272 ;;; Result : An enumarated menu of all possible results of the current 'test'

273 ;;; Remarks :

274 (define present-test-results (possible-results)

275 ;; Get possible results

276 (csetq results (mapcar #'get-ask-binding

277 possible-results

278 (position-list (length possible-results) 1)))

279 ;; Get possible results' types (Not needed for the moment. The result

280 ;; type is retreived by the 'sd-compare' function).

281 ; (csetq result_types (mapcar #'get-ask-binding

282 ; possible-results

283 ; (position-list (length possible-results) 2)))

284 (csetq counter 1)

285 (cdolist (result results 't)

286 (format t "~A. ~S~%" counter result)

287 (csetf *terms* (cons (cons counter result) *terms*))

288 (csetq counter (+ counter 1))

289)

290 (csetf *no_of_choices* (- counter 1)) ;needed by 'menu'

291 (csetf *results* results) ;needed by 'menu'

292 ; (csetf *result_type* result_types) ; needed by 'menu'

293)

294 ;;; **

295 ;;; ******** SubL CODE FOR POSITION-LIST *

296 ;;; **

297 ;;; Function : POSITION-LIST

298 ;;; Arguments: 1. A number, n, indicating the number of bindings (lists of

299 ;;; doted pairs), in an ask-result of an 'fi-ask' function.

300 ;;; 2. A number, k (1 =< k =< n), indicating which BINDING must

301 ;;; be returned by the 'get-ask-binding' function.

302 ;;; Result : A list of n elements equal to k.

303 ;;; Remarks : An auxiliary function. Creates the second arcument to be used

304 ;;; in a 'mapping' function which collects a list of BINDINGS for

305 ;;; the same ask variable.

306 (define position-list (n k)

307 (csetq res ())

308 (cdotimes (c n res)

309 (csetq res (cons k res))

310)

311 res

312)

313 ;;; **

314 ;;; ******** SubL CODE FOR GET-ASK-BINDING ***

315 ;;; **

316 ;;; Function : GET-ASK-BINDING

317 ;;; Arguments: 1. A list of dotted pairs of the form:

318 ;;;

319 ;;; ((?VAR1 . BINDING1)

320 ;;; (?VAR2 . BINDING2)

321 ;;; ...

322 ;;; (?VARn . BINDINGn)

323 ;;;)

127

324 ;;; 2. A number defining which BINDING must be returned.

325 ;;; Result : POSSIBLE_OBSERVABLE_VALUE

326 ;;; Remarks :

327 (define get-ask-binding (bindings_list bind_no)

328 (rest (nth (- bind_no 1) bindings_list))

329)

330

331 ;;; **

332 ;;; ******** SubL CODE FOR MENU ****************

333 ;;; **

334 ;;; Function : MENU

335 ;;; Arguments: 1. A number from the menu of the possible results (local)

336 ;;; 2. The list of possible results (global variable *results*)

337 ;;; 3. The number of choices (global variable *no_of_choices*)

338 ;;; Result : Asserts into the KB a 'resultOfTest' assertion

339 ;;; Remarks :

340 (define menu (selection)

341 (pcond

342 ((cor (< selection 1) (> selection *no_of_choices*))

343 (format t "~%~%You must give as an argument, a number between 1-~A"

344 *no_of_choices*))

345 (t (csetq test (fi-ask '(#$possibleTest ?TEST) *defaultMt*))

346 (csetq test (get-ask-binding (first test) 1))

347 ; (csetf *result_type* (nth (- selection 1) *result_type*))

348 (safe-fi :assert

349 (list '#$resultOfTest test (nth (- selection 1) *results*)) *defaultMt*))

350)

351 (systematic '#$PCSystem)

352)

353 ;;; The 'decompose' inference in KADS Systematic Diagnosis PSM takes as input

354 ;;; the current #$PCSubSystem (#$hypothesis PC_SUBSYSTEM) and decomposes it

355 ;;; into its functional subsystems (#$functionalPartOf PC_SUBSYSTEM PART),

356 ;;; generating new hypotheses (#$possibleHypotheses PART).

357 ;;; **

358 ;;; ******** SubL CODE FOR SD-DECOMPOSE *****

359 ;;; **

360 ;;; Function : SD-DECOMPOSE

361 ;;; Arguments: None.

362 ;;; Result :

363 ;;; Remarks :

364 (define sd-decompose ()

365 ;; Before un-asserting the current hypothesis, its functional parts

366 ;; must be saved

367 (csetq ask-result (fi-ask '(#$possibleHypotheses ?H) *defaultMt*))

368 (csetq in_hypotheses

369 (mapcar #'get-ask-binding ask-result (position-list (length ask-result) 1)))

370 ;; Before un-asserting the current hypothesis, the order of its subsystems

371 ;; diagnosis must be saved

372 (csetq first_to_test (fi-ask '(#$testFirst ?SYS) *defaultMt*))

373 (csetq first_to_test (get-ask-binding (first first_to_test) 1))

374 (csetq afters (fi-ask '(#$testAfter ?S1 ?S2) *defaultMt*))

375 (csetq s1_list

128 APPENDIX C. THE CYC SUBL CODE FOR PC DOMAIN

376 (mapcar #'get-ask-binding afters (position-list (length afters) 1)))

377 (csetq s2_list

378 (mapcar #'get-ask-binding afters (position-list (length afters) 2)))

379 ;; Store hypothesis and un-assert it

380 (csetq hypothesis (fi-ask '(#$hypothesis ?H) *defaultMt*))

381 (csetq hypothesis (get-ask-binding (first hypothesis) 1))

382 (fi-unassert (list '#$hypothesis hypothesis) *defaultMt*)

383 ;; Assert possibleHypotheses.

384 (cdolist (system in_hypotheses t)

385 (safe-fi :assert (list '#$possibleHypotheses system) *defaultMt*)

386)

387 ;; Assert diagnosis order

388 ; (safe-fi :assert (list '#$testFirst first_to_test) *defaultMt*) ;unnecessary

389 (cdolist (s1 s1_list t)

390 (csetq s2 (first s2_list))

391 (csetq s2_list (rest s2_list))

392 (safe-fi :assert (list '#$testAfter s1 s2) *defaultMt*)

393)

394 ;; Un-assert the (#$plausibleInference #$Decompose) assertion.

395 (fi-unassert '(#$plausibleInference #$Decompose) *defaultMt*)

396 ;; Assert the new hypothesis

397 (safe-fi :assert (list '#$hypothesis first_to_test) *defaultMt*)

398)

399 ;;; **

400 ;;; ******** SubL CODE FOR SD-RESET ****************

401 ;;; **

402 ;;; Function : SD-RESET

403 ;;; Arguments: None

404 ;;; Result : Resets all assertions regarding the following

405 ;;; predicates:

406 ;;; '#$diagnosisContext

407 ;;; '#$hypothesis',

408 ;;; '#$possibleHypotheses'

409 ;;; '#$resultOfTest'

410 ;;; '#$testFirst'

411 ;;; '#$testAfter'

412 ;;; '#$diagnosisContext' (dependant from #$resultOfTest)

413 ;;; '#$possibleTest' (dependant from #$hypothesis & #$resultOfTest)

414 ;;; Remarks :

415 (define sd-reset ()

416 ;; Set the global variables

417 (csetf *use-local-queue?* NIL)

418 (csetf *defaultMt* '#$PCDiagnosisMt)

419 (csetf *test* nil)

420 (csetf *results* nil)

421 (csetf *no_of_choices* 0)

422 ;;UN-ASSERT #$diagnosisContext

423 (csetq diagnosisContext (fi-ask '(#$diagnosisContext ?C) *defaultMt*))

424 (csetq diagnosisContext (get-ask-binding (first diagnosisContext) 1))

425 (fi-unassert (list '#$diagnosisContext diagnosisContext) *defaultMt*)

426 ;; UN-ASSERT #$hypothesis

427 (csetq hypothesis (fi-ask '(#$hypothesis ?H) *defaultMt*))

428 (csetq hypothesis (get-ask-binding (first hypothesis) 1))

429 (fi-unassert (list '#$hypothesis hypothesis) *defaultMt*)

129

430 ;; UN-ASSERT #$possibleHypotheses

431 (csetq ask-result (fi-ask '(#$possibleHypotheses ?H) *defaultMt*))

432 (csetq results

433 (mapcar #'get-ask-binding ask-result (position-list (length ask-result) 1)))

434 (cdolist (result results t)

435 (fi-unassert (list '#$possibleHypotheses result) *defaultMt*)

436)

437 ;; UN-ASSERT #$resultOfTest

438 (csetq ask-result (fi-ask '(#$resultOfTest ?T ?R) *defaultMt*))

439 (cdolist (bindings ask-result t)

440 (fi-unassert

441 (list '#$resultOfTest (get-ask-binding bindings 1)

442 (get-ask-binding bindings 2)) *defaultMt*)

443)

444 ;;UN-ASSERT #$testFirst

445 (csetq first_to_test (fi-ask '(#$testFirst ?SYS) *defaultMt*))

446 (csetq first_to_test (get-ask-binding (first first_to_test) 1))

447 (fi-unassert (list '#$testFirst first_to_test) *defaultMt*)

448 (csetq afters (fi-ask '(#$testAfter ?S1 ?S2) *defaultMt*))

449 (csetq s1_list

450 (mapcar #'get-ask-binding afters (position-list (length afters) 1)))

451 (csetq s2_list

452 (mapcar #'get-ask-binding afters (position-list (length afters) 2)))

453 (cdo

454 ((s1 (first s1_list) (first s1_list))

455 (s2 (first s2_list) (first s2_list))

456 (s1_list (rest s1_list) (rest s1_list))

457 (s2_list (rest s2_list) (rest s2_list))

458) ;end of variables

459 ((null s1)) ;when no more couples of s1,s2

460 (fi-unassert (list '#$testAfter s1 s2) *defaultMt*)

461)

462)

130 APPENDIX C. THE CYC SUBL CODE FOR PC DOMAIN

Appendix D

The CYC KE-Text for

PC/Automobile Domains

1 ;;; PROJECT: 628-Implementing Problem Solving Methods (PSMs) in Cyc

2 ;;; FILENAME: systematic_diagnosisKE.txt

3 ;;; AUTHOR: Dimitrios Sklavakis

4 ;;; PURPOSE: Contains Cyc's Knowledge Entering (KE) text defining the

5 ;;; general knowledge for the implementation of the

6 ;;; Systematic Diagnosis (Localisation) PSM from KADS

7 ;;; methodology for Personal Computers (PCs) and Automobiles.

8 ;;; LAST UPDATED: 05/08/1998.

9 ;**************** THE #$SystematicDiagnosisMt MICROTHEORY ***********

10 ;;; The general knowledge for performing Systematic Diagnosis will be

11 ;;; grouped in the #$SystematicDiagnosisMt microtheory. This one is a

12 ;;; more specific microtheory than the #$BaseKB microtheory,

13 ;;; i.e. (#$genlMt #$SystematicDiagnosisMt #$BaseKB) and more general

14 ;;; than the #$PCDiagnosisMt and #$AutomobileDiagnosisMt

15 ;;; microtheories:

16 ;;; (#$genlMt #$PCDiagnosisMt #$SystematicDiagnosisMt) (#$genlMt

17 ;;; #$AutomobileDiagnosisMt #$SystematicDiagnosisMt)

18 constant: SystematicDiagnosisMt.

19 isa: Microtheory.

20 genls: BaseKB.

21 comment: "#$SystematicDiagnosisMt is the #$Microtheory that contains

22 all the assertions about performing KADS' Systematic Diagnosis

23 (Localisation) problem solving method.".

24 ; **************** SYSTEM MODEL KNOWLEDGE ****************

25 Default Mt: SystematicDiagnosisMt.

26 constant: SubSystem.

27 isa: Collection.

28 genls: CompositeTangibleAndIntangibleObject.

29 comment: "The collection of all Psub-systems, like the

30 #$VideoSystem, #$PowerSystem, #$KeyboardSystem. Each instance of

31 #$SubSystem may include several #$Components and/or other

32 #$SubSystems. Different #$SubSystems may include the same

33 #$Components. In the context of #$SystematicDiagnosisMt any #$SubSystem is

131

132 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

34 an intermediate level of analysis for the system model; the

35 diagnosis continues until a faulty #$Component is located".

36 constant: Component.

37 isa: Collection.

38 genls: SubSystem.

39 comment: "The collection of all components such as the

40 #$PowerSupply, #$VideoCard, #$FloppyDiskDrive. In the context of

41 #$SystematicDiagnosisMt any #$Component is the lowest level of analysis for

42 the system model; the diagnosis terminates when a faulty

43 #$Component is located.".

44 ;;; For Systematic Diagnosis, a predicate is needed to express the

45 ;;; hierarchical system model, consisting of #$SubSystems and

46 ;;; #$Components. However, this predicate is domain dependent and

47 ;;; therefore will be defined seperately in each domain-specific

48 ;;; theory. For example, in #$PCDiagnosisMt it is #$functionalPartOf,

49 ;;; while in #$AutomobileDiagnosisMt is #$physicalDecompositions.

50

51 constant: testFirst.

52 isa: UnaryPredicate.

53 arg1Isa: SubSystem.

54 comment: "This predicate is used to declare which SubSystem from

55 these occuring after a #$Decompose inference type will be the

56 the first to consider for diagnosis, i.e., the #$hypothesis.".

57 constant: testAfter.

58 isa: BinaryPredicate.

59 arg1Isa: SubSystem.

60 arg2Isa: SubSystem.

61 comment: "This predicate is used to declare the order of considering

62 subsystems for diagnosis. For example, (#$testAfter SUBSYSTEM1

63 SUBSYSTEM2) means that that the #$SubSystem SUBSYSTEM2 will

64 be considered for diagnosis immmediately after SUBSYSTEM1.".

65 constant: hypothesis.

66 isa: UnaryPredicate.

67 arg1Isa: SubSystem.

68 comment: "The predicate is used to record in the KB which

69 #$SubSystem is currently being diagnosed. E.g.,

70 #$hypothesis(#$VideoSystem) means that it is the #$VideoSystem that is

71 currently being checked for possible faults.".

72 constant: possibleHypotheses.

73 isa: UnaryPredicate.

74 arg1Isa: SubSystem.

75 comment: "The predicate is used to record in the KB which

76 #$SubSystems are currently candidates for being diagnosed. E.g.,

77 #$possibleHypotheses(#$VideoCard) means that the #$VideoCard is

78 a candidate to be checked for possible faults.".

79 ;**************** SYSTEM TESTING KNOWLEDGE ****************

80 ;;; The basic tool in the Systematic Diagnosis problem-solving method

81 ;;; (PSM), as well as in any other diagnostic PSM, for carrying out

82 ;;; the diagnostic procedure, is various TESTS that must be done to

83 ;;; provide information (knowledge) about the state of the

84 ;;; system. This knowledge may concern the actual behaviour of the

85 ;;; system's components, e.g. the absence of electric power, control

86 ;;; information produced by the system, e.g., beep codes or screen

87 ;;; messages. Conceptually, a TEST is a question that the user must

88 ;;; make to the system under diagnosis to extract knowledge about

89 ;;; it. Here, it is implemented as a structure consisting of three

90 ;;; other concepts:

91 ;;; 1. The #$SubSystem to which it is related, i.e., to which the

92 ;;; question is adressed.

133

93 ;;; 2. The #$TestAction which is the action one has really to perform

94 ;;; for the test

95 ;;; 3. The #$PossibleObservable (system variable) that the TEST is

96 ;;; asking about .

97 ;;; Although not part of a TEST structure, there is a fourth concept

98 ;;; related with it, the #$PossibleObservableValue (system variable

99 ;;; value) which is the result (answer) of the TEST's question.

100 ;;; Each TEST is represented as a non-atomic term (NAT) in CycL with

101 ;;; the use of a #$NonPredicateFunction, #$TestFn, which takes as

102 ;;; arguments instances of the three constituent concepts and returns

103 ;;; a TEST structure, Schematically:

104 ;;; (#$TestFN #$SubSystem #$TestAction #$PossibleObservable) -> #$Test

105 Default Mt: SystematicDiagnosisMt.

106 constant: Test.

107 isa: Collection.

108 genls: InformationBearingThing.

109 comment: "The basic tool in the Systematic Diagnosis problem-solving

110 method (PSM), as well as in any other diagnostic PSM, for carrying out

111 the diagnostic procedure, is various TESTS that must be done to

112 provide information (knowledge) about the state of the system. This

113 knowledge may concern the actual behaviour of the system's components,

114 e.g. the absence of electric power, control information produced by

115 the system, e.g., beep codes or screen messages. Conceptually, a TEST

116 is a question that the user must make to the system under diagnosis to

117 extract knowledge about it. Here, it is implemented as a structure

118 consisting of three other concepts: 1. The #$SubSystem to which it

119 is related, i.e., to which the question is adressed, 2. The

120 #$TestAction which is the action one has really to perform for the

121 test and 3. The #$PossibleObservable (system variable) that the TEST

122 is asking about.".

123 constant: TestFn.

124 isa: NonPredicateFunction.

125 arity: 3.

126 arg1Isa: SubSystem.

