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Abstract: The effect of the knowledge acquisition bottleneck is still limiting the 

widespread use of knowledge-based systems (KBS), especially in the area of model-

tracing tutors, as they demand the development of deep domain expertise, tutoring and 

student models. The MATHESIS meta-authoring framework for model-tracing tutors, 

presented in this thesis, aims at maximizing knowledge reuse. This is achieved through 

ontological representation of both the declarative and procedural knowledge of a model-

tracing tutor (MTT), as well as of the declarative and procedural authoring knowledge of 

the process to develop a MTT. Declarative knowledge is represented in Ontology Web 

Language (OWL). Procedural knowledge is represented using the concepts of atomic and 

composite processes of OWL-S web services description ontology. The framework 

provides authoring tools, integrated into the Protégé OWL ontology editor, for the 

development and management of the MTT‟s ontological representation. It also provides 

meta-authoring tools for the ontological representation of the authoring expertise as a set 

of composite authoring processes and atomic authoring statements. The latter constitute a 

language, ONTOMATH, for building executable authoring models that, when executed by 

the tools, guide non-expert authors like domain experts to the creation of new model-

tracing tutors. The framework, being in an experimental stage, was used for the 

development of a monomial multiplication and division tutor. However, the overall 

design and implementation aimed at constituting the framework as a proof-of-concept 

system that can be used for the meta-knowledge engineering of more complex model-

tracing tutors. 



 

 

  

 

 vii 

Table of Contents 

List of Tables ...........................................................................................................x 

List of Figures ........................................................................................................ xi 

Chapter 1:  Introduction .........................................................................................17 

1.1 The Problem ............................................................................................17 

1.2 Motivation ...............................................................................................20 

1.3 Contribution ............................................................................................22 

1.4 Summary of  Results ...............................................................................24 

Chapter 2:  The MATHESIS Algebra School ........................................................28 

2.1 Introduction .............................................................................................28 

2.2 The MATHESIS Algebra Tutor..............................................................31 

2.2.1 The Tutor‟s Domain Expertise Model ........................................34 

2.2.2 Intelligent Task Recognition .......................................................39 

2.2.3 The Tutoring Model: Deep Model Tracing With Intelligent Task 

Recognition .................................................................................44 

2.3 The Learning Management System ........................................................57 

2.4 Related Work ..........................................................................................63 

2.5 Evaluation of the MATHESIS System ...................................................66 

2.5.1 Evaluation by Teachers ...............................................................67 

2.6 Discussion and Further Work .................................................................75 

Chapter 3:  The MATHESIS Meta-Authoring Framework ...................................79 

3.1 Introduction .............................................................................................79 

3.2 Background .............................................................................................81 

3.2.1 Related Work ..............................................................................81 

3.2.2 Ontological Engineering and the Knowledge Gap Problem .......86 

3.3 An Overview of the MATHESIS Meta-Authoring Framework .............88 

3.4 The ONTOMATH Meta-Knowledge Engineering Language ....................93 

3.4.1 Procedural Knowledge Representation: The OWL-S Process Model

.....................................................................................................94 



 

 viii 

3.4.2 Procedural Authoring Knowledge Representation: The ONTOMATH 

language ......................................................................................97 

3.5 The MATHESIS Authoring Tools ........................................................101 

3.5.1 The Tutor Authoring Tools .......................................................101 

3.5.2 The Authoring Processes (Meta-Authoring) Tools...................107 

Chapter 4:  Tutor Authoring in the MATHESIS Framework ..............................113 

4.1 Introduction ...........................................................................................113 

4.2 Tutor Initialization ................................................................................114 

4.3 Cognitive model initialization...............................................................117 

4.4 Tutoring model initialization ................................................................121 

4.5 Program code model .............................................................................124 

4.6 Interface model initialization ................................................................126 

4.7 Execution of Authoring Processes ........................................................128 

Chapter 5:  Discussion .........................................................................................152 

5.1 Knowledge reuse and scalability ..........................................................152 

5.2 Conclusions and further work ...............................................................156 

Appendix A:  Complete Math Domain Cognitive Model of the MATHESIS Algebra 

Tutor ............................................................................................................160 

A1. Monomial multiplication: ....................................................................160 

A2. Monomial Division ..............................................................................160 

A3. Collection of  Like Terms ....................................................................161 

A4. Monomial Power ..................................................................................161 

A5. Monomial by Polynomial Multiplication .............................................162 

A6. Polynomial by Polynomial Multiplication ...........................................162 

A7 Parentheses‟ Elimination.......................................................................162 

A8. Square of Sum/Difference Expansion ..................................................163 

A9. Product of Sum by Difference Expansion ............................................164 

A10. Cube of Sum/Difference Expansion ..................................................164 

A11. Factoring by Common Factor ............................................................166 

A12 Factoring by Difference of Squares ....................................................167 



 

 

  

 

 ix 

A13. Factoring by Sum of Cubes ................................................................167 

A14. Factoring by Difference of Cubes ......................................................169 

A15. Factoring by Square of Sum/Difference ............................................170 