127 arg2Isa: TestAction.

128 arg3Isa: PossibleObservable.

129 resultIsa: Test.

130 comment: "Every #$Test is a structure consisting of three

131 concepts. The #$SubSystem to which it is related, the actual

132 #$TestAction that must be performed and the #$PossibleObservable

133 (system variable) that is being observed.Each TEST is represented as a

134 non-atomic term (NAT) in CycL

135 with the use of the #$NonPredicateFunction, #$TestFn, which takes as

136 arguments instances of the three constituent concepts and returns a

137 TEST structure, Schematically:

138 (#$TestFN #$SubSystem #$TestAction #$PossibleObservable) -> #$Test".

139 constant: possibleTest.

140 isa: UnaryPredicate.

141 arg1Isa: Test.

142 comment: "The #$Tests available to be performed in any stage of the

143 Diagnosis.".

144 constant: TestAction.

145 isa: Collection.

146 genls: PurposefulAction.

147 comment: "The collection of all possible test actions that may be

148 performed from the user on a #$SubSystem to determine the

149 #$PossibleObservableValues of

134 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

150 a #$PossibleObservable. These values are compared to the expected

151 ones. If they are different, the fault lies somewhere in the

152 #$SubSystem which is further decomposed and its parts are

153 checked one by one. If not, the fault lies in another #$SubSystem.".

154

155 constant: PossibleObservable.

156 isa: Collection.

157 genls: AttributeType.

158 comment: "The colection of system variables (possible observables)

159 which are used to decide if the currently checked #$SubSystem actually

160 contains a faulty #$Component or not.".

161 constant: PossibleObservableValue.

162 isa: Collection.

163 genls: AttributeValue.

164 comment: "The collection of all possible values of all

165 #$PossibleObservables. In terms of the Systematic Diagnosis

166 problem-solving method, the instances of #$PossibleObservable

167 correspond to the system variables that one can test during diagnosis and the

168 instances of #$PossibleObservableValue correspond to the possible

169 outcomes of these tests.".

170 constant: ObservableValueFn.

171 isa: NonPredicateFunction.

172 arity: 1.

173 arg1Isa: Thing.

174 resultIsa: PossibleObservableValue.

175 comment: "Although the collection of all terms that are used as

176 possible answers to the #$Tests of the Systematic Diagnosis problem

177 solving method (PSM) are collected in the #$PossibleObservableValue

178 collection, in general anything can be an instance of

179 #$PossibleObservableValue. For example, the #$HardDiskDrive can be an

180 instance of this collection. It only depends on the questions one

181 makes. Anything can be an answer to a question. For this reason, the

182 #$ObservableValueFn function is introduced. It can take anything as an

183 argument and make it play the role of an instance of

184 #$PossibleObservableValue. This function makes the existence

185 of #$PossibleObservableValue seem redundant, however this latter

186 collection plays a significant role in the analysis of the Systematic

187 Diagnosis PSM and therefore has a reason to exist.".

188 constant: ResultType.

189 isa: Collection.

190 genls: AttributeValue.

191 comment: "The collection of all various types of

192 #$PossibleObservableValues. These types are characterised from the

193 kind of conclusions they lead relative to the #$SubSystem being

194 currently diagnosed (#$hypothesis(#$SubSystem)). E.g., such a type

195 can be #$Normal which denotes that the #$SubSystem currently being

196 diagnosed is not faulty and therefore must be discarded as a

197 hypothesis and a new hypothesis must be selected.".

198 constant: possibleResultOfTest.

199 isa: Predicate.

200 arity: 3.

201 arg1Isa: Test.

202 arg2Isa: PossibleObservableValue.

203 arg3Isa: ResultType.

204 comment: "The predicate is correlating an individual #$Test with its

205 actual result and the type of this result. The assertion

206 possibleResultOfTest(TEST VALUE TYPE)

207 express the fact that for the specific TEST, VALUE is a possible

208 result of type TYPE. E.g., possibleResultOfTest((TestFn

209 PowerSystem ConfirmSensorially ElectricPower) Yes Normal) indicates that

210 it is #$Normal to observe the existence of #$ElectricPower when

211 diagnosing the #$PowerSystem. Of course, this immediately would imply

135

212 that the #$PowerSystem is not faulty and therefore should be discarded

213 as a #$hypothesis.".

214 constant: resultOfTest.

215 isa: BinaryPredicate.

216 arg1Isa: Test.

217 arg2Isa: PossibleObservableValue.

218 comment: "The predicate is correlating an individual #$Test with its

219 actual result. The assertion resultOfTest(?TEST ?VALUE) means that

220 ?VALUE is the actual result of ?TEST.".

221 ;******** DEFINITIONS OF INSTANCES FOR #$TestAction COLLECTION ********

222 constant: ConfirmSensorially.

223 isa: TestAction.

224 comment: "The action of confirming the existence of a

225 #$PossibleObservable only by one's senses, e.g., visually,

226 acoustically.".

227 constant: CheckIndependently.

228 isa: TestAction.

229 comment: "This #$TestAction means that the user performing

230 diagnosis must check the function of the related #$SubSystem

231 isolated from the rest of the #$SubSystem of which it is a

232 part of. The way to do that is not specifically described

233 by the name of the action. It is assumed that the user has some

234 knowledge for performing such isolated tests. E.g., to test the

235 #$PowerSocket one can plug another device - known to be working - in

236 it and confirm that the device has #$ElectricPower.".

237 constant: Remove.

238 isa: TestAction.

239 comment: "This #$TestAction means that the user must remove the

240 related #$SubSystem from the #$SubSystem of which it is a

241 part of".

242 constant: Replace.

243 isa: TestAction.

244 comment: "This #$TestAction means that the user must replace the

245 related #$SubSystem with a new one".

246 constant: TroubleshootComponent.

247 isa: TestAction.

248 comment: "This #$TestAction means that the diagnosis reached at the

249 level of a specific PCComponent but there is not sufficient

250 information to confirm that it is faulty. Therefore, the user must

251 enter the stage of troubleshooting it specifically.".

252 ;***** DEFINITIONS OF INSTANCES FOR $PossibleObservable COLLECTION ****

253 constant: ProblemContext.

254 isa: PossibleObservable.

255 comment: "This #$PossibleObservable refers to the general context of

256 diagnosis, i.e., #$BootTime, #$RunTime, #$ComponentSpecific. The

257 value of this #$PossibleObservable determines which rules are

258 applicable, appearing as a condition in their antecedent part".

259 ;***** DEFINITIONS OF INSTANCES FOR $PossibleObservableValue COLLECTION ****

260 constant: RunTime.

261 isa: PossibleObservableValue.

262 comment: "This #$PossibleObservableValue is related to the

263 #$ProblemContext #$PossibleObservable. It means that the fault being

264 diagnosed occured during run-time, i.e., during its normal operation".

136 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

265 constant: Yes.

266 isa: PossibleObservableValue.

267 comment: "Most of the #$Tests have as a possible result only 'Yes' or 'No'.".

268 constant: No.

269 isa: PossibleObservableValue.

270 comment: "Most of the #$Tests have as a possible result only 'Yes' or 'No'.".

271 constant: None.

272 isa: PossibleObservableValue.

273 comment: "This kind of result indicates that none of the alternative

274 results of a specific #$Test is observed.".

275 ;***** DEFINITIONS OF INSTANCES FOR $ResultType COLLECTION ****

276 constant: Normal.

277 isa: ResultType.

278 comment: "This type of result indicates that the result is normally

279 expected when the #$SubSystem related with it is working

280 properly. Such a kind of result implies that the #$SubSystem must be

281 discarded as a #$hypothesis.".

282 constant: NotNormal.

283 isa: ResultType.

284 comment: "This type of result indicates that the result is not normally

285 expected when the #$SubSystem related with it is working

286 properly. Such a kind of result implies that the fault lies in the

287 #$SubSystem which is the current #$hypothesis.".

288 constant: Insufficient.

289 isa: ResultType.

290 comment: "This type of result indicates that the result cannot

291 undoubtedly indicate either the normal function or the malfunction of

292 the #$SubSystem related with it. Such a kind of result implies that

293 further testing is necessary to decide about the functional status of

294 the #$SubSystem which is the current #$hypothesis.".

295 constant: Distinguishing.

296 isa: ResultType.

297 comment: "This type of result occurs in a situation where there are

298 two components that are probably faulty and the only way to find

299 which, is to test one of them. In this case, a result of type

300 #$Distinguishing indicates simultaneously two things. First, that the

301 #$SubSystem hypothesised as faulty is not such and second, that the faulty

302 one is the other alternative #$SubSystem.".

303 ;;; ********* IMPLEMENTATION OF KADS SYSTEMATIC DIAGNOSIS PSM ********

304 ;;; The Task Structure for Systematic Diagnosis (pseudo-code) is:

305 ;;; Systematic Diagnosis(+complaint,+possible observables,-hypothesis) by

306 ;;; select1(+complaint, -system model)

307 ;;; REPEAT

308 ;;; decompose(+system model, -hypothesis)

309 ;;; WHILE number of hypotheses > 1

310 ;;; select2(+possible observables, -variable value)

311 ;;; select3(+hypothesis, -norm)

312 ;;; compare(+variable value, +norm, -difference)

313 ;;; system model <- current decomposition level of system model

314 ;;; UNTIL confirm(+hypothesis), i.e. system model cannot be decomposed further

315 ;;; The user interaction in CYC will be done from the SubL Interactor

316 ;;; interface, as it is not possible to get any input/output

317 ;;; interaction between the user and the SubL code from the ASK

137

318 ;;; interface. The whole Task Structure will be implemented as a SubL

319 ;;; function, 'systematic', which will be responsible for calling the

320 ;;; appropriate SubL functions that will implement the corresponding

321 ;;; inferences. In fact, the 'select1', 'select2', and 'select3'

322 ;;; inferences will be implemented as FORWARD rules in the

323 ;;; CYC KB. "Forward" means that, according to the results of 'Tests'

324 ;;; that the user is asked to give, these rules automatically assert

325 ;;; new facts in the KB. These facts describe which are the next

326 ;;; #$PossibleObservables and Variables that must be tested ('select2'

327 ;;; inference), what should be done according to the result ('select3'

328 ;;; and 'compare' inferences), e.g., if another test for the same

329 ;;; hypothesis should be performed or if the current hypothesis should

330 ;;; be rejected or the current hypothesis must be decomposed further

331 ;;; or if the faulty component was found ('confirm' inference).

332 ;;; The following three (3) constant definitions introduce the

333 ;;; #$plausibleInference predicate and #$Decompose inference type of

334 ;;; KADS. These two are used in the antecendent part of the

335 ;;; "decomposition" rules. They do not constitute control knowledge

336 ;;; but domain role knowledge. In terms of implementation, they cause

337 ;;; the forward "decomposition" rules to fire only when a Decompose

338 ;;; inference has to be made.

339 Default Mt: SystematicDiagnosisMt.

340 constant: InferenceType-KADS.

341 isa: Collection.

342 genls: PropositionalInformationThing.

343 comment: "The collection of all Inference Types of KADS methodology,

344 e.g., 'select', 'decompose', 'confirm'.".

345 constant: Decompose.

346 isa: InferenceType-KADS.

347 comment: "The #$Decompose inference type of KADS takes a structured

348 hierarchy of objects and gives a less or completely unstructured

349 collection of these objects. In its simplest form it is used for

350 breaking down existing knowledge structures, like hierarchies, where

351 there is no loss of objects but only the structure is removed.".

352 constant: plausibleInference.

353 isa: UnaryPredicate.

354 arg1Isa: InferenceType-KADS.

355 comment: "The #$plausibleInference predicate is used to record in the

356 KB which inference(s) can be next performed during the 'execution' of

357 a problem solving method.".

358 constant: diagnosisContext.

359 isa: UnaryPredicate.

360 arg1Isa: PossibleObservableValue.

361 comment: "This predicate records the current problem-solving context

362 in a specific diagnosis domain, e.g., #$BootTime, #$StaringTime,

363 #$RunTime etc. Most of the rules in each domain are

364 context-dependent. This is reflected in the appearence of the

365 #$diagnosisContext predicate in their antecedent part.".

366 ***

367 ***

368 END OF systematic_diagnosisKE.txt

369 ***

370 ***

371 ;;; PROJECT: 628-Implementing Problem Solving Methods (PSMs) in Cyc

372 ;;; FILENAME: automobile_diagnosisKE.txt

373 ;;; AUTHOR: Dimitrios Sklavakis

374 ;;; PURPOSE: Contains Cyc's Knowledge Entering (KE) text defining the

138 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

375 ;;; Automobile domain specific knowledge for the

376 ;;; implementation of the Systematic Diagnosis

377 ;;; (Localisation) PSM from KADS methodology.

378 ;**************** THE #$AutomobileDiagnosisMt MICROTHEORY ****************

379

380 ;;; The domain specific knowledge for performing Automobile fault

381 ;;; diagnosis will be entered in the #$AutomobileDiagnosisMt

382 ;;; microtheory, which is a more specific microtheory of the

383 ;;; #$SystematicDiagnosisMt microtheory:

384 ;;; (#$genlMt #$AutomobileDiagnosisMt #$SystematicDiagnosisMt).

385 constant: AutomobileDiagnosisMt.

386 isa: Microtheory.

387 genlMt: SystematicDiagnosisMt.

388 comment: "#$AutomobileDiagnosisMt is the #$Microtheory that contains

389 all the assertions about performing Automobile fault diagnosis.".

390 ;;; **

391 ;;; * Domain specific Automobile diagnosis knowledge *

392 ;;; **

393 Default Mt: AutomobileDiagnosisMt.

394 ; **************** THE SYSTEM MODEL ****************

395 constant: AutomobileSubSystem.

396 isa: Collection.

397 genls: SubSystem.

398 comment: "The collection of all Automobile sub-systems, like the

399 #$IgnitionSystem. Each instance of #$AutomobileSubSystem may include

400 several #$AutomobileComponents and/or other

401 #$AutomobileSubSystems. Different #$AutomobileSubSystems may include

402 the same #$AutomobileComponents. In the context of

403 #$AutomobileDiagnosisMt any #$AutomobileSubSystem is an intermediate

404 level of analysis for the #$Automobile; the diagnosis continues until

405 a faulty #$AutomobileComponent is located".

406 constant: AutomobileComponent.

407 isa: Collection.

408 genls: AutomobileSubSystem Component.

409 comment: "The collection of all Automobile components such as the

410 #$SparkPlugs, #$Points, #$RotorArm. In the context of

411 #$AutomobileDiagnosisMt any #$AutomobileComponent is the lowest level

412 of analysis for the #$Automobile; the diagnosis terminates when a

413 faulty #$AutomobileComponent is located.".

414

415 constant: AutomobileSystem.

416 isa: Individual AutomobileSubSystem.

417 comment: "The #$AutomobileSystem is used to refer to the #$Automobile as

418 an #$AutomobileSubSystem. It includes the following #$AutomobileSubSystems:

419 #$IgnitionSystem etc.".

420 Constant: IgnitionSystem.

421 isa: AutomobileSubSystem.

422 Constant: HighTensionCircuit.

423 isa: AutomobileSubSystem.

424 Constant: LowTensionCircuit.

425 isa: AutomobileSubSystem.

426 Constant: Distributor.

427 isa: AutomobileSubSystem.

139

428 Constant: SparkPlugs.

429 isa: AutomobileComponent.

430 Constant: HighTensionWiring.

431 isa: AutomobileComponent.

432 Constant: Points.

433 isa: AutomobileComponent.

434 Constant: RotorArm.

435 isa: AutomobileComponent.

436 Constant: VacuumAdvance.

437 isa: AutomobileComponent.

438 Constant: CentrifugalWeights.

439 isa: AutomobileComponent.

440 ;**************** SYSTEM TESTING KNOWLEDGE ****************

441 ;****** DEFINITIONS OF INSTANCES FOR #$PossibleObservable COLLECTION ********

442 Constant: FuelConsumption. ;;PossibleObservableValue: Integer

443 isa: PossibleObservable. ;;Normal value: 7.0 (miles/litre)

444 ;;HighTensionCircuit test

445 Constant: EngineMisfire. ;;PossibleObservableValue: Yes/No

446 isa: PossibleObservable. ;;Normal value: No

447 ;;LowTensionCircuit test

448 Constant: EngineStarts. ;;PossibleObservableValue: Yes/No

449 isa: PossibleObservable. ;;Normal value: Yes

450 ;;Distributor test

451 Constant: Acceleration0to60. ;;PossibleObservableValue: Integer

452 isa: PossibleObservable. ;;Normal value: 15 (SecondsDuration)

453 ;;SparkPlugs test

454 Constant: ColourOfCeramic. ;;PossibleObservableValue:WhiteColor/

455 ;;GreyColor/BlackColor

456 isa: PossibleObservable. ;;Normal value: WhiteColor

457 ;;HighTensionWiring test

458 Constant: WiringSecurity. ;;PossibleObservableValue: Secure/Insecure

459 isa: PossibleObservable. ;;Normal value: Secure

460 ;;Points test

461 Constant: SurfaceOfComponent. ;;PossibleObservableValue: Shiny/Dull/Rusty

462 isa: PossibleObservable. ;;Normal value: Shiny

463 ;;CentrifugalWeights test

464 Constant: StrobeTestResult. ;;PossibleObservableValue: Pass/Fail

465 isa: PossibleObservable. ;;Normal value: Pass

466 ;;VacuumAdvance test

467 Constant: VacuumTestResult. ;;PossibleObservableValue: Pass/Fail

468 isa: PossibleObservable. ;;Normal value: Pass

469 Constant: WhiteColor.

470 isa: Color.