A16. Factoring the Quadratic Form ............................................................170 

A17. Factoring by Term Grouping .............................................................171 

Appendix B:  The ONTOMATH Atomic Authoring Statements Reference ..........174 

B1. OntoMath_Browse Statements .............................................................174 

B2. OntoMath_Collection Statements ........................................................174 

B3. OntoMath_String Statements ...............................................................175 

B4. OntoMath_Dialog Statements ..............................................................175 

B5. OntoMath_Ontology_Editing Statements ............................................176 

B6. OntoMath_Tutoring_Processes_Editing Statements............................179 

B7. OntoMath_Ontology_Predicates ..........................................................179 

References ............................................................................................................180 



 

 x 

List of Tables 

Table 2.1. Expanding -    -        in three different ways ............................38 

Table 2.2. Alternative Path for Factoring             ..................................55 

Table 2.3. The Fine-Grained Student Model: Solution Steps ................................56 

Table 2.4. Performance of skill “Calculate common factor”. The percentage is 

2/4=50% ............................................................................................57 

Table 2.5. Evaluation results given by forty (40) math teachers after a three-hour 

hands-on workshop (questions are translated from Greek) ..............69 

Table 2.6. Evaluation results given by twenty (20) students after a three-month period 

(questions are translated from Greek) ...............................................71 

Table 2.7. Students’ performance rise by the MATHESIS Algebra Tutor ............73 

Table 3.1. Common control constructs supported by the OWL-S process model .96 

Table 3.2. The ONTOMATH Statements and their operations ................................99 



 

 

  

 

 xi 

List of Figures 

Fig. 2.1. The MATHESIS Algebra Tutor Interface. ..............................................32 

Fig. 2.2. MathML Presentation code for expression             before and after 

intelligent task recognition ................................................................40 

Fig. 2.3 Mathematical objects created by intelligent task recognition for expression 

            ...............................................................................41 

Fig. 2.4. The student proposes the operation “FACTORING-Common Factor” from 

the drop-down list of supported operations to be applied to the selected 

expression. ........................................................................................46 

Fig. 2.5. The tutor checks and confirms the student‟s suggested operation “Common 

Factor” through messages 2.1 and 2.2 (top). The common factor under 

question here is 4, denoted by the empty square scaffold in the 

“ANSWERING SPACE” area (bottom right). .................................47 

Fig. 2.6. The tutor confirms the entered common factor and asks for the first quotient 

by messages 2.3 and 2.4 (top). The quotient under question is       

             denoted by the □
□
 *(□)

□
 scaffold in the 

“ANSWERING SPACE” area (right). ..............................................48 

Fig. 2.7. The tutor confirms the first quotient and asks for the second quotient through 

messages 2.7 and 2.8 (top). The quotient under question is         

denoted by the empty square scaffold in the “ANSWERING SPACE” 

area (right). ........................................................................................49 

Fig. 2.8. Successful completion of the common factor method in expression       

     . ............................................................................................50 



 

 xii 

Fig. 2.9. Successful completion of the monomial-polynomial multiplication      

  . ......................................................................................................51 

Fig. 2.10. First step of factoring         . The student must identify       

     and         . ...............................................................52 

Fig. 2.11. Responding to a student error. The tutor displays an error message, gives 

help (top, message 6.4) and asks for the correct answer (right). ......53 

Fig. 2.12. Successful completion of factoring            . ..........................53 

Fig. 2.13. The Student Model: Skill Performance Statistics ..................................57 

Fig. 2.14. The Teachers‟ Menu ..............................................................................58 

Fig. 2.15. The Classes Management Page. ............................................................58 

Fig. 2.16. Test Paper Editing. The author has just created exercise no. 22 using the 

HTML editor (b) and inserted expression             for the first 

question using the math editor (c). The paper is shown on the right with 

the newly added exercise at the bottom (d). .....................................60 

Fig. 2.17. Individualized Assignment of Exercises to Students. ...........................61 

Fig. 2.18. Student Assessment: Selecting a Solved Exercise ................................62 

Fig. 3.1 The MATHESIS Meta-Authoring Framework.........................................92 

Fig. 3.2. The MATHESIS Tools as a tab widget in Protégé: (a) Framework-specific 

(model-tracing) Tutor Authoring Tools, (b) Authoring Processes (Meta-

Authoring) Tools, (c) The MATHESIS Ontology Tab .....................93 

Fig. 3.3. Top level of the OWL-S process ontology (from Martin et al., 2005) ....96 

Fig. 3.4. Part of the ONTOMATH Authoring Processes Ontology ..........................98 

Fig. 3.5 The Tutor Initialization Tools.................................................................101 

Fig. 3.6 The XML DOM tree of the MATHESIS Algebra Tutor interface .........103 

Fig. 3.7 The Tutoring Processes Advanced Authoring Tools ..............................104 



 

 

  

 

 xiii 

Fig. 3.8 A newly created Tutoring Process ..........................................................104 

Fig. 3.9 The Calling Sequence Tree for Tutoring Process multiplyMainParts ..105 

Fig. 3.10 The Authoring Processes (Meta-Authoring) Tools ..............................108 