471 Constant: GrayColor.

472 isa: Color.

473 Constant: BlackColor.

474 isa: Color.

140 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

475 F: (genls Color PossibleObservableValue).

476 ;***** DEFINITIONS OF INSTANCES FOR $PossibleObservableValue COLLECTION ****

477 constant: StartingTime.

478 isa: PossibleObservableValue.

479 comment: "This #$PossibleObservableValue is related to the

480 #$ProblemContext #$PossibleObservable. It means that the fault being

481 diagnosed occured during the engine starting time, i.e., from the time

482 the driver turns the key on until the automobile starts moving".

483 Constant: Pass.

484 isa: PossibleObservableValue.

485 Constant: Fail.

486 isa: PossibleObservableValue.

487 Constant: Shiny.

488 isa: PossibleObservableValue.

489 Constant: Dull.

490 isa: PossibleObservableValue.

491 Constant: Rusty.

492 isa: PossibleObservableValue.

493 Constant: Secure.

494 isa: PossibleObservableValue.

495 Constant: Insecure.

496 isa: PossibleObservableValue.

497 ;;; ***********************************

498 ;;; ** Rules and Facts for Decompose **

499 ;;; ***********************************

500 ;; Every PART which is a physical decomposition of the hypothesis, HYP, is a

501 ;; possible hypothesis.

502 direction: forward.

503 F: (implies

504 (and

505 (plausibleInference Decompose)

506 (hypothesis ?HYP)

507 (physicalDecompositions ?HYP ?PART))

508 (possibleHypotheses ?PART)).

509 F: (physicalDecompositions AutomobileSystem IgnitionSystem).

510 F: (physicalDecompositions IgnitionSystem HighTensionCircuit).

511 F: (physicalDecompositions IgnitionSystem LowTensionCircuit).

512 F: (physicalDecompositions IgnitionSystem Distributor).

513 F: (physicalDecompositions HighTensionCircuit SparkPlugs).

514 F: (physicalDecompositions HighTensionCircuit HighTensionWiring).

515 F: (physicalDecompositions Distributor Points).

516 F: (physicalDecompositions Distributor RotorArm).

517 F: (physicalDecompositions Distributor VacuumAdvance).

518 F: (physicalDecompositions Distributor CentrifugalWeights).

519 ;;; The following assertion permits for whole CYC formulae to appear

520 ;;; as PossibleObservableValues

521

141

522 F: (genls CycFormula PossibleObservableValue).

523 ;;; Rule to assert a (#$diagnosisContext ...) assertion. This assertion

524 ;;; is introduced as a "shorthand" for the assertion:

525 ;;;

526 ;;; (resultOfTest

527 ;;; (TestFn AutomobileSystem ConfirmSensorially ProblemContext) ?PROBLEM)

528 ;;;

529 ;;; It is used as a premise in every rule which is applicable to the

530 ;;; corresponding diagnosis context, i.e., #$StartingTime, #$RunTime etc.

531 Direction: forward.

532 F: (implies

533 (resultOfTest

534 (TestFn AutomobileSystem ConfirmSensorially ProblemContext) ?PROBLEM)

535 (diagnosisContext ?PROBLEM)).

536 ;;; **

537 ;;; * Testing knowledge for the AutomobileSystem *

538 ;;; **

539 Direction: forward.

540 F: (implies

541 (hypothesis AutomobileSystem)

542 (and

543 (possibleTest (TestFn AutomobileSystem ConfirmSensorially ProblemContext))

544 (possibleResultOfTest

545 (TestFn AutomobileSystem ConfirmSensorially ProblemContext)

546 StartingTime NotNormal)

547 (possibleResultOfTest

548 (TestFn AutomobileSystem ConfirmSensorially ProblemContext)

549 RunTime NotNormal))).

550 ;;; **

551 ;;; * Decomposition knowledge for the AutomobileSystem *

552 ;;; **

553 Direction: forward.

554 F: (implies

555 (and

556 (diagnosisContext RunTime)

557 (hypothesis AutomobileSystem)

558 (plausibleInference Decompose))

559 (and

560 (testFirst IgnitionSystem))).

561 ;;; **

562 ;;; * Testing knowledge for the IgnitionSystem *

563 ;;; **

564 Direction: forward.

565 F: (implies

566 (and

567 (diagnosisContext RunTime)

568 (hypothesis IgnitionSystem))

569 (and

570 (possibleTest (TestFn IgnitionSystem CheckIndependently FuelConsumption))

571 (possibleResultOfTest

572 (TestFn IgnitionSystem CheckIndependently FuelConsumption)

573 (and (greaterThanOrEqualTo ?X 5) (greaterThanOrEqualTo 8 ?X)) Normal)

574 (possibleResultOfTest

575 (TestFn IgnitionSystem CheckIndependently FuelConsumption)

142 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

576 (greaterThan ?X 8) NotNormal)

577 (possibleResultOfTest

578 (TestFn IgnitionSystem CheckIndependently FuelConsumption)

579 (greaterThan 5 ?X) NotNormal))).

580 ;;; **

581 ;;; * Decomposition knowledge for the IgnitionSystem *

582 ;;; **

583 Direction: forward.

584 F: (implies

585 (and

586 (diagnosisContext RunTime)

587 (hypothesis IgnitionSystem)

588 (plausibleInference Decompose))

589 (and

590 (testFirst HighTensionCircuit)

591 (testAfter HighTensionCircuit LowTensionCircuit)

592 (testAfter LowTensionCircuit Distributor))).

593 ;;; **

594 ;;; * Testing knowledge for the HighTensionCircuit *

595 ;;; **

596 Direction: forward.

597 F: (implies

598 (and

599 (diagnosisContext RunTime)

600 (hypothesis HighTensionCircuit))

601 (and

602 (possibleTest

603 (TestFn HighTensionCircuit ConfirmSensorially EngineMisfire))

604 (possibleResultOfTest

605 (TestFn HighTensionCircuit ConfirmSensorially EngineMisfire) No Normal)

606 (possibleResultOfTest

607 (TestFn HighTensionCircuit ConfirmSensorially EngineMisfire)

608 Yes NotNormal))).

609 ;;; **

610 ;;; * Decomposition knowledge for the HighTensionCircuit *

611 ;;; **

612 Direction: forward.

613 F: (implies

614 (and

615 (diagnosisContext RunTime)

616 (hypothesis HighTensionCircuit)

617 (plausibleInference Decompose))

618 (and

619 (testFirst SparkPlugs)

620 (testAfter HighTensionWiring))).

621 ;;; **

622 ;;; * Testing knowledge for the LowTensionCircuit *

623 ;;; **

624 Direction: forward.

625 F: (implies

626 (and

627 (diagnosisContext RunTime)

628 (hypothesis LowTensionCircuit))

629 (and

143

630 (possibleTest (TestFn LowTensionCircuit ConfirmSensorially EngineStarts))

631 (possibleResultOfTest

632 (TestFn LowTensionCircuit ConfirmSensorially EngineStarts) Yes Normal)

633 (possibleResultOfTest

634 (TestFn LowTensionCircuit ConfirmSensorially EngineStarts)

635 No NotNormal))).

636 ;;; ***

637 ;;; * Testing knowledge for the Distributor *

638 ;;; ***

639 Direction: forward.

640 F: (implies

641 (and

642 (diagnosisContext RunTime)

643 (hypothesis Distributor))

644 (and

645 (possibleTest (TestFn Distributor CheckIndependently Acceleration0to60))

646 (possibleResultOfTest

647 (TestFn Distributor CheckIndependently Acceleration0to60)

648 (greaterThan 15 ?X) Normal)

649 (possibleResultOfTest

650 (TestFn Distributor CheckIndependently Acceleration0to60)

651 (greaterThanOrEqualTo ?X 15) NotNormal))).

652 ;;; ***

653 ;;; * Decomposition knowledge for the Distributor *

654 ;;; ***

655 Direction: forward.

656 F: (implies

657 (and

658 (diagnosisContext RunTime)

659 (hypothesis Distributor)

660 (plausibleInference Decompose))

661 (and

662 (testFirst Points)

663 (testAfter Points VacuumAdvance)

664 (testAfter VacuumAdvance CentrifugalWeights)

665 (testAfter CentrifugalWeights RotorArm))).

666 ;;; **

667 ;;; * Testing knowledge for the SparkPlugs *

668 ;;; **

669 Direction: forward.

670 F: (implies

671 (and

672 (diagnosisContext RunTime)

673 (hypothesis SparkPlugs))

674 (and

675 (possibleTest (TestFn SparkPlugs ConfirmSensorially ColourOfCeramic))

676 (possibleResultOfTest

677 (TestFn SparkPlugs ConfirmSensorially ColourOfCeramic) WhiteColor Normal)

678 (possibleResultOfTest

679 (TestFn SparkPlugs ConfirmSensorially ColourOfCeramic)

680 GrayColor NotNormal)

681 (possibleResultOfTest

682 (TestFn SparkPlugs ConfirmSensorially ColourOfCeramic)

683 BlackColor NotNormal))).

684 ;;; ***

144 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

685 ;;; * Testing knowledge for the HighTensionWiring *

686 ;;; ***

687 Direction: forward.

688 F: (implies

689 (and

690 (diagnosisContext RunTime)

691 (hypothesis HighTensionWiring))

692 (and

693 (possibleTest

694 (TestFn HighTensionWiring ConfirmSensorially WiringSecurity))

695 (possibleResultOfTest

696 (TestFn HighTensionWiring ConfirmSensorially WiringSecurity)

697 Secure Normal)

698 (possibleResultOfTest

699 (TestFn HighTensionWiring ConfirmSensorially WiringSecurity)

700 Insecure NotNormal))).

701 ;;; ************************************

702 ;;; * Testing knowledge for the Points *

703 ;;; ************************************

704 Direction: forward.

705 F: (implies

706 (and

707 (diagnosisContext RunTime)

708 (hypothesis Points))

709 (and

710 (possibleTest (TestFn Points ConfirmSensorially SurfaceOfComponent))

711 (possibleResultOfTest

712 (TestFn Points ConfirmSensorially SurfaceOfComponent) Shiny Normal)

713 (possibleResultOfTest

714 (TestFn Points ConfirmSensorially SurfaceOfComponent) Dull NotNormal)

715 (possibleResultOfTest

716 (TestFn Points ConfirmSensorially SurfaceOfComponent) Rusty NotNormal))).

717 ;;; **

718 ;;; * Testing knowledge for the CentrifugalWeights *

719 ;;; **

720 Direction: forward.

721 F: (implies

722 (and

723 (diagnosisContext RunTime)

724 (hypothesis CentrifugalWeights))

725 (and

726 (possibleTest

727 (TestFn CentrifugalWeights ConfirmSensorially StrobeTestResult))

728 (possibleResultOfTest

729 (TestFn CentrifugalWeights ConfirmSensorially StrobeTestResult)

730 Pass Normal)

731 (possibleResultOfTest

732 (TestFn CentrifugalWeights ConfirmSensorially StrobeTestResult)

733 Fail NotNormal))).

734 ;;; ***

735 ;;; * Testing knowledge for the VacuumAdvance *

736 ;;; ***

737 Direction: forward.

738 F: (implies

739 (and

740 (diagnosisContext RunTime)

145

741 (hypothesis VacuumAdvance))

742 (and

743 (possibleTest (TestFn VacuumAdvance ConfirmSensorially VacuumTestResult))

744 (possibleResultOfTest

745 (TestFn VacuumAdvance ConfirmSensorially VacuumTestResult) Pass Normal)

746 (possibleResultOfTest

747 (TestFn VacuumAdvance ConfirmSensorially VacuumTestResult)

748 Fail NotNormal))).

749 ***

750 ***

751 END OF automobile_diagnosisKE.txt

752 ***

753 ***

754 ;;; PROJECT: 628-Implementing Problem Solving Methods (PSMs) in Cyc

755 ;;; FILENAME: pc_diagnosisKE.txt

756 ;;; AUTHOR: Dimitrios Sklavakis

757 ;;; PURPOSE: Contains Cyc's Knowledge Entering (KE) text defining the

758 ;;; PC domain specific knowledge for the implementation of

759 ;;; the Systematic Diagnosis (Localisation) PSM from KADS

760 ;;; methodology.

761 ;**************** THE #$PCDiagnosisMt MICROTHEORY ****************

762

763 ;;; The whole knowledge for performing PC fault diagnosis will be

764 ;;; entered in the #$PCDiagnosisMt microtheory, which is a more specific

765 ;;; microtheory of the #$SystematicDiagnosisMt microtheory:

766 ;;; (#$genlMt #$PCDiagnosisMt #$SystematicDiagnosisMt).

767 constant: PCDiagnosisMt.

768 isa: Microtheory.

769 genlMt: SystematicDiagnosisMt.

770 comment: "#$PCDiagnosisMt is the #$Microtheory that contains all the assertions

771 about performing Personal Computer(PC) fault diagnosis.".

772 ;;; **

773 ;;; * Domain specific PC diagnosis knowledge *

774 ;;; **

775 Default Mt: PCDiagnosisMt.

776 ; **************** THE SYSTEM MODEL ****************

777 constant: PCSubSystem.

778 isa: Collection.

779 genls: SubSystem.

780 comment: "The collection of all PC sub-systems, like the

781 #$VideoSystem, #$PowerSystem, #$KeyboardSystem. Each instance of

782 #$PCSubSystem may include several #$PCComponents and/or other

783 #$PCSubSystems. Different #$PCSubSystems may include the same

784 #$PCComponents. In the context of #$PCDiagnosisMt any #$PCSubSystem is

785 an intermediate level of analysis for the #$PersonalComputer; the

786 diagnosis continues until a faulty #$PCComponent is located".

787 constant: PCComponent.

788 isa: Collection.

789 genls: PCSubSystem Component.

790 comment: "The collection of all PC components such as the

791 #$PowerSupply, #$VideoCard, #$FloppyDiskDrive. In the context of

792 #$PCDiagnosisMt any #$PCComponent is the lowest level of analysis for

793 the #$PersonalComputer; the diagnosis terminates when a faulty

146 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

794 #$PCComponent is located.".

795

796 constant: PCSystem.

797 isa: Individual PCSubSystem.

798 comment: "The #$PCSystem is used to refer to the #$PersonalComputer as

799 a #$PCSubSystem. It includes the following #$PCComponents:

800 #$PowerSystem, #$VideoSystem, e.t.c.".

801 constant: PowerSystem.

802 isa: Individual PCSubSystem.

803 comment: "The power #$PCSubSystem. Includes the following

804 #$PCComponents: #$PowerSocket, #$PowerCable, #$PowerProtectionDevice

805 (optionally) and #$PowerSupply.".

806 constant: PowerSocket.

807 isa: Individual PCComponent.

808 comment: "#$PowerSocket is the socket that provides electric power to

809 the PC. It is a component of the #$PowerSystem.".

810 constant: PowerCable.

811 isa: Individual PCComponent.

812 comment: "#$PowerCable is the cable that connects the #$PowerSocket

813 with the #$PowerSupply. It is a component of the #$PowerSystem.".

814 constant: PowerProtectionDevice.

815 isa: Individual PCComponent.

816 comment: "#$PowerProtectionDevice is any device (supproccessor, UPS)

817 connected between the #$PowerSocket and the #$PowerSupply to protect

818 the #$PersonalComputer from power failures. It is an optional

819 component of the #$PowerSystem.".

820 constant: PowerSupply.

821 isa: Individual PCComponent.

822 comment: "#$PowerSupply is the component located inside the

823 #$PersonalComputer case that supplies the #$MotherBoard with electriv

824 power. It is a component of the #$PowerSystem.".

825 constant: VideoSystem.

826 isa: Individual PCSubSystem.

827 comment: "The video #$PCSubSystem. Includes the following

828 #$PCComponents: #$MotherBoard, #$VideoCard, #$Monitor (and the

829 #$Speaker).".

830 constant: VideoCard.

831 isa: Individual PCComponent.

832 comment: "The #$VideoCard trasforms the video information to video

833 signal and sends it to the #$Monitor. It is a component of the

834 #$VideoSystem.".

835 constant: Monitor.

836 isa: Individual PCComponent.

837 comment: "The #$Monitor trasforms the video signal sent by the

838 #$VideoCard into visual image. It is a component of the

839 #$VideoSystem.".

840 constant: MotherBoard.

841 isa: Individual PCComponent.

842 comment: "The #$MotherBoard is the main #$PCComponent. Most of the

843 rest #$PCComponents are connected onto the #$MotherBoard and

844 controlled by it. It is actually a sub-system by itself as it includes

845 other components but in the context of PC diagnosis it will be

846 regarded as a #$PCComponent to avoid increasing the complexity of the

847 #$PersonalComputer analysis.".