Fig. 4.1. The Model-Tracing Tutor Authoring Tools Window: (a) The Tutor 

Initialization Tools, (b) The Advanced Tools for Tutoring Processes 

Authoring, (c) Tree representation of tutoring process  Model-Tracing-

Algorithm for the execute-monomial-multiplication task...........114 

Fig. 4.2. The top-level ontological representation of the tutor ............................115 

Fig. 4.3. Author is prompted by the tools to enter the name of a newly created tutor 

instance. ..........................................................................................116 

Fig. 4.4. (a) The ITS_Implemented hierarchy (b) Instance monomial-

multiplication-tutor is selected    (c) Properties of the selected instance

.........................................................................................................116 

Fig. 4.5. Author is prompted by the tools to enter the name of a newly created 

cognitive task instance. ...................................................................117 

Fig. 4.6. (a) The Domain_Task hierarchy (b) Instance execute-monomial-

multiplication is selected   (c) Properties of the selected instance .118 

Fig. 4.7. (a) The ITS-Teaching-Model hierarchy. (b) Instance execute-monomial-

multiplication-Model-Tracing-Algorithm has been selected. (c) 

Properties of the selected instance are shown. ................................119 

Fig. 4.8. (a) The Domain-Knowledge-Component hierarchy. (b)  Instance 

monomial has been selected. (c) Properties of the selected instance are 

shown. .............................................................................................120 

Fig. 4.9. Representation of the JavaScript function multiplyMainParts ............124 

Fig.4.10 Part of the JavaScript_Statement ontology .......................................125 



 

 xiv 

Fig. 4.11. The HTML User Interface DOM Ontological (left) and Visual (right, top) 

Representation.................................................................................127 

Fig. 4.12. The Authoring Processes Authoring (Meta-Authoring) Tools displaying 

Authoring Process authoring_task_present_domain_task. ......129 

Fig. 4.13. The identify_input_knowledge_components authoring process. ...132 

Fig. 4.14. Locating a monomial instance in the ontology...................................134 

Fig. 4.15. Creating a new instance of monomial ................................................135 

Fig. 4.16 Instance currentAuthoringSession for the monomial-multiplication-tutor

.........................................................................................................136 

Fig. 4.17. The define-interface-elements-for-input-knowledge-components 

authoring process ............................................................................137 

Fig. 4.18 The add-interface-element-to-DOM authoring process ...................139 

Fig. 4.19 Ontological representation of a monomial tutor with its user interface141 

Fig. 4.20 Authoring process define-variables-for-interface-elements ...........142 

Fig. 4.21 The expressionInputControl JavaScript variable ..............................143 

Fig. 4.22 The define_code_to_initialize_interface_elements  authoring process

.........................................................................................................144 

Fig. 4.23 The getHTMLElementProperty authoring process ...........................145 

Fig. 4.24 Ontological representation of JavaScript statement 

expressionInputControl=getElementById(“expressionInputControl”)147 

Fig. 4.25 Authoring process get_interface_element_reference .....................148 

Fig. 4.26 Tutoring process execute-monomial-multiplication-Presentation .149 

 



 

15 

 

 

 

 

CHAPTER 1  



 

 

 

 

 

 16 

  



 

 

  

 

 17 

Chapter 1:  Introduction 

 

 

 

 

 

 

 

 

 

 

1.1 THE PROBLEM 

The main goal of this thesis is the development of an ontology-based authoring 

framework for the development of model-tracing tutors (MTT) for mathematics. The 

purpose of the framework is to encode the knowledge of expert authors of MTTs and 

make it available and reusable to other authors, either equally or less expert. This 

framework is called MATHESIS, the Greek word for “learning”, the root of the word 

“mathematics”. 

Intelligent tutoring systems (ITS), particularly model-tracing tutors, have been 

proven quite successful in the area of mathematics (Koedinger, Anderson, Hadley, & 

Mark, 1997; Koedinger & Corbett, 2006). Despite their efficiency (Corbett 2001), these 

tutors are expensive to build both in time and human resources (Aleven, McLaren, 

Sewall, & Koedinger, 2006). This is due to the well-known knowledge acquisition 

bottleneck (Hoffman 1987), comprising the extraction of knowledge from domain 
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experts, the representation of this knowledge and its implementation in effective 

knowledge-based systems. 

Knowledge acquisition and its counterpart, knowledge reuse, have been proven to 

be the key problems for the development of expertise models, the models that represent 

and produce the problem-solving knowledge in knowledge-based systems. The main 

consequences are: 

 High development demands in human resources, time and money. 

 Demand for knowledge engineers possessing significant expertise. 

 Shallow, incomplete or even incorrect expertise models. 

 Difficulties in modifying and/or expanding the expertise models. 

 Inability to reuse developed expertise models in similar or new knowledge-based 

systems (an effect described as “re-inventing the wheel”). 

 

In the case of MTTs, the knowledge acquisition bottleneck gets even more serious 

as these systems must contain two expertise models:  

i. The domain expertise model or problem solver, which represents the problem-

solving knowledge of the tutored domain. This model is used to produce the valid 

solution steps of the tutored problem and allow the tutor to provide guidance and 

feedback to the student.  

ii. The pedagogical or tutoring model, which represents the teaching knowledge of 

the system such as how to present the problem, what problem-solving tools to 

provide to the students for entering their solution steps, when and how to give 

help, what kind of help/guidance to give etc. 
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In turn, these models affect directly the design of the user interface model, which 

orchestrates the interactions between the aforementioned two models to produce the 

desired tutoring behaviour. In addition, some MTTs require the development of another 

model, the student model, which represents students‟ mastery of the tutored domain. This 

model is used by the system to provide student-adapted tutoring either within problems 

(micro-adaptation) or between problems (macro-adaptation). 

The most difficult model to build is the domain expertise model. At the same 

time, it is the most critical one since it defines:  

i. The tutor‟s breadth, that is, how many domain skills it can teach.   

ii. The tutor‟s depth, that is, how complex skills, in terms of the sub-skills contained, 

it can teach.  

iii. The tutor‟s granularity, that is, how fine-grained are the solution steps that the 

tutor can produce and guide.   

iv. The tutor‟s scalability, that is, the ability to reuse the tutor‟s domain expertise 

model for extending its breadth and depth.  

 

Despite the efforts, advancements and successes in the currently developed 

authoring frameworks and the corresponding tutors, these frameworks have worked 

around the knowledge acquisition problem rather than confronting it directly. As a 

consequence, most of the developed tutors suffer from limited depth and breadth, 

whereas those having broader and deeper domain expertise models suffer from scalability 

issues. The motivation of this thesis is to develop an authoring framework that will deal 

directly with the knowledge acquisition problem in order to produce tutors that cover 

broader and more complex domains in a scalable way. 
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1.2 MOTIVATION 

In an extensive survey of authoring tools, Murray (2003a) concluded that they 

suffered from a number of problems such as isolation, fragmentation and lack of 

communication, interoperability and re-usability of the tutors they build. The same 

problems had been identified three years earlier in (Mizoguchi & Bourdeau, 2000). These 

problems are not specific to the domain of ITS authoring, as they penetrate the whole 

area of expert systems development (Lenat & Guha, 1990; Lenat, 1995). A highly 

promising solution to all of them is ontological engineering, that is, the development of 

ontologies that represent declaratively the expertise that lies inside any intelligent system 

(Mizoguchi, 2004). The main advantages of ontologies are that: 

i. They impose a systematic and structured development of knowledge, just like 

developing a mathematical theory with definitions, properties, axioms and 

theories, and  

ii. The developed knowledge, being in a declarative form, is open for inspection and 

therefore mostly reusable (Gómez-Pérez, Fernández-López, Corcho, 2004).   

 

Based on the success of the ontological engineering approach in the domain of 

expert systems (Aitken & Sklavakis, 1999; Lenat, 1995; Sklavakis, 1998), as well as in 

the domain of intelligent tutoring systems ( Mizoguchi, Hayashi, & Bourdeau, 2009), two 

research goals were set:  

i. The complete ontological representation of a model-tracing tutor‟s modules, that 

is, the user interface, the tutoring model, the domain expertise model, the student 

model, as well as of the authoring knowledge that was used to build these models, 

and  

ii. The extensive use of standardized languages and publicly available modular tools.  
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For these reasons, a bottom-up approach was adopted: Initially, the MATHESIS 

Algebra Tutor was developed to be used as a prototype target tutor (Sklavakis & 

Refanidis, 2008; Sklavakis & Refanidis 2013). It is a model-tracing tutor that teaches 

expansion and factoring of algebraic expressions. Having knowledge reuse as its primary 

design guidelines, the tutor is implemented using HTML for the user interface and 

JavaScript for the domain expertise and tutoring models. The primary interface element is 

Design Science‟s WebEq Input Control applet1, an editor for displaying and editing 

mathematical expressions. The WebEq Input control is scriptable through JavaScript and 

uses MathML2 to represent algebraic expressions. The tutor has a cognitive model of 

considerable breadth, depth and granularity, easily scalable. Then, based on the 

knowledge used to develop the MATHESIS Algebra Tutor, an initial version of the 

MATHESIS ontology has been developed using the Ontology Web Language - OWL3  

(Sklavakis, & Refanidis, 2010b). The ontology was developed using the Protégé ontology 

editor4. As this first version of the ontology was developed in a bottom-up direction, it 

emphasized on the representation of the tutor‟s models, namely the interface, tutoring and 

domain expertise models. The ontology also contained a representation of the authoring 

knowledge at a rather conceptual level. At the final stage, generic meta-authoring tools 

were developed (Sklavakis & Refanidis, 2014). These tools include: 

i. An executable authoring language,  ONTOMATH, based on the process model of 

OWL-S5,  

                                                 
1 http://www.dessci.com/ 
2 http://www.w3.org/Math/ 
3 http://www.w3.org/TR/owl-features/ 
4 http://protege.stanford.edu 
5 http://www.w3.org/Submission/OWL-S/ 
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ii. Editing tools for the development of  ONTOMATH executable authoring expertise 

models, that is, an ontological representation of the declarative and procedural 

authoring knowledge, and  

iii. An interpreter for executing the ONTOMATH authoring models.  