848 constant: Speaker.

849 isa: Individual PCComponent.

147

850 comment: "The PC speaker. It refers to the

851 internal speaker that is connected on the motherboard and not the

852 external ones that are part of a multi-media system and require a

853 sound-card on which they are connected.".

854 constant: BIOSStartupSystem.

855 isa: Individual PCSubSystem.

856 comment: "The BIOS startup #$PCSubSystem. Includes the following

857 #$PCComponents: #$MotherBoard, #$VideoCard.".

858 constant: BIOSsettings.

859 isa: Individual PCComponent.

860 comment: "The Basic Input Output System (BIOS) settings record the

861 system parameters for all its operations. Wrong BIOS settings can be

862 responsible for a PC malfunction, e.g., the #$FloppyDiskDrive being

863 disabled and therefore being non-existant to the system.".

864 constant: MemorySystem.

865 isa: Individual PCSubSystem.

866 comment: "The memory #$PCSubSystem. Includes the following

867 #$PCComponents: #$RAM, #$MotherBoard.".

868 constant: RAM.

869 isa: Individual PCComponent.

870 comment: "The Random Access Memmory #$PCComponent. Usually, it is a

871 set of Single In-Line Memory Modules (SIMMs), plugged in special

872 positions on the #$MotherBoard.".

873 constant: FloppySystem.

874 isa: Individual PCSubSystem.

875 comment: "The #$FloppySystem consists of the #$FloppyDiskDrive and the

876 #$BIOSsettings for the enabling/disabling of the #$FloppyDiskDrive.".

877 constant: FloppyDiskDrive.

878 isa: Individual PCComponent.

879 comment: "The PC storage device which drives a removable floppy disk to

880 store/retrieve information.".

881 constant: HardDiskDrive.

882 isa: Individual PCComponent.

883 comment: "The PC main mass storage device. Usually it is fixed and

884 non-removable.".

885 constant: CDROMdrive.

886 isa: Individual PCComponent.

887 comment: "".

888 constant: PlugAndPlaySystem.

889 isa: Individual PCSubSystem.

890 comment: "This system comprises all peripherals that are connected to

891 the PC via expansion cards and they are (usually) automatically

892 recognised by MS Windows without any extra software drivers or

893 configuration procedures. However, sometimes there may be some

894 problems with their recognition. This #$PCSubSystem may has as

895 functional parts a wide variety of peripherals. In the current

896 implementation of Systematic diagnosis, it is regarded as consisting

897 of peripherals and their #$ExpansionCards. There isn't any further

898 decomposition into the specific peripherals as these are vary in each

899 configuration.".

900 constant: ExpansionCard.

901 isa: Individual PCComponent.

902 comment: "This PC component is used in conjunction with various

903 peripherals. In the current implementation, it is regarded as a

904 specific #$PCComponent, although in a specific PC configuration there

905 could be none, one or more expansion cards. Please, refer to the

148 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

906 #$PlugAndPlaySystem collection for more information.".

907 constant: PlugAndPlaySystem.

908 isa: Individual PCSubSystem.

909 comment: "It is the system responsible for loading the operating

910 system. In general, it comprises the #$FloppyDiskDrive with a floppy

911 disk containing the operating system (#$OSfloppyDisk) and the

912 #$HardDiskDrive, although a PC can be configured via the

913 #$BIOSsettings to use only one of them or both.".

914 constant: OSfloppyDisk.

915 isa: Individual PCComponent.

916 comment: "It is the floppy disk containing the operating system. It is

917 used by the #$BootSystem to load the OS from the #$FloppyDiskDrive.".

918 constant: BootSystem.

919 isa: Individual PCSubSystem.

920 comment: "It is the system responsible for loading the operating

921 system (OS). It includes the #$FloppyDiskDrive together with the floppy

922 disk containing the OS (#$OSfloppyDisk) and the #$HardDiskDrive. It

923 also includes the #$BootSequence-BIOSsetting which defines the sequence

924 in which these media will be used by the BIOS to load the OS.".

925 constant: functionalPartOf.

926 isa : TransitiveBinaryPredicate.

927 arg1Isa: PCSubSystem.

928 arg2Isa: PCSubSystem.

929 comment : "Predicate functionalPartOf is used to define a functional

930 model of the PC under diagnosis

931 functionalPartOf(WholeSubSystem PartialSubSystem) means

932 that the PCSubSystem WholeSubSystem is using the function of

933 PartialSubsystem to perforn its own function. E.g.,

934 functionalPartOf(PowerSystem PowerSupply) means that for the

935 PowerSystem to function the PowerSupply must function. This

936 predicate is used to systematically disassemble the PC system into

937 simpler PCSubSystems until a PCComponent is reached that it is

938 faulty.".

939 ;******** DEFINITIONS OF INSTANCES FOR #$TestAction COLLECTION ********

940 constant: ChangeVoltage.

941 isa: TestAction.

942 comment: "This #$TestAction means that the user must change the

943 voltage setting in the #$PowerSupply. It is a specific #$TestAction

944 related only to the #$PowerSupply".

945 ;****** DEFINITIONS OF INSTANCES FOR #$PossibleObservable COLLECTION ********

946 constant: ElectricPower.

947 isa: PossibleObservable.

948 comment: "The electric power that any #$PCSystem needs to operate.".

949 constant: VoltageCorrect.

950 isa: PossibleObservable.

951 comment: "This #$PossibleObservable refers to the voltage setting in

952 the #$PowerSupply being correct, i.e., 110V or 220V.".

953 constant: VideoSignal.

954 isa: PossibleObservable.

955 comment: "This #$PossibleObservable refers to the existence of any

956 video signal on the #$Monitor screen.".

957 constant: SpeakerBeep.

958 isa: PossibleObservable.

959 comment: "This #$PossibleObservable refers to any beep pattern coming

960 out of the #$Speaker.".

149

961 constant: VideoBIOSMessage.

962 isa: PossibleObservable.

963 comment: "This #$PossibleObservable refers to the display of the

964 video BIOS message.".

965 constant: BootContinues.

966 isa: PossibleObservable.

967 comment: "This #$PossibleObservable refers to the booting process

968 cointinuing normally.".

969 constant: StartupScreen.

970 isa: PossibleObservable.

971 comment: "This #$PossibleObservable refers to the display of the BIOS

972 stratup screen.".

973 constant: MemoryTest.

974 isa: PossibleObservable.

975 comment: "This #$PossibleObservable refers to the memeory test

976 performed by the BIOS during boot-time.".

977 constant: ErrorMessage.

978 isa: PossibleObservable.

979 comment: "This #$PossibleObservable refers to the display of an error

980 message on the screen.".

981 constant: ComponentProblem.

982 isa: PossibleObservable.

983 comment: "This #$PossibleObservable refers to the occasion where a

984 specific #$PCComponent has reached which is possibly faulty and the

985 only way to decide about this involves elaborate and complex #$Tests,

986 which the current implementation of the Systematic diagnosis problem

987 solving method does not cover. Therefore, the user has to perform

988 these #$Tests either based on his knowledge or have a human expert

989 perform them.".

990 constant: AutoDetection-BIOSsetting.

991 isa: PossibleObservable.

992 comment: "This #$PossibleObservable refers to the #$HardDiskDrive

993 auto-detection setting in the PC BIOS. It may be set to #$Auto for

994 automatic detection or to #$Manual, usually the first one.".

995 constant: BootSequence-BIOSsetting.

996 isa: PossibleObservable.

997 comment: "This #$PossibleObservable refers to the BIOS setting which

998 controls the sequence of the media used to load the operating

999 system. It may be A:-C: for using first the #$FloppyDiskDrive and then

1000 the #$HardDiskDrive or C:-A: for the reverse.".

1001 constant: BootSource.

1002 isa: PossibleObservable.

1003 comment: "This #$PossibleObservable refers to the actual medium from

1004 which the operating system is loaded, independently from what the

1005 #$BootSequence-BIOSsetting is.".

1006 constant: FloppyAccess.

1007 isa: PossibleObservable.

1008 comment: "This #$PossibleObservable refers to whether the

1009 #$FloppyDiskDrive is actually accessed by the BIOS during boot-time

1010 system test.".

1011 constant: DetectionMessage.

1012 isa: PossibleObservable.

1013 comment: "This #$PossibleObservable is related to BIOS messages

1014 concerning the autodetection of the #$HardDiskDrives.".

150 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

1015 constant: InFloppy.

1016 isa: PossibleObservable.

1017 comment: "This #$PossibleObservable is related to the #$OSfloppyDisk

1018 being inside the #$FloppyDiskDrive.".

1019 ;***** DEFINITIONS OF INSTANCES FOR $PossibleObservableValue COLLECTION ****

1020 constant: BootTime.

1021 isa: PossibleObservableValue.

1022 comment: "This #$PossibleObservableValue is related to the

1023 #$ProblemContext #$PossibleObservable. It means that the fault being

1024 diagnosed occured during boot-time, i.e., from the time the power is

1025 turned on until the Operating System starts being loaded.".

1026 constant: ComponentSpecific.

1027 isa: PossibleObservableValue.

1028 comment: "This #$PossibleObservableValue is related to the

1029 #$ProblemContext #$PossibleObservable. It means that the fault being

1030 diagnosed is identified to be related with a specific #$PCComponent,

1031 e.g., the #$Monitor, #$MotherBoard, #$HardDisk e.t.c.".

1032 constant: SingleBeep.

1033 isa: PossibleObservableValue.

1034 comment: "This #$PossibleObservableValue is related to the

1035 #$SpeakerBeep #$PossibleObservable. It means that the #$Speaker

1036 produced a single beep".

1037 constant: RingingOrBuzzing.

1038 isa: PossibleObservableValue.

1039 comment: "This #$PossibleObservableValue is related to the

1040 #$SpeakerBeep #$PossibleObservable. It means that the #$Speaker is

1041 producing a ringing or buzzing sound.".

1042 constant: ConsistentPattern.

1043 isa: PossibleObservableValue.

1044 comment: "This #$PossibleObservableValue is related to the

1045 #$SpeakerBeep #$PossibleObservable. It means that the #$Speaker is

1046 producing a consistent pattern (code) of beeps, e.g., one beep, then

1047 two more.".

1048 constant: Complete.

1049 isa: PossibleObservableValue.

1050 comment: "This #$PossibleObservableValue is related to some tests

1051 performed by the BIOS, e.g., the memory test. It means that the

1052 corresponding test is succesfully completed.".

1053 constant: InComplete.

1054 isa: PossibleObservableValue.

1055 comment: "This #$PossibleObservableValue is related to some tests

1056 performed by the BIOS, e.g., the memory test. It means that the

1057 corresponding test is not succesfully completed.".

1058 constant: CannotFind-Message.

1059 isa: PossibleObservableValue.

1060 comment: "This #$PossibleObservableValue is related to BIOS error

1061 messages concerning the autodetection of IDE/ATAPI devices,

1062 e.g. #$HardDiskDrive, #$CDROMdrive. This kind of messages indicate

1063 that the BIOS cannot detect the corresponding device.".

1064 constant: Auto.

1065 isa: PossibleObservableValue.

1066 comment: "This #$PossibleObservableValue indicates that some

1067 action/process/procedure is (set to be) done automatically.".

1068 constant: Manual.

1069 isa: PossibleObservableValue.

151

1070 comment: "This #$PossibleObservableValue indicates that some

1071 action/process/procedure is (set to be) done manually.".

1072 constant: FloppyThenHard.

1073 isa: PossibleObservableValue.

1074 comment: "This #$PossibleObservableValue is related to the

1075 #$BootSequence-BIOSsetting #$PossibleObservable. It indicates that

1076 this setting is set to A:-C:.".

1077 constant: HardThenFloppy.

1078 isa: PossibleObservableValue.

1079 comment: "This #$PossibleObservableValue is related to the

1080 #$BootSequence-BIOSsetting #$PossibleObservable. It indicates that

1081 this setting is set to C:-A:.".

1082 ;;; ********* IMPLEMENTATION OF KADS SYSTEMATIC DIAGNOSIS PSM ********

1083 ;;; The Task Structure for Systematic Diagnosis (pseudo-code) is:

1084 ;;; Systematic Diagnosis(+complaint,+possible observables,-hypothesis) by

1085 ;;; select1(+complaint, -system model)

1086 ;;; REPEAT

1087 ;;; decompose(+system model, -hypothesis)

1088 ;;; WHILE number of hypotheses > 1

1089 ;;; select2(+possible observables, -variable value)

1090 ;;; select3(+hypothesis, -norm)

1091 ;;; compare(+variable value, +norm, -difference)

1092 ;;; system model <- current decomposition level of system model

1093 ;;; UNTIL confirm(+hypothesis), i.e. system model cannot be decomposed further

1094 ;;; The user interaction in CYC will be done from the SubL Interactor

1095 ;;; interface, as it is not possible to get any input/output

1096 ;;; interaction between the user and the SubL code from the ASK

1097 ;;; interface. The whole Task Structure will be implemented as a SubL

1098 ;;; function, 'systematic', which will be responsible for calling the

1099 ;;; appropriate SubL functions that will implement the corresponding

1100 ;;; inferences. In fact, the 'select1', 'select2', and 'select3'

1101 ;;; inferences will be implemented as FORWARD rules in the

1102 ;;; CYC KB. "Forward" means that, according to the results of 'Tests'

1103 ;;; that the user is asked to give, these rules automatically assert

1104 ;;; new facts in the KB. These facts describe which are the next

1105 ;;; #$PossibleObservables and Variables that must be tested ('select2'

1106 ;;; inference), what should be done according to the result ('select3'

1107 ;;; and 'compare' inferences), e.g., if another test for the same

1108 ;;; hypothesis should be performed or if the current hypothesis should

1109 ;;; be rejected or the current hypothesis must be decomposed further

1110 ;;; or if the faulty component was found ('confirm' inference).

1111 ;;; During the Systematic Diagnosis problem solving method (PSM) as

1112 ;;; well as during any other PSM, there are certain decisions/choices

1113 ;;; that must be done. According to the structure of the PSMs as

1114 ;;; Generic Task Models in KADS, these decisions/choices occur during

1115 ;;; the performance of specific Inferences. The implementation of

1116 ;;; these decisions/choices has to be declarative since this is the

1117 ;;; main principle in CYC. Therefore, the implementation of them will

1118 ;;; be in terms of FORWARD rules: the ANTECENDENT of each rule will be

1119 ;;; the conditions under which a decision is made ant the CONSEQUENT

1120 ;;; will be the knowledge that is becoming known to the system when

1121 ;;; this decision is made. Then, the newly added information will be

1122 ;;; used by the SubL code to guide the whole procedure. In the

1123 ;;; following, we will examine in detail which these decisions/choices

1124 ;;; are, when and where do they occur and how the are actually

1125 ;;; implemente as forward rules.

1126 ;;; The PSM starts with a SELECT inference. A general symptom is

1127 ;;; entered by the user and an appropriate system model is

152 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

1128 ;;; chosen. This inference is slightly changed for PC diagnosis. What

1129 ;;; is actually asked from the user is to distinguish three (3) major

1130 ;;; contexts of diagnosis: (i) Boot-time troubleshooting, (ii)

1131 ;;; Run-time troubleshooting and (iii) Component-specific

1132 ;;; troubleshooting. This categorisation is significant since

1133 ;;; completely different rules are applicable in each

1134 ;;; context. Although this contextual dependency of the rules could be

1135 ;;; implemented as different #$Microtheory contexts, this would make

1136 ;;; context shifting more complicated - any ASK operation would have

1137 ;;; to define the #$Microtheory. Instead, this dependency will be

1138 ;;; embedded in the antecedent part of the rules as an extra

1139 ;;; condition. The special predicate diagnosisContext (see

1140 ;;; #$SystematicDiagnosis microtheory) will be used, e.g.,

1141 ;;;

1142 ;;; (implies

1143 ;;; (and

1144 ;;; (diagnosisContext BootTime)

1145 ;;; (...<more conditions>...)) ;end of antecedent

1146 ;;; (<consequent>))

1147 ;;; Rule to assert a (#$diagnosisContext ...) assertion. This assertion

1148 ;;; is introduced as a "shorthand" for the assertion:

1149 ;;;

1150 ;;; (resultOfTest (TestFn PCSystem ConfirmSensorially ProblemContext) ?PROBLEM)

1151 ;;;

1152 ;;; It is used as a premise in every rule which is applicable to the

1153 ;;; corresponding diagnosis context, i.e., #$BootTime, #$RunTime or

1154 ;;; #$ComponentSecific.

1155 Direction: forward.

1156 F: (implies

1157 (resultOfTest (TestFn PCSystem ConfirmSensorially ProblemContext) ?PROBLEM)

1158 (diagnosisContext ?PROBLEM)).

1159 ;;; The 'decompose' inference in KADS Systematic Diagnosis PSM takes as input

1160 ;;; the current #$PCSubSystem (#$hypothesis PC_SUBSYSTEM) and decomposes it

1161 ;;; into its functional subsystems (#$functionalPartOf PC_SUBSYSTEM PART),

1162 ;;; generating new hypotheses (#$possibleHypotheses PART).