 

These tools constitute the MATHESIS authoring framework as a meta-authoring 

framework. In an authoring framework the tools allow expert authors to directly develop 

the various models of a tutor. In the MATHESIS meta-authoring framework expert 

authors, using the ONTOMATH language, build executable authoring models that encode 

their authoring knowledge of how to build a tutor. When these authoring models are 

executed by non-expert domain authors they guide them in developing the ontological 

representations of the tutors‟ models. These ontological representations are automatically 

translated into program code that implements the tutors. 

 Using these tools, an authoring model was developed that, when executed by the 

interpreter, guides a trained domain author (teacher of mathematics) to build the 

ontological representation of a model-tracing monomial multiplication tutor identical to 

the one contained in the original MATHESIS Algebra Tutor. In parallel, special 

authoring tools have been developed for the authoring of model-tracing tutors. These 

tools are used to support the meta-authoring tools in the development of the executable 

authoring model by automating some top-level authoring processes of the MTT under 

development and providing visualization and browsing facilities for the inspection of the 

tutor‟s developed models. All authoring tools were developed as a tab widget in Protégé 

using Java. 

1.3 CONTRIBUTION 

During the research for this thesis, the following contributions have been made: 
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A. Publications and System Demonstrations 

Sklavakis, D., & Refanidis, I. (2008). An Individualized Web-Based Algebra 

Tutor Based on Dynamic Deep Model-Tracing. Proceedings of the Fifth Hellenic 

Conference on Artificial Intelligence (SETN ‟08), (pp. 389-394). Heidelberg: 

Springer. 

Sklavakis, D. & Refanidis, I. (2009a). The MATHESIS Algebra Tutor: Web-

based Expert Tutoring via Deep Model Tracing. Interactive Event. Proceedings of 

the 14th International Conference on Artificial Intelligence in Education (AIED 

2009), (p. 795). Amsterdam: IOS Press. 

Sklavakis, D., & Refanidis, I. (2009b). The MATHESIS Ontology: Reusable 

Authoring Knowledge for Reusable Intelligent Tutors. Proceedings of the 7th 

International Workshop on Ontologies and Semantic Web for E-Learning (SWEL 

2009), (pp. 86-90).  

Sklavakis, D., & Refanidis, I. (2010a). MATHESIS: A Web-Based Intelligent 

Tutoring School for Algebra. Intelligent System Demostration at the 6th Hellenic 

Conference on Artificial Intelligence (SETN 2010). 

Sklavakis, D., & Refanidis,  I. (2010b). Ontology-Based Authoring of 

Intelligent Model-Tracing Math Tutors. Proceedings of the Fourteenth 

International Conference on Artificial Intelligence (AIMSA 2010), (pp. 201-210). 

Heidelberg: Springer. 

Sklavakis, D., & Refanidis, I. (2013). MATHESIS: An Intelligent Web-Based 

Algebra Tutoring School. International Journal of Artificial Intelligence in 

Education Vol. 22 (2) (pp. 191-218). Amsterdam: IOS Press. 

Sklavakis, D., & Refanidis, I. (2014). The MATHESIS meta-knowledge 

engineering framework: Ontology-driven development of intelligent tutoring 

systems. Applied Ontology Vol. 9 (3-4) (pp. 237-265). Amsterdam: IOS Press. 

 

B. Software 

 The MATHESIS intelligent Algebra Tutoring System (Section 2) 

(http://users.sch.gr/dsklavakis/mathesis/en/MATHESIS_Main_Frameset.htm) 

 The MATHESIS Authoring Tools (Sections 3 and 4) 

(http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/01-Authorring_Tools.mp4) and 

(http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/02-Authoring_Processes.mp4) 

 The MATHESIS ontology (Sections 3 and 4) 

http://users.sch.gr/dsklavakis/mathesis/en/MATHESIS_Main_Frameset.htm
http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/01-Authorring_Tools.mp4
http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/02-Authoring_Processes.mp4
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1.4 SUMMARY OF  RESULTS 

Two are the main results of this thesis, one concerning the MATHESIS Algebra 

Tutor and the other the MATHESIS meta-authoring framework. 

First, the MATHESIS Algebra Tutor is a successful proof-of-concept system 

(Skavakis & Refanidis, 2013). The basic research result is that, in order to build 

successful intelligent real-world tutoring systems, we must build powerful domain 

expertise models. The engineering of such broad and deep models has to overcome the 

common obstacle of all expert systems, the knowledge acquisition bottleneck: the 

extraction of the expertise from domain experts and its representation in efficient ways. 

In the domain of knowledge engineering, the most profitable solution up to now is 

knowledge reuse, which is achieved through open, modular, interchangeable, inspect-

able, formal knowledge representations and system implementations (Aitken & Sklavakis 

1999). Equally important, the models must be deep and broad, having a wide basis of low 

level knowledge about simple task performance, on top of which is built the knowledge 

for performing higher level domain tasks. Otherwise, models are brittle (Lenat & Guha 

1990), performance is limited, scaling up is intractable and the systems fail to cope with 

real-world demands. The MATHESIS Algebra Tutor incorporates all these characteristics 

that make it a successful real-world intelligent tutoring system. 

Second, the MATHESIS meta-authoring framework achieves the development of 

broad, deep, granular and scalable authoring models. It allows the ontological 

representation of expert authoring knowledge in an arbitrary breadth, depth and 

granularity in the form of executable authoring processes. Thus, it makes MTTs‟ 

authoring scalable by spreading its load over various levels of reusable authoring 

processes and over various authors, experts and non-experts,  that can reuse them by 

browsing, locating and modifying them (Sklavakis & Refanidis, 2014). 
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In Chapter 2 the MATHESIS Algebra School is described with emphasis on the 

MATHESIS Algebra Tutor around which the school is built. Chapter 3 describes the 

MATHESIS meta-authoring framework and its constituent parts.  Related work is 

presented separately for the MATHESIS Algebra Tutor (Section 2.4) and separately for 

the MATHESIS framework (Section 3.2). Chapter 4 describes how the framework was 

used to develop a monomial multiplication model-tracing tutor. Finally, Chapter 5 

discusses the results of the research as well as further research directions.  
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Chapter 2:  The MATHESIS Algebra School 

 

 

 

 

 

 

 

 

 

2.1 INTRODUCTION 

One-to-one tutoring has proven to be one of the most effective ways of teaching. 

It has been shown (Bloom 1984) that the performance of the average student under an 

expert tutor is about two standard deviations above the average performance of the 

conventional class (30 students to one teacher). That is, 50% of the tutored students 

scored higher than 98% of students in the conventional class. However, it is also known 

that one-to-one tutoring is a very expensive form of education. Due to this cost, we are 

still in the era of mass education, struggling to raise the teacher to student ratio. The 

problem of designing and implementing educational environments as effective as 

individual tutoring was termed by Bloom as “the two sigma problem”, named after the 

mathematical symbol of standard deviation, ζ. 

The implementation of the one-to-one tutoring model by Intelligent Tutoring 

Systems (ITSs) has motivated researchers to aim to develop ITSs that provide the same 

tutoring quality as a human tutor (VanLehn 2006). Model Tracing Tutors (MTTs) 
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(Anderson, Corbett, Koedinger, & Pelletier, 1995) have shown significant success in 

domains like mathematics (Koedinger & Corbett 2006), computer programming (Corbett 

2001) and physics (VanLehn, Lynch, Schulze, Shapiro, & Shelby, 2005). These tutors are 

based on a domain expertise model that solves the problem under tutoring and produces 

the correct step(s). At each step, the model-tracing algorithm matches the solution(s) 

produced by the model to that provided by the student and gives positive or negative 

feedback, hints or/and help messages. However, the domain models of MTTs are hard to 

author (Aleven, McLaren, Sewall, & Koedinger, 2006). The main reason for this is the 

knowledge acquisition bottleneck: extracting the knowledge from the domain experts and 

encoding it into a MTT. Knowledge reuse has been proposed as a key factor to overcome 

this obstacle (Murray 2003a; Mizoguchi & Bourdeau 2000). Since expert knowledge and, 

particularly, tutoring knowledge is so hard to create, re-using it is of paramount 

importance. A good example of knowledge reuse is the Mass Production mechanism 

provided by Carnegie Mellon‟s Cognitive Tutors Authoring Tools (CTAT). This 

mechanism allows the creation of new tutors from existing ones for isomorphic problems, 

that is problems having nearly the same solution steps (Aleven, McLaren, & Sewall, 

2009).  

The main goal of this thesis is to develop authoring tools for model-tracing tutors 

in mathematics, with knowledge re-use as the primary characteristic of the authored 

tutors as well as for the authoring knowledge used by the tools. For this reason, in the 

first stage of the MATHESIS project, an Algebra Tutor was developed to be used as a 

prototype target tutor (Sklavakis & Refanidis 2008; Sklavakis & Refanidis 2013). The 

purpose of developing the tutor was twofold: a) to investigate the design and 

implementation effort for developing an MTT having a domain expertise model with a 

breadth of 16 top level skills (algebraic operations) and – after elaborate cognitive task 
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analysis – a greater depth and b) to provide the knowledge that would be represented in 

an ontology on top of which the authoring tools would be implemented (Sklavakis & 

Refanidis 2009b; Sklavakis & Refanidis 2010b; Sklavakis & Refanidis 2014).  

Concerning the former research goal, as the domain expertise model has been 

extended and deepened, the scaling-up problem was confronted: if a problem contains 

more than one task to be performed then a more complex task arises, i.e., identifying the 

tasks to perform! The solution to this tutoring problem was to equip the tutor with 

intelligent task recognition through sophisticated parsing of the algebraic expressions. 