1163 ;;; ***********************************

1164 ;;; ** Rules and Facts for Decompose **

1165 ;;; ***********************************

1166 ;; Every PART which is a functional part of the hypothesis, HYP, is a

1167 ;; possible hypothesis.

1168 direction: forward.

1169 F: (implies

1170 (and

1171 (diagnosisContext BootTime)

1172 (plausibleInference Decompose)

1173 (hypothesis ?HYP)

1174 (functionalPartOf ?HYP ?PART))

1175 (possibleHypotheses ?PART)).

1176 F: (functionalPartOf PCSystem PowerSystem).

1177 F: (functionalPartOf PCSystem VideoSystem).

1178 F: (functionalPartOf PCSystem BIOSStartupSystem).

1179 F: (functionalPartOf PCSystem MemorySystem).

1180 F: (functionalPartOf PCSystem FloppySystem).

1181 F: (functionalPartOf PCSystem HardDiskDrive).

1182 F: (functionalPartOf PCSystem CDROMdrive).

153

1183 F: (functionalPartOf PCSystem PlugAndPlaySystem).

1184 F: (functionalPartOf PCSystem BootSystem).

1185 F: (functionalPartOf PowerSystem PowerSocket).

1186 F: (functionalPartOf PowerSystem PowerCable).

1187 F: (functionalPartOf PowerSystem PowerProtectionDevice).

1188 F: (functionalPartOf PowerSystem PowerSupply).

1189 F: (functionalPartOf VideoSystem MotherBoard).

1190 F: (functionalPartOf VideoSystem VideoCard).

1191 F: (functionalPartOf VideoSystem Monitor).

1192 F: (functionalPartOf BIOSStartupSystem MotherBoard).

1193 F: (functionalPartOf BIOSStartupSystem VideoCard).

1194 F: (functionalPartOf MemorySystem RAM).

1195 F: (functionalPartOf MemorySystem MotherBoard).

1196 F: (functionalPartOf FloppySystem FloppyDiskDrive).

1197 F: (functionalPartOf FloppySystem BIOSsettings).

1198 F: (functionalPartOf PlugAndPlaySystem ExpansionCard).

1199 F: (functionalPartOf PlugAndPlaySystem MotherBoard).

1200 F: (functionalPartOf BootSystem FloppyDiskDrive).

1201 F: (functionalPartOf BootSystem OSfloppyDisk).

1202 F: (functionalPartOf BootSystem HardDiskDrive).

1203 ;;; **

1204 ;;; ** **

1205 ;;; ** Facts and rules about PC subsystems and components **

1206 ;;; ** **

1207 ;;; **

1208 ;;; ******************************

1209 ;;; ** TEST(S) for the PCSystem **

1210 ;;; ******************************

1211 Default Mt: PCDiagnosisMt.

1212 Direction: forward.

1213 F: (implies

1214 (hypothesis PCSystem) ;if diagnosis just started, ask for the context

1215 (and

1216 (possibleTest (TestFn PCSystem ConfirmSensorially ProblemContext))

1217 (possibleResultOfTest

1218 (TestFn PCSystem ConfirmSensorially ProblemContext) BootTime NotNormal)

1219 (possibleResultOfTest

1220 (TestFn PCSystem ConfirmSensorially ProblemContext) RunTime NotNormal)

1221 (possibleResultOfTest

1222 (TestFn PCSystem ConfirmSensorially ProblemContext)

1223 ComponentSpecific NotNormal))).

1224 ;; **

1225 ;; ** DECOMPOSITION knowledge for the PCSystem **

1226 ;; **

1227 Direction: forward.

1228 F: (implies

1229 (and

1230 (diagnosisContext BootTime)

154 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

1231 (hypothesis PCSystem)

1232 (plausibleInference Decompose))

1233 (and

1234 (testFirst PowerSystem)

1235 (testAfter PowerSystem VideoSystem)

1236 (testAfter VideoSystem BIOSStartupSystem)

1237 (testAfter BIOSStartupSystem MemorySystem)

1238 (testAfter MemorySystem FloppySystem)

1239 (testAfter FloppySystem HardDiskDrive)

1240 (testAfter HardDiskDrive CDROMdrive)

1241 (testAfter CDROMdrive PlugAndPlaySystem)

1242 (testAfter PlugAndPlaySystem BootSystem))).

1243 ;; *********************************

1244 ;; ** TEST(S) for the PowerSystem **

1245 ;; *********************************

1246 Direction: forward.

1247 F: (implies

1248 (and

1249 (diagnosisContext BootTime)

1250 (hypothesis PowerSystem)) ;

1251 (and

1252 (possibleTest (TestFn PowerSystem ConfirmSensorially ElectricPower))

1253 (possibleResultOfTest

1254 (TestFn PowerSystem ConfirmSensorially ElectricPower) Yes Normal)

1255 (possibleResultOfTest

1256 (TestFn PowerSystem ConfirmSensorially ElectricPower) No NotNormal))).

1257 ;; ***

1258 ;; ** DECOMPOSITION knowledge for the PowerSystem **

1259 ;; ** ElectricPower=No **

1260 ;; ***

1261 Direction: forward.

1262 F: (implies

1263 (and

1264 (diagnosisContext BootTime)

1265 (hypothesis PowerSystem)

1266 (resultOfTest (TestFn PowerSystem ConfirmSensorially ElectricPower) No)

1267 (plausibleInference Decompose))

1268 (and

1269 (testFirst PowerSocket)

1270 (testAfter PowerSocket PowerProtectionDevice)

1271 (testAfter PowerProtectionDevice PowerCable)

1272 (testAfter PowerCable PowerSupply))).

1273 ;; *********************************

1274 ;; ** TEST(S) for the PowerSocket **

1275 ;; *********************************

1276 Direction: forward.

1277 F: (implies

1278 (and

1279 (diagnosisContext BootTime)

1280 (hypothesis PowerSocket)) ;

1281 (and

1282 (possibleTest (TestFn PowerSocket CheckIndependently ElectricPower))

1283 (possibleResultOfTest

1284 (TestFn PowerSocket CheckIndependently ElectricPower) Yes Normal)

1285 (possibleResultOfTest

1286 (TestFn PowerSocket CheckIndependently ElectricPower) No NotNormal))).

1287 ;;**

155

1288 ;; ** TEST(S) for the PowerProtectionDevice **

1289 ;;**

1290 Direction: forward.

1291 F: (implies

1292 (and

1293 (diagnosisContext BootTime)

1294 (hypothesis PowerProtectionDevice))

1295 (and

1296 (possibleTest (TestFn PowerProtectionDevice Remove ElectricPower))

1297 (possibleResultOfTest

1298 (TestFn PowerProtectionDevice Remove ElectricPower) Yes NotNormal)

1299 (possibleResultOfTest

1300 (TestFn PowerProtectionDevice Remove ElectricPower) No Normal))).

1301 ;;*********************************

1302 ;; ** TEST(S) for the PowerCable **

1303 ;;*********************************

1304 Direction: forward.

1305 F: (implies

1306 (and

1307 (diagnosisContext BootTime)

1308 (hypothesis PowerCable)) ;

1309 (and

1310 (possibleTest (TestFn PowerCable Replace ElectricPower))

1311 (possibleResultOfTest

1312 (TestFn PowerCable Replace ElectricPower) Yes NotNormal)

1313 (possibleResultOfTest

1314 (TestFn PowerCable Replace ElectricPower) No Normal))).

1315 ;;*********************************

1316 ;;** TEST(S) for the PowerSupply **

1317 ;;*********************************

1318 Direction: forward.

1319 F: (implies

1320 (and

1321 (diagnosisContext BootTime)

1322 (hypothesis PowerSupply))

1323 (and

1324 (possibleTest (TestFn PowerSupply ConfirmSensorially VoltageCorrect))

1325 (possibleResultOfTest

1326 (TestFn PowerSupply ConfirmSensorially VoltageCorrect) Yes NotNormal)

1327 (possibleResultOfTest

1328 (TestFn PowerSupply ConfirmSensorially VoltageCorrect) No Insufficient))).

1329 ;;*********************************

1330 ;;** TEST(S) for the PowerSupply **

1331 ;;** VoltageCorrect=No **

1332 ;;*********************************

1333

1334 Direction: forward.

1335 F: (implies

1336 (and

1337 (diagnosisContext BootTime)

1338 (hypothesis PowerSupply)

1339 (resultOfTest (TestFn PowerSupply ConfirmSensorially VoltageCorrect) No)) ;

1340 (and

1341 (possibleTest (TestFn PowerSupply ChangeVoltage ElectricPower))

1342 (possibleResultOfTest

1343 (TestFn PowerSupply ChangeVoltage ElectricPower) Yes Normal)

1344 (possibleResultOfTest

1345 (TestFn PowerSupply ChangeVoltage ElectricPower) No NotNormal))).

156 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

1346 ;;**********************************

1347 ;;** TEST(S) for the VideoSystem **

1348 ;;**********************************

1349 Direction: forward.

1350 F: (implies

1351 (and

1352 (diagnosisContext BootTime)

1353 (hypothesis VideoSystem))

1354 (and

1355 (possibleTest (TestFn VideoSystem ConfirmSensorially VideoSignal))

1356 (possibleResultOfTest

1357 (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes Insufficient)

1358 (possibleResultOfTest

1359 (TestFn VideoSystem ConfirmSensorially VideoSignal) No NotNormal))).

1360 ;; ***

1361 ;; ** DECOMPOSITION knowledge for the VideoSystem **

1362 ;; ** VideoSignal=No **

1363 ;; ***

1364 Direction: forward.

1365 F: (implies

1366 (and

1367 (diagnosisContext BootTime)

1368 (hypothesis VideoSystem)

1369 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) No)

1370 (plausibleInference Decompose))

1371 (and

1372 (testFirst Monitor)

1373 (testAfter Monitor MotherBoard)

1374 (testAfter MotherBoard Speaker))).

1375 ;;*********************************

1376 ;;** TEST(S) for the VideoSystem **

1377 ;;** VideoSignal=Yes **

1378 ;;*********************************

1379 Direction: forward.

1380 F: (implies

1381 (and

1382 (diagnosisContext BootTime)

1383 (hypothesis VideoSystem)

1384 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes))

1385 (and

1386 (possibleTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage))

1387 (possibleResultOfTest

1388 (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) Yes Insufficient)

1389 (possibleResultOfTest

1390 (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No NotNormal))).

1391 ;; ***

1392 ;; ** TEST(S) for the VideoSystem **

1393 ;; ** VideoSignal=Yes, VideoBIOSMessage=Yes **

1394 ;; ***

1395 Direction: forward.

1396 F: (implies

1397 (and

1398 (diagnosisContext BootTime)

1399 (hypothesis VideoSystem)

1400 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1401 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) Yes))

1402 (and

1403 (possibleTest (TestFn VideoSystem ConfirmSensorially BootContinues))

1404 (possibleResultOfTest

157

1405 (TestFn VideoSystem ConfirmSensorially BootContinues) Yes Normal)

1406 (possibleResultOfTest

1407 (TestFn VideoSystem ConfirmSensorially BootContinues) No NotNormal))).

1408 ;; ***

1409 ;; ** DECOMPOSITION knowledge for the VideoSystem **

1410 ;; ** VideoSignal=Yes, VideoBIOSMessage=Yes, BootContinues=No **

1411 ;; ***

1412 Direction: forward.

1413 F: (implies

1414 (and

1415 (diagnosisContext BootTime)

1416 (hypothesis VideoSystem)

1417 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1418 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) Yes)

1419 (resultOfTest (TestFn VideoSystem ConfirmSensorially BootContinues) No)

1420 (plausibleInference Decompose))

1421 (and

1422 (testFirst VideoCard)

1423 (testAfter VideoCard MotherBoard))).

1424 ;; **

1425 ;; ** DECOMPOSITION knowledge for the VideoSystem **

1426 ;; ** VideoSignal=Yes, VideoBIOSMessage=No **

1427 ;; **

1428 Direction: forward.

1429 F: (implies

1430 (and

1431 (diagnosisContext BootTime)

1432 (hypothesis VideoSystem)

1433 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1434 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No)

1435 (plausibleInference Decompose))

1436 (and

1437 (testFirst MotherBoard)

1438 (testAfter MotherBoard VideoCard))).

1439 ;; *****************************

1440 ;; ** TEST(S) for the Monitor **

1441 ;; ** VideoSignal=No **

1442 ;; *****************************

1443 Direction: forward.

1444 F: (implies

1445 (and

1446 (diagnosisContext BootTime)

1447 (hypothesis Monitor)

1448 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) No))

1449 (and

1450 (possibleTest (TestFn Monitor CheckIndependently VideoSignal))

1451 (possibleResultOfTest

1452 (TestFn Monitor CheckIndependently VideoSignal) Yes Normal)

1453 (possibleResultOfTest

1454 (TestFn Monitor CheckIndependently VideoSignal) No NotNormal))).

1455 ;; **

1456 ;; ** TEST(S) for the MotherBoard **

1457 ;; ** VideoSignal=No, Monitor_Working =Yes **

1458 ;; **

1459 Direction: forward.

158 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

1460 F: (implies

1461 (and

1462 (diagnosisContext BootTime)

1463 (hypothesis MotherBoard)

1464 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) No)

1465 (resultOfTest (TestFn Monitor CheckIndependently VideoSignal) Yes))

1466 (and

1467 (possibleTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep))

1468 (possibleResultOfTest

1469 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) SingleBeep NotNormal)

1470 (possibleResultOfTest

1471 (TestFn MotherBoard ConfirmSensorially SpeakerBeep)

1472 ConsistentPattern NotNormal)

1473 (possibleResultOfTest

1474 (TestFn MotherBoard ConfirmSensorially SpeakerBeep)

1475 RingingOrBuzzing NotNormal)

1476 (possibleResultOfTest

1477 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No Insufficient))).

1478 ;; **

1479 ;; ** TEST(S) for the MotherBoard **

1480 ;; ** VideoSignal=No, Monitor_Working =Yes, SpeakerBeep=No **

1481 ;; **

1482 Direction: forward.

1483 F: (implies

1484 (and

1485 (diagnosisContext BootTime)

1486 (hypothesis MotherBoard)

1487 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) No)

1488 (resultOfTest (TestFn Monitor CheckIndependently VideoSignal) Yes)

1489 (resultOfTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No))

1490 (and

1491 (possibleTest (TestFn Speaker CheckIndependently SpeakerBeep))

1492 (possibleResultOfTest

1493 (TestFn Speaker CheckIndependently SpeakerBeep) Yes NotNormal)

1494 (possibleResultOfTest

1495 (TestFn Speaker CheckIndependently SpeakerBeep) No Distinguishing))).

1496 ;;; Important notice: Although the PCSusbSystem related to the Test is

1497 ;;; the Speaker, however, the PCSubSystem hypothesised as faulty is

1498 ;;; the MotherBoard. Therefore, the Result Type is defined by what it

1499 ;;; indicates about the MotherBoard and not the Speaker itself. This

1500 ;;; rather peculiar situation is due to the controlling function of

1501 ;;; the Speaker. This means that the Speaker functions as a control

1502 ;;; device for the MotherBoard and we must make sure that this device

1503 ;;; is working properly. If it does, then the lack of any sound is due

1504 ;;; to the MotherBoard and we can deduce that it is faulty. Otherwise,

1505 ;;; we cannot deduce anything before we are certain that the Speaker

1506 ;;; is working properly.

1507 ;; **

1508 ;; ** TEST(S) for the MotherBoard **

1509 ;; ** VideoSignal=Yes, VideoBIOSMessage=No **

1510 ;; **

1511 Direction: forward.

1512 F: (implies

1513 (and

1514 (diagnosisContext BootTime)

1515 (hypothesis MotherBoard)

1516 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1517 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No))

1518 (and

1519 (possibleTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep))

159

1520 (possibleResultOfTest

1521 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No Insufficient)

1522 (possibleResultOfTest

1523 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) ConsistentPattern

1524 Insufficient))).

1525 ;; ***

1526 ;; ** TEST(S) for the MotherBoard **

1527 ;; ** VideoSignal=Yes, VideoBIOSMessage=No, SpeakerBeep=ConsistentPattern **

1528 ;; ***

1529 Direction: forward.

1530 F: (implies

1531 (and

1532 (diagnosisContext BootTime)

1533 (hypothesis MotherBoard)

1534 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1535 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No)

1536 (resultOfTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep)

1537 ConsistentPattern))

1538 (and

1539 (possibleTest (TestFn MotherBoard TroubleshootComponent ComponentProblem))

1540 (possibleResultOfTest

1541 (TestFn MotherBoard TroubleshootComponent ComponentProblem) Yes

1542 NotNormal)

1543 (possibleResultOfTest

1544 (TestFn MotherBoard TroubleshootComponent ComponentProblem) No

1545 Distinguishing))).

1546 ;; **

1547 ;; ** TEST(S) for the MotherBoard **

1548 ;; ** VideoSignal=Yes, VideoBIOSMessage=No, SpeakerBeep=No **

1549 ;; **

1550 Direction: forward.

1551 F: (implies

1552 (and

1553 (diagnosisContext BootTime)

1554 (hypothesis MotherBoard)

1555 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1556 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) No)

1557 (resultOfTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No))

1558 (and

1559 (possibleTest (TestFn MotherBoard TroubleshootComponent ComponentProblem))

1560 (possibleResultOfTest

1561 (TestFn MotherBoard TroubleshootComponent ComponentProblem) Yes

1562 NotNormal)

1563 (possibleResultOfTest

1564 (TestFn MotherBoard TroubleshootComponent ComponentProblem) No

1565 Distinguishing))).

1566 ;; *********************************

1567 ;; ** TEST(S) for the MotherBoard **

1568 ;; ** StartupScreen=No **

1569 ;; *********************************

1570 Direction: forward.

1571 F: (implies

1572 (and

1573 (diagnosisContext BootTime)

1574 (hypothesis MotherBoard)

1575 (resultOfTest

1576 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) No))

1577 (and

1578 (possibleTest (TestFn MotherBoard ConfirmSensorially SpeakerBeep))

1579 (possibleResultOfTest

160 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

1580 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) Yes NotNormal)

1581 (possibleResultOfTest

1582 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No Insufficient))).

1583 ;; **************************************

1584 ;; ** TEST(S) for the MotherBoard **

1585 ;; ** StartupScreen=No, SpeakerBeep=No **

1586 ;; **************************************

1587 Direction: forward.

1588 F: (implies

1589 (and

1590 (diagnosisContext BootTime)

1591 (hypothesis MotherBoard)

1592 (resultOfTest

1593 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) No)

1594 (resultOfTest

1595 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No))

1596 (and

1597 (possibleTest (TestFn MotherBoard ConfirmSensorially ErrorMessage))

1598 (possibleResultOfTest

1599 (TestFn MotherBoard ConfirmSensorially ErrorMessage) Yes NotNormal)

1600 (possibleResultOfTest

1601 (TestFn MotherBoard ConfirmSensorially ErrorMessage) No Insufficient))).

1602 ;; ***

1603 ;; ** TEST(S) for the MotherBoard **

1604 ;; ** StartupScreen=No, SpeakerBeep=No, ErrorMessage=No **

1605 ;; ***

1606 Direction: forward.

1607 F: (implies

1608 (and

1609 (diagnosisContext BootTime)

1610 (hypothesis MotherBoard)

1611 (resultOfTest

1612 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) No)

1613 (resultOfTest

1614 (TestFn MotherBoard ConfirmSensorially SpeakerBeep) No)

1615 (resultOfTest

1616 (TestFn MotherBoard ConfirmSensorially ErrorMessage) No))

1617 (and

1618 (possibleTest (TestFn MotherBoard TroubleshootComponent ComponentProblem))

1619 (possibleResultOfTest

1620 (TestFn MotherBoard TroubleshootComponent ComponentProblem) Yes

1621 NotNormal)

1622 (possibleResultOfTest

1623 (TestFn MotherBoard TroubleshootComponent ComponentProblem) No

1624 Distinguishing))).

1625

1626 ;; ***

1627 ;; ** TEST(S) for the VideoCard **

1628 ;; ** VideoSignal=Yes, VideoBIOSMessage=Yes, BootContinues=No **

1629 ;; ***

1630 Direction: forward.

1631 F: (implies

1632 (and

1633 (diagnosisContext BootTime)

1634 (hypothesis VideoCard)

1635 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoSignal) Yes)

1636 (resultOfTest (TestFn VideoSystem ConfirmSensorially VideoBIOSMessage) Yes)

1637 (resultOfTest (TestFn VideoSystem ConfirmSensorially BootContinues) No))

1638 (and

161

1639 (possibleTest (TestFn VideoCard TroubleshootComponent ComponentProblem))

1640 (possibleResultOfTest

1641 (TestFn VideoCard TroubleshootComponent ComponentProblem) Yes NotNormal)

1642 (possibleResultOfTest

1643 (TestFn VideoCard TroubleshootComponent ComponentProblem) No

1644 Distinguishing))).

1645 ;;; Important notice: The '#$TroubleshootComponent' TestAction and the

1646 ;;; '#$ComponentProblem' PossibleObservable are too general and

1647 ;;; complex to be of actual use. They are used here as artificial

1648 ;;; "terminating points" of the Systematic Diagnosis procedure at the

1649 ;;; level of #$PCComponent. In a

1650 ;;; complete PC faults diagnosis expert system, more elaborate

1651 ;;; 'Test(s)' should follow to troubleshoot a specific #$PCComponent

1652 ;;; (here the #$VideoCard), instead of the user having to know how to

1653 ;;; test the specific #$PCComponent. However, these 'Tests' are so

1654 ;;; elaborate and complicated that are beyond the scope of this

1655 ;;; implementation. Such 'Test(s)' could be identifying a beep code

1656 ;;; according to the specific version of BIOS (American Megatrends

1657 ;;; Inc., Pheonix or Other) or interpreting an error message (there

1658 ;;; are 120 error messages documented in the PCGuide Troubleshoot

1659 ;;; expert that was used as a knowledge acquisistion source).

1660 ;; ***************************************

1661 ;; ** TEST(S) for the BIOSStartupSystem **

1662 ;; ** PowerSystem=ok, VideoSystem=ok **

1663 ;; ***************************************

1664 Direction: forward.

1665 F: (implies

1666 (and

1667 (diagnosisContext BootTime)

1668 (hypothesis BIOSStartupSystem))

1669 (and

1670 (possibleTest (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen))

1671 (possibleResultOfTest

1672 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) Yes Normal)

1673 (possibleResultOfTest

1674 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) No NotNormal))).

1675 ;; ***

1676 ;; ** DECOMPOSITION knowledge for the BIOSStartupSystem **

1677 ;; ** StartupScreen=No **

1678 ;; ***

1679 Direction: forward.

1680 F: (implies

1681 (and

1682 (diagnosisContext BootTime)

1683 (hypothesis BIOSStartupSystem)

1684 (resultOfTest

1685 (TestFn BIOSStartupSystem ConfirmSensorially StartupScreen) No)

1686 (plausibleInference Decompose))

1687 (and

1688 (testFirst MotherBoard)

1689 (testAfter MotherBoard VideoCard))).

1690 ;; **

1691 ;; ** TEST(S) for the MemorySystem **

1692 ;; ** PowerSystem=ok, VideoSystem=ok, StartupSystem=ok **

1693 ;; **

1694 Direction: forward.

1695 F: (implies

1696 (and

1697 (diagnosisContext BootTime)

162 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

1698 (hypothesis MemorySystem))

1699 (and

1700 (possibleTest (TestFn MemorySystem ConfirmSensorially MemoryTest))

1701 (possibleResultOfTest

1702 (TestFn MemorySystem ConfirmSensorially MemoryTest) Complete Normal)

1703 (possibleResultOfTest

1704 (TestFn MemorySystem ConfirmSensorially MemoryTest) InComplete NotNormal))).

1705

1706 ;; **

1707 ;; ** DECOMPOSITION knowledge for the MemorySystem **

1708 ;; ** MemoryTest=Incomplete **

1709 ;; **

1710 Direction: forward.

1711 F: (implies

1712 (and

1713 (diagnosisContext BootTime)

1714 (hypothesis MemorySystem)

1715 (resultOfTest

1716 (TestFn MemorySystem ConfirmSensorially MemoryTest) InComplete)

1717 (plausibleInference Decompose))

1718 (and

1719 (testFirst RAM)

1720 (testAfter RAM MotherBoard))).

1721 ;; ***************************

1722 ;; ** TEST(S) for the RAM **

1723 ;; ** MemoryTest=Incomplete **

1724 ;; ***************************

1725 Direction: forward.

1726 F: (implies

1727 (and

1728 (diagnosisContext BootTime)

1729 (hypothesis RAM)

1730 (resultOfTest

1731 (TestFn MemorySystem ConfirmSensorially MemoryTest) InComplete))

1732 (and

1733 (possibleTest (TestFn RAM ConfirmSensorially ErrorMessage))

1734 (possibleResultOfTest

1735 (TestFn RAM ConfirmSensorially ErrorMessage) Yes NotNormal)

1736 (possibleResultOfTest

1737 (TestFn RAM ConfirmSensorially ErrorMessage) No Insufficient))).

1738 ;; **

1739 ;; ** TEST(S) for the RAM **

1740 ;; ** MemoryTest=Incomplete, ErrorMessage=No **

1741 ;; **

1742 Direction: forward.

1743 F: (implies

1744 (and

1745 (diagnosisContext BootTime)

1746 (hypothesis RAM)

1747 (resultOfTest

1748 (TestFn MemorySystem ConfirmSensorially MemoryTest) InComplete)

1749 (resultOfTest

1750 (TestFn RAM ConfirmSensorially ErrorMessage) No))

1751 (and

1752 (possibleTest (TestFn RAM TroubleshootComponent ComponentProblem))

1753 (possibleResultOfTest

1754 (TestFn RAM TroubleshootComponent ComponentProblem) Yes NotNormal)

1755 (possibleResultOfTest

1756 (TestFn RAM TroubleshootComponent ComponentProblem) No

1757 Distinguishing))).

163

1758 ;; **

1759 ;; ** TEST(S) for the FloppySystem **

1760 ;; ** PowerSystem=ok, VideoSystem=ok, StartupSystem=ok **

1761 ;; ** MemorySystem=ok **

1762 ;; **

1763 Direction: forward.

1764 F: (implies

1765 (and

1766 (diagnosisContext BootTime)

1767 (hypothesis FloppySystem))

1768 (and

1769 (possibleTest (TestFn FloppySystem ConfirmSensorially FloppyAccess))

1770 (possibleResultOfTest

1771 (TestFn FloppySystem ConfirmSensorially FloppyAccess) Yes Normal)

1772 (possibleResultOfTest

1773 (TestFn FloppySystem ConfirmSensorially FloppyAccess) No NotNormal))).

1774 ;; **

1775 ;; ** DECOMPOSITION knowledge for the FloppySystem **

1776 ;; ** FloppyAccess=No **

1777 ;; **

1778 Direction: forward.

1779 F: (implies

1780 (and

1781 (diagnosisContext BootTime)

1782 (hypothesis FloppySystem)

1783 (resultOfTest

1784 (TestFn FloppySystem ConfirmSensorially FloppyAccess) No)

1785 (plausibleInference Decompose))

1786 (and

1787 (testFirst FloppyDiskDrive)

1788 (testAfter FloppyDiskDrive BIOSsettings))).

1789 ;; *************************************

1790 ;; ** TEST(S) for the FloppyDiskDrive **

1791 ;; ** FloppyAccess=No **

1792 ;; *************************************

1793

1794 Direction: forward.

1795 F: (implies

1796 (and

1797 (diagnosisContext BootTime)

1798 (hypothesis FloppyDiskDrive)

1799 (resultOfTest

1800 (TestFn FloppySystem ConfirmSensorially FloppyAccess) No))

1801 (and

1802 (possibleTest (TestFn FloppyDiskDrive ConfirmSensorially BootContinues))

1803 (possibleResultOfTest

1804 (TestFn FloppyDiskDrive ConfirmSensorially BootContinues) Yes

1805 Distinguishing)

1806 (possibleResultOfTest

1807 (TestFn FloppyDiskDrive ConfirmSensorially BootContinues) No NotNormal))).

1808 ;; ***

1809 ;; ** TEST(S) for the OSfloppyDisk **

1810 ;; ** BootSequence-BIOSsetting=FloppyThenHard, BootSource=Hard/None **

1811 ;; ***

1812 Direction: forward.

1813 F: (implies

1814 (and

1815 (diagnosisContext BootTime)

1816 (hypothesis OSfloppyDisk)

164 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

1817 (resultOfTest

1818 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1819 FloppyThenHard)

1820 (or

1821 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource)

1822 (ObservableValueFn HardDiskDrive))

1823 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource) None)))

1824 (and

1825 (possibleTest (TestFn OSfloppyDisk ConfirmSensorially InFloppy))

1826 (possibleResultOfTest

1827 (TestFn OSfloppyDisk ConfirmSensorially InFloppy) Yes Insufficient)

1828 (possibleResultOfTest

1829 (TestFn OSfloppyDisk ConfirmSensorially InFloppy) No NotNormal))).

1830 ;; ***

1831 ;; ** TEST(S) for the OSfloppyDisk **

1832 ;; ** BootSequence-BIOSsetting=FloppyThenHard, BootSource=Hard/None **

1833 ;; ** InFloppy=Yes **

1834 ;; ***

1835 Direction: forward.

1836 F: (implies

1837 (and

1838 (diagnosisContext BootTime)

1839 (hypothesis OSfloppyDisk)

1840 (resultOfTest

1841 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1842 FloppyThenHard)

1843 (or

1844 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource)

1845 (ObservableValueFn HardDiskDrive))

1846 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource) None))

1847 (resultOfTest

1848 (TestFn OSfloppyDisk ConfirmSensorially InFloppy) Yes))

1849 (and

1850 (possibleTest

1851 (TestFn OSfloppyDisk TroubleshootComponent ComponentProblem))

1852 (possibleResultOfTest

1853 (TestFn OSfloppyDisk TroubleshootComponent ComponentProblem) Yes

1854 NotNormal)

1855 (possibleResultOfTest

1856 (TestFn OSfloppyDisk TroubleshootComponent ComponentProblem) No

1857 Distinguishing))).

1858 ;; **

1859 ;; ** TEST(S) for the HardDiskDrive **

1860 ;; ** PowerSystem=ok, VideoSystem=ok, StartupSystem=ok **

1861 ;; ** MemorySystem=ok, FloppySystem=ok **

1862 ;; **

1863 Direction: forward.

1864 F: (implies

1865 (and

1866 (diagnosisContext BootTime)

1867 (hypothesis HardDiskDrive))

1868 (and

1869 (possibleTest (TestFn HardDiskDrive ConfirmSensorially DetectionMessage))

1870 (possibleResultOfTest

1871 (TestFn HardDiskDrive ConfirmSensorially DetectionMessage) Yes Normal)

1872 (possibleResultOfTest

1873 (TestFn HardDiskDrive ConfirmSensorially DetectionMessage) No Insufficient)

1874 (possibleResultOfTest

1875 (TestFn HardDiskDrive ConfirmSensorially DetectionMessage)

1876 CannotFind-Message NotNormal))).

1877 ;; ***********************************

165

1878 ;; ** TEST(S) for the HardDiskDrive **

1879 ;; ** DetectionMessage=No **

1880 ;; ***********************************

1881 Direction: forward.

1882 F: (implies

1883 (and

1884 (diagnosisContext BootTime)

1885 (hypothesis HardDiskDrive)

1886 (resultOfTest

1887 (TestFn HardDiskDrive ConfirmSensorially DetectionMessage) No))

1888 (and

1889 (possibleTest

1890 (TestFn HardDiskDrive CheckIndependently AutoDetection-BIOSsetting))

1891 (possibleResultOfTest

1892 (TestFn HardDiskDrive CheckIndependently AutoDetection-BIOSsetting)

1893 Manual Normal)

1894 (possibleResultOfTest

1895 (TestFn HardDiskDrive CheckIndependently AutoDetection-BIOSsetting)

1896 Auto NotNormal))).

1897 ;; ***

1898 ;; ** TEST(S) for the HardDiskDrive **

1899 ;; ** BootSequence-BIOSsetting=HardThenFloppy, BootSource=Floppy/None **

1900 ;; ***

1901 Direction: forward.

1902 F: (implies

1903 (and

1904 (diagnosisContext BootTime)

1905 (hypothesis HardDiskDrive)

1906 (resultOfTest

1907 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

1908 HardThenFloppy)

1909 (or

1910 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource)

1911 (ObservableValueFn FloppyDiskDrive))

1912 (resultOfTest (TestFn BootSystem ConfirmSensorially BootSource) None)))

1913 (and

1914 (possibleTest

1915 (TestFn HardDiskDrive TroubleshootComponent ComponentProblem))

1916 (possibleResultOfTest

1917 (TestFn HardDiskDrive TroubleshootComponent ComponentProblem) Yes

1918 NotNormal)

1919 (possibleResultOfTest

1920 (TestFn HardDiskDrive TroubleshootComponent ComponentProblem) No

1921 Normal))).

1922 ;; **

1923 ;; ** TEST(S) for the CDROMdrive **

1924 ;; ** PowerSystem=ok, VideoSystem=ok, StartupSystem=ok **

1925 ;; ** MemorySystem=ok, FloppySystem=ok, HardDisk=ok **

1926 ;; **

1927 Direction: forward.

1928 F: (implies

1929 (and

1930 (diagnosisContext BootTime)

1931 (hypothesis CDROMdrive))

1932 (and

1933 (possibleTest (TestFn CDROMdrive ConfirmSensorially DetectionMessage))

1934 (possibleResultOfTest

1935 (TestFn CDROMdrive ConfirmSensorially DetectionMessage) Yes Normal)

1936 (possibleResultOfTest

1937 (TestFn CDROMdrive ConfirmSensorially DetectionMessage) No Insufficient)

1938 (possibleResultOfTest

166 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

1939 (TestFn CDROMdrive ConfirmSensorially DetectionMessage) CannotFind-Message

1940 NotNormal))).

1941 ;; ***********************************

1942 ;; ** TEST(S) for the CDROMdrive **

1943 ;; ** DetectionMessage=No **

1944 ;; ***********************************

1945 Direction: forward.

1946 F: (implies

1947 (and

1948 (diagnosisContext BootTime)

1949 (hypothesis CDROMdrive)

1950 (resultOfTest

1951 (TestFn CDROMdrive ConfirmSensorially DetectionMessage) No))

1952 (and

1953 (possibleTest (TestFn CDROMdrive ConfirmSensorially BootContinues))

1954 (possibleResultOfTest

1955 (TestFn CDROMdrive ConfirmSensorially BootContinues) Yes Normal)

1956 (possibleResultOfTest

1957 (TestFn CDROMdrive ConfirmSensorially BootContinues) No NotNormal))).