Another, rather positive, consequence of adopting a broad and deep domain expertise 

model was the development of an equally detailed student model. Instead of simply 

keeping a percentage measure of the students‟ skill performance, the student model was 

extended to keep full records of the interactions between the interface and the student for 

each solution step. 

This chapter describes the web-based intelligent MATHESIS Algebra Model 

Tracing Tutor as well as the MATHESIS tutoring school for expanding and factoring 

algebraic expressions. The school has been built around the MATHESIS algebra MTT 

and has been extended with a learning management system (LMS). The rest of the 

chapter is structured as follows: Section 2.2 describes the final version of the MATHESIS 

algebra MTT with an extended domain model, a refined student model and a new 

interface integrating the tutor into the school. Section 2.3 describes the learning 

management system of the school, including an editor for teachers to create test papers 

with their own exercises and tools to inspect the student model. Section 2.4 presents 

related work. Section 2.5 presents an evaluation of the system while Section 2.6 

concludes the chapter with a discussion of the research results and future directions of 

research. 
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2.2 THE MATHESIS ALGEBRA TUTOR6  

The MATHESIS Model-Tracing Algebra Tutor was developed as a prototype 

target tutor for the MATHESIS project (Sklavakis & Refanidis 2008; Sklavakis & 

Refanidis 2013). The ultimate goal of the project is the development of authoring tools 

for model-tracing tutors that will make extensive reuse of the valuable tutoring 

knowledge through ontological engineering. The MATHESIS tutor itself was designed 

with knowledge reuse as its main non-functional requirements. Consequently, the 

architecture of the system should be based on open, standardized and modular 

representations. Additionally, there were three more issues that determined the overall 

architecture:  

i. The tutor interface should be web-based in order to be broadly accessible.  

ii. The model-tracing algorithm requires constant interaction between the cognitive 

model and the interface. Therefore they should lie at the same side, that is, the 

client side.  

iii. The programming language(s) that would implement the various tutor parts 

(interface, domain model) should be simple enough to be represented with an 

ontology. This ontology would be used by the authoring tools to guide non-expert 

authors in redeveloping the tutor.  

  

The achievement of these requirements led to an implementation of the tutor 

using HTML for the user interface and JavaScript for the domain expertise and tutoring 

models. These two languages are the simplest ones for building dynamic, interactive web 

pages, they are open, non-proprietary and lend themselves to direct representation and 

manipulation from the developed MATHESIS authoring tools (Sklavakis & Refanidis 

                                                 
6 http://users.sch.gr/dsklavakis/mathesis/en/MATHESIS_Main_Frameset.htm 
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2010b; Sklavakis & Refanidis 2014). The user interface, shown in Figure 2.1, has four 

main parts:  

i. The messages area (top), where the tutor displays information about the interface 

usage, as well as hints, help and feedback for correct and incorrect problem-

solving steps. 

ii. The algebraic expression rewriting area (a), where the algebraic expression under 

rewriting and its transformations are displayed. 

iii. The student‟s answering area (b), where the student enters the answer for each 

problem-solving step.  

iv. The performed operation area (c), where intermediate results are shown for multi-

step algebraic operations. 

 

 

Fig. 2.1. The MATHESIS Algebra Tutor Interface. 

(a) 

(b) 

(c) 
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The primary interface element is Design Science‟s WebEq (now MathFlow) Input 

Control applet, an editor for displaying and editing mathematical expressions in web 

pages (Design Science 2011). There are three such Input Controls, i.e., the algebraic 

expression, the answering space and the performed operation Input Controls (Figure 2.1). 

The WebEq Input Control is scriptable through JavaScript and represents algebraic 

expressions as MathML . So, during the problem solving process, the problem-solving 

state as well as the student solution steps are represented via the open MathML standard 

and, therefore, they can be interoperatable, i.e. inspectable, recordable and scriptable 

(Murray 2003b). As a result, the tutor can be used in the following ways:  

 

i. The student can type directly in the algebraic expression area algebraic 

expressions using the math editing palette (Figure 2.1, area (a)). Then, he/she can 

initialize the tutoring process by clicking the “Start Exercise” button. 

ii. The student can select an exercise from a test paper created by a teacher through 

the Learning Management System (Section 2.3) and then initialize the tutor. 

iii. The tutor can be initialized (opened) from any other e-learning program with the 

desired algebraic expression.  

iv. The tutor can recursively initialize (open) new instances of itself in order to break 

down more complex tutoring tasks.  