1958 ;; **

1959 ;; ** TEST(S) for the PlugAndPlaySystem **

1960 ;; ** PowerSystem=ok, VideoSystem=ok, StartupSystem=ok **

1961 ;; ** MemorySystem=ok, FloppySystem=ok, HardDisk=ok **

1962 ;; ** CDROMdrive=ok **

1963 ;; **

1964 Direction: forward.

1965 F: (implies

1966 (and

1967 (diagnosisContext BootTime)

1968 (hypothesis PlugAndPlaySystem))

1969 (and

1970 (possibleTest (TestFn PlugAndPlaySystem ConfirmSensorially BootContinues))

1971 (possibleResultOfTest

1972 (TestFn PlugAndPlaySystem ConfirmSensorially BootContinues) Yes Normal)

1973 (possibleResultOfTest

1974 (TestFn PlugAndPlaySystem ConfirmSensorially BootContinues) No NotNormal))).

1975 ;; ***

1976 ;; ** DECOMPOSITION knowledge for the PlugAndPlaySystem **

1977 ;; ** BootContinues=No **

1978 ;; ***

1979 Direction: forward.

1980 F: (implies

1981 (and

1982 (diagnosisContext BootTime)

1983 (hypothesis PlugAndPlaySystem)

1984 (resultOfTest

1985 (TestFn PlugAndPlaySystem ConfirmSensorially BootContinues) No)

1986 (plausibleInference Decompose))

1987 (and

1988 (testFirst ExpansionCard)

1989 (testAfter ExpansionCard MotherBoard))).

1990 ;; ***********************************

1991 ;; ** TEST(S) for the ExpansionCard **

1992 ;; ** BootContinues=No **

1993 ;; ***********************************

1994 Direction: forward.

1995 F: (implies

1996 (and

167

1997 (diagnosisContext BootTime)

1998 (hypothesis ExpansionCard)

1999 (resultOfTest

2000 (TestFn PlugAndPlaySystem ConfirmSensorially BootContinues) No))

2001 (and

2002 (possibleTest

2003 (TestFn ExpansionCard TroubleshootComponent ComponentProblem))

2004 (possibleResultOfTest

2005 (TestFn ExpansionCard TroubleshootComponent ComponentProblem) Yes

2006 NotNormal)

2007 (possibleResultOfTest

2008 (TestFn ExpansionCard TroubleshootComponent ComponentProblem) No

2009 Distinguishing))).

2010 ;; **********************************

2011 ;; ** TEST(S) for the BootSystem **

2012 ;; ** Everything else=ok **

2013 ;; **********************************

2014 Direction: forward.

2015 F: (implies

2016 (and

2017 (diagnosisContext BootTime)

2018 (hypothesis BootSystem))

2019 (and

2020 (possibleTest

2021 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting))

2022 (possibleResultOfTest

2023 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

2024 FloppyThenHard Insufficient)

2025 (possibleResultOfTest

2026 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

2027 HardThenFloppy Insufficient))).

2028 ;; **

2029 ;; ** TEST(S) for the BootSystem **

2030 ;; ** BootSequence-BIOSsetting=FloppyThenHard **

2031 ;; **

2032 Direction: forward.

2033 F: (implies

2034 (and

2035 (diagnosisContext BootTime)

2036 (hypothesis BootSystem)

2037 (resultOfTest

2038 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

2039 FloppyThenHard))

2040 (and

2041 (possibleTest (TestFn BootSystem ConfirmSensorially BootSource))

2042 (possibleResultOfTest

2043 (TestFn BootSystem ConfirmSensorially BootSource)

2044 (ObservableValueFn FloppyDiskDrive) Normal)

2045 (possibleResultOfTest

2046 (TestFn BootSystem ConfirmSensorially BootSource)

2047 (ObservableValueFn HardDiskDrive) NotNormal)

2048 (possibleResultOfTest

2049 (TestFn BootSystem ConfirmSensorially BootSource) None NotNormal))).

2050 ;; **

2051 ;; ** DECOMPOSITION knowledge for the BootSystem **

2052 ;; ** BootSequence-BIOSsetting=FloppyThenHard, BootSource=Hard **

2053 ;; **

2054 Direction: forward.

2055 F: (implies

2056 (and

168 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

2057 (diagnosisContext BootTime)

2058 (hypothesis BootSystem)

2059 (resultOfTest

2060 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

2061 FloppyThenHard)

2062 (resultOfTest

2063 (TestFn BootSystem ConfirmSensorially BootSource)

2064 (ObservableValueFn HardDiskDrive))

2065 (plausibleInference Decompose))

2066 (and

2067 (testFirst OSfloppyDisk)

2068 (testAfter OSfloppyDisk FloppyDiskDrive))).

2069

2070 ;; **

2071 ;; ** DECOMPOSITION knowledge for the BootSystem **

2072 ;; ** BootSequence-BIOSsetting=FloppyThenHard, BootSource=None **

2073 ;; **

2074 Direction: forward.

2075 F: (implies

2076 (and

2077 (diagnosisContext BootTime)

2078 (hypothesis BootSystem)

2079 (resultOfTest

2080 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

2081 FloppyThenHard)

2082 (resultOfTest

2083 (TestFn BootSystem ConfirmSensorially BootSource) None)

2084 (plausibleInference Decompose))

2085 (and

2086 (testFirst OSfloppyDisk)

2087 (testAfter OSfloppyDisk FloppyDiskDrive))).

2088

2089 ;; **

2090 ;; ** TEST(S) for the BootSystem **

2091 ;; ** BootSequence-BIOSsetting=HardThenFloppy **

2092 ;; **

2093 Direction: forward.

2094 F: (implies

2095 (and

2096 (diagnosisContext BootTime)

2097 (hypothesis BootSystem)

2098 (resultOfTest

2099 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

2100 HardThenFloppy))

2101 (and

2102 (possibleTest (TestFn BootSystem ConfirmSensorially BootSource))

2103 (possibleResultOfTest

2104 (TestFn BootSystem ConfirmSensorially BootSource)

2105 (ObservableValueFn HardDiskDrive) Normal)

2106 (possibleResultOfTest

2107 (TestFn BootSystem ConfirmSensorially BootSource)

2108 (ObservableValueFn FloppyDiskDrive) NotNormal)

2109 (possibleResultOfTest

2110 (TestFn BootSystem ConfirmSensorially BootSource) None NotNormal))).

2111 ;; **

2112 ;; ** DECOMPOSITION knowledge for the BootSystem **

2113 ;; ** BootSequence-BIOSsetting=HardThenFloppy, BootSource=Floppy **

2114 ;; **

2115 Direction: forward.

2116 F: (implies

2117 (and

169

2118 (diagnosisContext BootTime)

2119 (hypothesis BootSystem)

2120 (resultOfTest

2121 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

2122 HardThenFloppy)

2123 (resultOfTest

2124 (TestFn BootSystem ConfirmSensorially BootSource)

2125 (ObservableValueFn FloppyDiskDrive))

2126 (plausibleInference Decompose))

2127 (testFirst HardDiskDrive)).

2128

2129 ;; **

2130 ;; ** DECOMPOSITION knowledge for the BootSystem **

2131 ;; ** BootSequence-BIOSsetting=HardThenFloppy, BootSource=None **

2132 ;; **

2133 Direction: forward.

2134 F: (implies

2135 (and

2136 (diagnosisContext BootTime)

2137 (hypothesis BootSystem)

2138 (resultOfTest

2139 (TestFn BootSystem CheckIndependently BootSequence-BIOSsetting)

2140 HardThenFloppy)

2141 (resultOfTest

2142 (TestFn BootSystem ConfirmSensorially BootSource) None)

2143 (plausibleInference Decompose))

2144 (testFirst HardDiskDrive)).

2145

2146 ***

2147 ***

2148 END OF pc_diagnosisKE.txt

2149 ***

2150 ***

170 APPENDIX D. THE CYC KE-TEXT FOR PC/AUTOMOBILE DOMAINS

Appendix E

The CYC SubL Code for

PC/Automobile Domains

1 ;;; ******** FUNCTION DEFINITIONS ********

2 ;;; ******** GLOBAL VARIABLES ****************

3 (csetq *use-local-queue?* NIL) ;CYC variable

4 (defvar *defaultMt* nil) ;the microtheory for the fi-ask function

5 (defvar *test* nil) ; the current Test (needed by the 'menu' function)

6 (defvar *results* nil) ; a list of the Possible Results of the current Test

7 ; (needed by the 'menu' function)

8 (defvar *no_of_choices* 0) ;the number of Possible Results of the current Test

9 ; (needed by the 'menu' function)

10 (defvar *system* nil) ;the system being diagnosed (see 'systematic')

11 ;;; The global variable *terms* is used to record in a list - and in

12 ;;; parallel with what the 'format' expressions print to the CYC SubL

13 ;;; Interactor panel - the CYC terms involved in each step of the

14 ;;; Systematic diagnosis. This variable is returned to the Interactor

15 ;;; panel as the 'Results' of the 'Last Form Evaluated' (see the CYC

16 ;;; SubL Interactor panel). The Interactor panel converts any CYC

17 ;;; term, i.e. symbols starting with '#$' (hash-dollar), as an HTML

18 ;;; link to this term in the CYC KB. This way, the user can browse to

19 ;;; any of the CYC terms appearing on the screen.

20 (defvar *terms* nil)

21 ;;; **

22 ;;; ******** SubL CODE FOR SYSTEMATIC ************

23 ;;; **

24 ;;; Function : SYSTEMATIC

25 ;;; Arguments: The system that is going to be diagnosed. For the

26 ;;; moment, any one of the symbols '#$PCSystem' or

27 ;;; '#$AutomobileSystem'.

28 ;;; Result : Implements the Inference Structure for the Systematic

29 ;;; Diagnosis problem solving method of KADS applied in PC

30 ;;; and Automobile faults diagnosis.

31 ;;; Remarks :

171

172 APPENDIX E. THE CYC SUBL CODE FOR PC/AUTOMOBILE DOMAINS

32 (define systematic (system)

33 (pcond

34 ((cnot (cor (eql system '#$PCSystem) (eql system '#$AutomobileSystem)))

35 (error "SYSTEMATIC:argument must be '#$PCSystem' or '#$AutomobileSystem"))

36 (t (pcond

37 ((eql system '#$PCSystem) (csetf *defaultMt* '#$PCDiagnosisMt))

38 ((eql system '#$AutomobileSystem)

39 (csetf *defaultMt* '#$AutomobileDiagnosisMt))

40) ;end of pcond

41 (pcond

42 ;; if there isn't any hypothesis then start diagnosis

43 ((cnot (fi-ask '(#$hypothesis ?HYP) *defaultMt*))

44 (csetf *terms* nil)

45 (csetf *system* system)

46 (sd-select1 system))

47 (t (sd-compare)) ;end of innermost 't' clause

48)) ;end of innermost 'pcond' and outermost 't' clause

49) ;end of outermost 'pcond'

50)

51 ;;; **

52 ;;; ******** SubL CODE FOR SD-COMPARE * *************

53 ;;; **

54 ;;; Function : SD-COMPARE

55 ;;; Arguments: None

56 ;;; Result : Calls the appropriate Systematic Diagnosis Inference

57 ;;; Remarks : The *test* global variable holds the last 'Test' that

58 ;;; was performed. It is used to retrieve the result of

59 ;;; this 'Test' and its type. According to the 'ResultType'

60 ;;; of the 'Test', the following decisions may be made:

61 ;;;

62 ;;; RESULT_TYPE DECISION

63 ;;;

64 ;;; Normal Reject hypothesis; backtrack

65 ;;; NotNormal Decompose/Confirm hypothesis

66 ;;; Insufficient Perform another 'Test' (Select2-3)

67 ;;; Distinguishing Reject hypothesis, backtrack

68 ;;; and confirm next hypothesis.

69 (define sd-compare ()

70 (csetf *terms* nil)

71 ;; get the 'ResultType' for the most recently performed 'Test'

72 (csetq ask-result

73 (fi-ask (list '#$and

74 (list '#$resultOfTest *test* '?RES)

75 (list '#$possibleResultOfTest *test* '?RES '?TYPE)) *defaultMt*))

76 (format t "LAST TEST: ~S, ~%RESULT: ~S," *test* (get-ask-binding

77 (first ask-result) 1))

78 (csetf *terms* (cons (cons 'LAST (cons 'TEST: *test*)) *terms*))

79 (csetq result (get-ask-binding (first ask-result) 1))

80 (csetq result-type (get-ask-binding (first ask-result) 2))

81

82 ;; according to the 'ResultType' value, decide the next inference

83 (pcond

84 ((eql result-type '#$NotNormal)

85 (format t " RESULT TYPE: #$NotNormal, INFERENCE: Confirm/Decompose")

86 (csetf *terms* (cons (list 'RESULT: result 'RESULT 'TYPE:

87 result-type 'INFERENCE:CONFIRM) *terms*))

88 (sd-confirm))

89 ((eql result-type '#$Insufficient)

90 (format t " RESULT TYPE: #$Insufficient, INFERENCE: Select2-3")

91 (csetf *terms* (cons (list 'RESULT: result 'RESULT 'TYPE:

92 result-type 'INFERENCE:SELECT2-3) *terms*))

93 (sd-select2-3))

173

94 ((cor (eql result-type '#$Normal) (eql result-type '#$Distinguishing))

95 (format t " RESULT TYPE: ~S, INFERENCE: NewHypothesis" result-type)

96 (csetf *terms* (cons (list 'RESULT: result 'RESULT 'TYPE:

97 result-type 'INFERENCE:New_Hypothesis) *terms*))

98 (sd-new-hypothesis result-type))

99 (t (format t " RESULT TYPE: UNKNOWN!, INFERENCE: Diagnosis interrupted"))

100) ;end of 'pcond'

101)

102 ;;; **

103 ;;; ******** SubL CODE FOR SD-CONFIRM ************

104 ;;; **

105 ;;; Function : SD-CONFIRM

106 ;;; Arguments: None

107 ;;; Result : If the current 'hypothesis' is a 'SUbSystem', it

108 ;;; is decomposed by calling function 'sd-decompose';

109 ;;; otherwise, it is a Component and the diagnosis

110 ;;; terminates reporting this 'Component' as faulty.

111 ;;; Remarks :

112 (define sd-confirm ()

113 (csetq ask-result

114 (fi-ask '(#$and

115 (#$hypothesis ?HYP)

116 (#$isa ?HYP #$Component)) *defaultMt*))

117 (pcond

118 (ask-result

119 (format t "~%~% DIAGNOSIS ENDED. FAULTY COMPONENT: ~S"

120 (get-ask-binding (first ask-result) 1))

121 (csetf *terms* (cons (list 'DIAGNOSIS 'ENDED. 'FAULTY 'COMPONENT:

122 (get-ask-binding (first ask-result) 1)) *terms*))

123 (reverse *terms*))

124 (t (format t " Decomposing...")

125 (safe-fi :assert '(#$plausibleInference #$Decompose) *defaultMt*)

126 (sd-decompose)

127 (sd-select2-3))

128)

129)

130

131 ;;; **

132 ;;; ******** SubL CODE FOR SD-NEW-HYPOTHESIS *****

133 ;;; **

134 ;;; Function: SD-NEW-HYPOTHESIS

135 ;;; Arguments: 1. A #$ResultType

136 ;;; Results:

137 ;;; Remarks: This function is called by 'sd-confirm' with two types of

138 ;;; results, #$Normal and #$Distinguishing. If the result is

139 ;;; #$Normal, the function just changes the current

140 ;;; 'hypothesis' to the next one (if one exists) and performs

141 ;;; the appropriate 'Test' by calling 'sd-select2-3'. If the result is

142 ;;; #$Distinguishing, then it changes the current

143 ;;; 'hypothesis' as before, but doesn't perform any 'Test', as

144 ;;; the last 'Test' performed indicates that the next

145 ;;; 'hypothesis' is faulty. Therefore, it calls the

146 ;;; 'sd-confirm' function.

147 (define sd-new-hypothesis (result-type)

148 ;; get the next hypothesis from the 'testAfter' assertions, if anyone

149 ;; is left

150 (csetq ask-result

151 (fi-ask '(#$and

152 (#$hypothesis ?HYP)

153 (#$testAfter ?HYP ?NEW_HYP)) *defaultMt*))

174 APPENDIX E. THE CYC SUBL CODE FOR PC/AUTOMOBILE DOMAINS

154 (pcond

155 ((null ask-result) (format t "~% ~%I'M SORRY. THERE IS NO ALTERNATIVE

156 SYSTEM TO BE CONSIDERED. DIAGNOSIS FAILED"))

157 (t (csetq hypothesis (get-ask-binding (first ask-result) 1))

158 (csetq new_hypothesis (get-ask-binding (first ask-result) 2))

159 (fi-unassert (list '#$hypothesis hypothesis) *defaultMt*)

160 (fi-unassert (list '#$testAfter hypothesis new_hypothesis) *defaultMt*)

161 (safe-fi :assert (list '#$hypothesis new_hypothesis) *defaultMt*)

162 (pcond

163 ((eql result-type '#$Normal) (sd-select2-3))

164 ((eql result-type '#$Distinguishing) (sd-confirm))

165)) ;end of inner 'pcond' and 't' clause

166) ;end of 'pcond'

167)

168 ;;; **

169 ;;; ******** SubL CODE FOR SD-SELECT1********

170 ;;; **

171 ;;; Function: SD-SELECT1

172 ;;; Arguments: The system that is going to be diagnosed. For the

173 ;;; moment, any one of the symbols '#$PCSystem' or

174 ;;; '#$AutomobileSystem'.

175 ;;; Results: Asserts the '(#$hypothesis system)' fact to start the

176 ;;; Systematic Diagnosis problem solving method

177 ;;; Remarks:

178 (define sd-select1 (system)

179 (safe-fi :assert (list '#$hypothesis system) *defaultMt*)

180 (sd-select2-3) ; ask the user what the general complaint is

181)

182 ;;; **

183 ;;; ******** SubL CODE FOR SD-SELECT2-3 *************

184 ;;; **

185 ;;; Function : SD-SELECT2-3

186 ;;; Arguments: None

187 ;;; Result :

188 ;;; Remarks : According to the situation, there may be a lot of

189 ;;; 'possibleTest' assertions in the KB, but only one of them is the

190 ;;; one that must be performed next. This Test is distinguished by the

191 ;;; fact that it is the only one that doesn't have a corresponding

192 ;;; 'resultOfTest' assertion as it is not yet carried out. The

193 ;;; 'sd-select2-3' function must therefore find this Test and pass it and

194 ;;; its possible results ('possibleresultOfTest' assertions) to the

195 ;;; 'get-test-result' function.

196 (define sd-select2-3 ()

197 ;;get the current 'hypothesis'

198 (csetq hypothesis (fi-ask '(#$hypothesis ?HYP) *defaultMt*))

199 (csetq hypothesis (get-ask-binding (first hypothesis) 1))

200 (format t "~%~%HYPOTHESIS: ~S" hypothesis)

201 (csetf *terms* (cons (list 'HYPOTHESIS: hypothesis) *terms*))

202 ;; Get all possible tests

203 (csetq possible-tests

204 (fi-ask '(#$possibleTest ?TEST) *defaultMt*))

205 ;; keep the one that doesn't have a corresponding 'resultOfTest' assertion

206 (cdo

207 ((test

208 (get-ask-binding (first possible-tests) 1)

175

209 (get-ask-binding (first possible-tests) 1))

210) ; end of variables

211 ((cnot (fi-ask (list '#$resultOfTest test '?R) *defaultMt*)) t) ;exit condition

212 (csetq possible-tests (rest possible-tests))

213)

214 (csetq test (get-ask-binding (first possible-tests) 1))

215 (csetf *test* test)

216 ;; Get the possible results for this test

217 (csetq possible-results

218 (fi-ask

219 (list

220 '#$possibleResultOfTest (list '#$TestFn (second test) (third test)

221 (fourth test)) '?VAL '?TYPE) *defaultMt*))

222 (get-test-result test possible-results)

223)

224 ;;; **

225 ;;; ******** SubL CODE FOR GET-TEST-RESULT *****

226 ;;; **

227 ;;; Function : GET-TEST-RESULT

228 ;;; Arguments: 1. A 'Test' structure, which is a list of the form:

229 ;;;

230 ;;; (TestFn SUBSYSTEM TEST_ACTION POSSIBLE_OBSERVABLE)

231 ;;;

232 ;;; 2. A list of the form:

233 ;;;

234 ;;; (

235 ;;; ((?VAL . RESULT_1) (?TYPE . TYPE_1))

236 ;;; ...

237 ;;; ((?VAL . RESULT_n) (?TYPE . TYPE_n))

238 ;;;)

239 ;;;

240 ;;; Result : An 'resultOfTest' Assertion in the KB with the actual result of

241 ;;; the test.

242 ;;; Remarks : For the moment, it is the 'menu' function that performs

243 ;;; the actual task as there in no way to get input from

244 ;;; the user when in the SubL interactor.

245 (define get-test-result (test possible-results)

246 (present-test-parameters test)

247 (present-test-results possible-results)

248 (format t "~%~%Please, type '(menu [number_of_result])'")

249 ; (input-test-result no_of_choices)

250 (reverse *terms*) ;return as RESULT a list of all CYC terms appearing on the screen

251 ;;; For the moment, we don't know how to interact with the user when in the

252 ;;; SubL Interactor interface. Therefore, the user must give the command

253 ;;; '(menu <number_of_result>)' to interact with the SubL code.

254)

255

256 ;;; ***

257 ;;; ******** SubL CODE FOR PRESENT-TEST-PARAMETERS*

258 ;;; ***

259 ;;; Function : PRESENT-TEST-PARAMETERS

260 ;;; Arguments: A 'Test' structure, which is a list of the form:

261 ;;;

262 ;;; (TestFn SUBSYSTEM TEST_ACTION POSSIBLE_OBSERVABLE)

263 ;;;

264 ;;; Result : Prints to the screen the current 'test' parameters, i.e,

265 ;;; the SubSystem, TestAction and PossibleObservable.

266 ;;; Remarks :

267 (define present-test-parameters (test)

176 APPENDIX E. THE CYC SUBL CODE FOR PC/AUTOMOBILE DOMAINS

268 (format t "~%NEW TEST: ~%SubSystem: ~S ~%TestAction: ~S

~%Observable: ~S ~%" (second test) (third test) (fourth test))

269 (csetf *terms* (cons (cons 'NEW (cons 'TEST test)) *terms*))

270)

271 ;;; **

272 ;;; ******** SubL CODE FOR PRESENT-TEST-RESULTS **

273 ;;; **

274 ;;; Function : PRESENT-TEST-RESULTS

275 ;;; Arguments: A list of the form:

276 ;;;

277 ;;; (

278 ;;; ((?VAL . RESULT_1) (?TYPE . TYPE_1))

279 ;;; ...

280 ;;; ((?VAL . RESULT_n) (?TYPE . TYPE_n))

281 ;;;)

282 ;;;

283 ;;; Result : An enumarated menu of all possible results of the current 'test'

284 ;;; Remarks :

285 (define present-test-results (possible-results)

286 ;; Get possible results

287 (csetq results (mapcar #'get-ask-binding

288 possible-results

289 (position-list (length possible-results) 1)))

290 ;; Get possible results' types (Not needed for the moment. The result

291 ;; type is retreived by the 'sd-compare' function).

292 ; (csetq result_types (mapcar #'get-ask-binding

293 ; possible-results

294 ; (position-list (length possible-results) 2)))

295 (csetq counter 1)

296 (cdolist (result results 't)

297 (format t "~A. ~S~%" counter result)

298 (csetf *terms* (cons (cons counter result) *terms*))

299 (csetq counter (+ counter 1))

300)

301 (csetf *no_of_choices* (- counter 1)) ;needed by 'menu'

302 (csetf *results* results) ;needed by 'menu'

303 ; (csetf *result_type* result_types) ; needed by 'menu'

304)

305 ;;; **

306 ;;; ******** SubL CODE FOR POSITION-LIST *

307 ;;; **

308 ;;; Function : POSITION-LIST

309 ;;; Arguments: 1. A number, n, indicating the number of bindings (lists of

310 ;;; doted pairs), in an ask-result of an 'fi-ask' function.

311 ;;; 2. A number, k (1 =< k =< n), indicating which BINDING must

312 ;;; be returned by the 'get-ask-binding' function.

313 ;;; Result : A list of n elements equal to k.

314 ;;; Remarks : An auxiliary function. Creates the second arcument to be used

315 ;;; in a 'mapping' function which collects a list of BINDINGS for

316 ;;; the same ask variable.

317 (define position-list (n k)

318 (csetq res ())

319 (cdotimes (c n res)

320 (csetq res (cons k res))

321)

322 res

177

323)

324 ;;; **

325 ;;; ******** SubL CODE FOR GET-ASK-BINDING ***

326 ;;; **

327 ;;; Function : GET-ASK-BINDING

328 ;;; Arguments: 1. A list of dotted pairs of the form:

329 ;;;

330 ;;; ((?VAR1 . BINDING1)

331 ;;; (?VAR2 . BINDING2)

332 ;;; ...

333 ;;; (?VARn . BINDINGn)

334 ;;;)

335 ;;; 2. A number defining which BINDING must be returned.

336 ;;; Result : POSSIBLE_OBSERVABLE_VALUE

337 ;;; Remarks :

338 (define get-ask-binding (bindings_list bind_no)

339 (rest (nth (- bind_no 1) bindings_list))

340)

341

342 ;;; **

343 ;;; ******** SubL CODE FOR MENU ****************

344 ;;; **

345 ;;; Function : MENU

346 ;;; Arguments: 1. A number from the menu of the possible results (local)

347 ;;; 2. The list of possible results (global variable *results*)

348 ;;; 3. The number of choices (global variable *no_of_choices*)

349 ;;; Result : Asserts into the KB a 'resultOfTest' assertion

350 ;;; Remarks :

351 (define menu (selection)

352 (pcond

353 ((cor (< selection 1) (> selection *no_of_choices*))

354 (format t "~%~%You must give as an argument, a number between 1-~A"

355 *no_of_choices*))

356 (t (csetq test (fi-ask '(#$possibleTest ?TEST) *defaultMt*))

357 (csetq test (get-ask-binding (first test) 1))

358 ; (csetf *result_type* (nth (- selection 1) *result_type*))

359 (safe-fi :assert

360 (list '#$resultOfTest test (nth (- selection 1) *results*)) *defaultMt*))

361)

362 (systematic *system*)

363)

364 ;;; The 'decompose' inference in KADS Systematic Diagnosis PSM takes as input

365 ;;; the current #$SubSystem (#$hypothesis SUBSYSTEM) and decomposes it

366 ;;; into its subsystems (PART-OF-PREDICATE SUBSYSTEM PART),

367 ;;; generating new hypotheses (#$possibleHypotheses PART).

368 ;;; **

369 ;;; ******** SubL CODE FOR SD-DECOMPOSE *****

370 ;;; **

371 ;;; Function : SD-DECOMPOSE

372 ;;; Arguments: None.

373 ;;; Result :

178 APPENDIX E. THE CYC SUBL CODE FOR PC/AUTOMOBILE DOMAINS

374 ;;; Remarks :

375 (define sd-decompose ()

376 ;; Before un-asserting the current hypothesis, its functional parts

377 ;; must be saved

378 (csetq ask-result (fi-ask '(#$possibleHypotheses ?H) *defaultMt*))

379 (csetq in_hypotheses

380 (mapcar #'get-ask-binding ask-result (position-list (length ask-result) 1)))

381 ;; Before un-asserting the current hypothesis, the order of its subsystems

382 ;; diagnosis must be saved

383 (csetq first_to_test (fi-ask '(#$testFirst ?SYS) *defaultMt*))

384 (csetq first_to_test (get-ask-binding (first first_to_test) 1))

385 (csetq afters (fi-ask '(#$testAfter ?S1 ?S2) *defaultMt*))

386 (csetq s1_list

387 (mapcar #'get-ask-binding afters (position-list (length afters) 1)))

388 (csetq s2_list

389 (mapcar #'get-ask-binding afters (position-list (length afters) 2)))

390 ;; Store hypothesis and un-assert it

391 (csetq hypothesis (fi-ask '(#$hypothesis ?H) *defaultMt*))

392 (csetq hypothesis (get-ask-binding (first hypothesis) 1))

393 (fi-unassert (list '#$hypothesis hypothesis) *defaultMt*)

394 ;; Assert possibleHypotheses.

395 (cdolist (system in_hypotheses t)

396 (safe-fi :assert (list '#$possibleHypotheses system) *defaultMt*)

397)

398 ;; Assert diagnosis order

399 ; (safe-fi :assert (list '#$testFirst first_to_test) *defaultMt*) ;unnecessary

400 (cdolist (s1 s1_list t)

401 (csetq s2 (first s2_list))

402 (csetq s2_list (rest s2_list))

403 (safe-fi :assert (list '#$testAfter s1 s2) *defaultMt*)

404)

405 ;; Un-assert the (#$plausibleInference #$Decompose) assertion.

406 (fi-unassert '(#$plausibleInference #$Decompose) *defaultMt*)

407 ;; Assert the new hypothesis

408 (safe-fi :assert (list '#$hypothesis first_to_test) *defaultMt*)

409)

410 ;;; **

411 ;;; ******** SubL CODE FOR SD-RESET ****************

412 ;;; **

413 ;;; Function : SD-RESET

414 ;;; Arguments: The system that is going to be diagnosed. For the

415 ;;; moment, any one of the symbols '#$PCSystem' or

416 ;;; '#$AutomobileSystem'.

417 ;;; Result : Resets all assertions, in the appropriate Microtheory,

418 ;;; regarding the following predicates :

419 ;;; '#$diagnosisContext

420 ;;; '#$hypothesis',

421 ;;; '#$possibleHypotheses'

422 ;;; '#$resultOfTest'

423 ;;; '#$testFirst'

424 ;;; '#$testAfter'

425 ;;; '#$diagnosisContext' (dependant from #$resultOfTest)

426 ;;; '#$possibleTest' (dependant from #$hypothesis & #$resultOfTest)

427 ;;; Remarks :

179

428 (define sd-reset (system)

429 (pcond

430 ((eql system '#$PCSystem) (csetf *defaultMt* '#$PCDiagnosisMt))

431 ((eql system '#$AutomobileSystem)

432 (csetf *defaultMt* '#$AutomobileDiagnosisMt))

433 (t (error "SD-RESET: argument must be '#$PCSystem' or '#$AutomobileSystem"))

434) ;end of pcond

435

436 ;; Set the global variables

437 (csetf *use-local-queue?* NIL)

438 (csetf *test* nil)

439 (csetf *results* nil)

440 (csetf *no_of_choices* 0)

441 (csetf *system* nil)

442 ;;UN-ASSERT #$diagnosisContext

443 (csetq diagnosisContext (fi-ask '(#$diagnosisContext ?C) *defaultMt*))

444 (csetq diagnosisContext (get-ask-binding (first diagnosisContext) 1))

445 (fi-unassert (list '#$diagnosisContext diagnosisContext) *defaultMt*)

446 ;; UN-ASSERT #$hypothesis

447 (csetq hypothesis (fi-ask '(#$hypothesis ?H) *defaultMt*))

448 (csetq hypothesis (get-ask-binding (first hypothesis) 1))

449 (fi-unassert (list '#$hypothesis hypothesis) *defaultMt*)

450 ;; UN-ASSERT #$possibleHypotheses

451 (csetq ask-result (fi-ask '(#$possibleHypotheses ?H) *defaultMt*))

452 (csetq results

453 (mapcar #'get-ask-binding ask-result (position-list (length ask-result) 1)))

454 (cdolist (result results t)

455 (fi-unassert (list '#$possibleHypotheses result) *defaultMt*)

456)

457 ;; UN-ASSERT #$resultOfTest

458 (csetq ask-result (fi-ask '(#$resultOfTest ?T ?R) *defaultMt*))

459 (cdolist (bindings ask-result t)

460 (fi-unassert

461 (list '#$resultOfTest (get-ask-binding bindings 1)

462 (get-ask-binding bindings 2)) *defaultMt*)

463)

464 ;;UN-ASSERT #$testFirst

465 (csetq first_to_test (fi-ask '(#$testFirst ?SYS) *defaultMt*))

466 (csetq first_to_test (get-ask-binding (first first_to_test) 1))

467 (fi-unassert (list '#$testFirst first_to_test) *defaultMt*)

468 (csetq afters (fi-ask '(#$testAfter ?S1 ?S2) *defaultMt*))

469 (csetq s1_list

470 (mapcar #'get-ask-binding afters (position-list (length afters) 1)))

471 (csetq s2_list

472 (mapcar #'get-ask-binding afters (position-list (length afters) 2)))

473 (cdo

474 ((s1 (first s1_list) (first s1_list))

475 (s2 (first s2_list) (first s2_list))

476 (s1_list (rest s1_list) (rest s1_list))

477 (s2_list (rest s2_list) (rest s2_list))

478) ;end of variables

479 ((null s1)) ;when no more couples of s1,s2

480 (fi-unassert (list '#$testAfter s1 s2) *defaultMt*)

481)

482)