 

This latter possibility is directly related to the issues of knowledge re-use and 

“scaling-up”. The mathematical skill of factoring by term grouping is rather complex. In 

this factoring method (a) the terms of the expression must be separated into groups, (b) 

each group must be factored by some factoring method and (c) the resulting products 

must have a common factor. It is step (c) that makes step (a) and the whole method 
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complex and raises the issues of knowledge re-use and “scaling-up”. The intelligent task 

recognition of the MATHESIS tutor does not yet support guidance for the first step and 

therefore term grouping is not yet part of its domain model. However, provision has been 

made for steps (b) and (c). As an example, let‟s consider factoring the expression 

          by grouping its terms: the first group,     , must be factored using 

the identity                 , yielding             ; the second group, 

    , must be factored by common factor, yielding        . To guide the student in 

applying different factoring methods, the tutor can open an instance of itself with the 

expression      for the first group followed by an instance for expression     . Each 

instance of the tutor can guide the student in factoring each group as separate problems 

and then return the factored expression to the parent tutor, thus yielding           

          . From this point, the parent tutor will guide the student in applying the 

common factor method, yielding               . Thus, the factoring methods 

supported by the tutor can be re-used in a completely new and complex factoring task, 

term grouping. 

 

2.2.1 The Tutor’s Domain Expertise Model 

The development of the domain expertise model was based on deep cognitive task 

analysis in the paradigm of Carnegie-Mellon‟s cognitive tutors (Anderson et al. 1995). 

The tutor can teach a breadth of 16 top-level cognitive math skills: 

 

 Monomial multiplication  

 Monomial division  

 Powers of monomials  

 Monomial-polynomial multiplication 
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 Polynomial multiplication  

 Elimination of parentheses  

 Collection of like terms 

 Identities expansion: square of sum, square of difference, product of sum by 

difference, cube of sum and cube of difference 

 Factoring: common factor, identities, quadratic form  

 

Each one of these top-level math skills is further analyzed in more detailed sub-

skills leading to a fine grained domain model of 104 primitive math skills (see Appendix 

A). Part of this broad and deep domain model is given in the following list: 
 

1. Monomial multiplication:                       

1.1. Multiply coefficients:            

1.2. Multiply main parts: 

1.2.1. Add exponents of common variables:              

1.2.2. Copy exponents of single variables:          

 

2. Monomial division: 
        

    
       

2.1. Divide coefficients:          

2.2. Divide main parts: 

2.2.1. Subtract exponents of common variables:            

                    

2.2.2. Copy exponents of single variables:       

 

3. Collection of like terms:                        
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3.1. Find groups of identical terms:                    

3.2. Add the coefficients of each group:                 

3.3. Keep the main part of each group:                            

4. Monomial power:                     

4.1. Raise the coefficient to the power:          

4.2. Raise main part to the exponent: 

4.2.1. Multiply the exponents:                               

 

5. Monomial by polynomial multiplication:                           

5.1. Identify the monomial terms of the polynomial:            

5.2. Multiply each one of them with the monomial:  

                                     

 

6. Polynomial by polynomial multiplication: 

                                              

6.1. Identify the monomial terms of the first polynomial:             

6.2. Identify the monomial terms of the second polynomial:               

6.3. Multiply each term of the first monomial with each term of the second 

monomial:                                                 

                                   

 

7. Elimination of parentheses: 
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7.1. Keep the sign of each parenthesized term if the sign in front of the parenthesis is 

a plus (+):                       

7.2. Change the sign of each parenthesized term if the sign in front of the parenthesis 

is a minus (-):                       

7.3. Collect like terms if there are any:                         

       

 

8. Identity expansion:                   

8.1. Recall the expanded form of the identity:                  

8.2. Substitute a and b for the real terms:              

8.3. Take care for parenthesized terms:                         

8.4. Perform monomial multiplications and powers:                     

      

 

9. Factoring by common factor:                          

9.1. Find the common factor:     

9.1.1. Find the GCD of the coefficients:           =2 

9.1.2. Find the GCD of common variables:                  

9.2. Divide terms by the common factor: 

   

   
       

    

   
        

    

   
    

 

10. Factoring the quadratic form   

                                  : 
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10.1. Identify                 :             

10.2. Find the pairs of integers a, b that have a product of      

                                             

10.3. Find the pair a, b that gives a sum of            

10.4. Write the factored form:                       
 

The main reason for developing such a broad and deep domain expertise model 

was the investigation and confrontation of the scaling-up problem: despite the success of 

model-tracing tutors, in the majority of implementations, the tutor teaches a very 

elementary (low level) cognitive skill in isolation (Aleven, McLaren & Sewall 2009). 

However, even in school textbooks, medium difficulty exercises demand the application 

of a multitude of composite (top-level) cognitive skills in combination with each other. 

Their solutions demand the application of more high-level skills, like the identification 

and decomposition of the top level skills that appear in the exercise.  

 

Table 2.1. Expanding               in three different ways 

Operation Result 

 

A1. Monomial-polynomial multiplication 

 

A2. Polynomial multiplication 

 

A3. Collection of like terms 

               

                

                  

         

 

B1. Polynomial multiplication 

 

B2. Monomial-polynomial multiplication 

 

B3. Collection of like terms 
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C1. Identity    2 2
a b a b a b     

C2. Monomial-polynomial multiplication 

               

           

         

 

To illustrate this situation, consider the algebraic expression        

            . In order to expand this expression, the student must first identify the 

operations that must be performed: a square of difference        , and a multiplication 

with three factors              . Especially for the multiplication, the student can 

perform it in three different ways, described in Table 2.1.  

So, it becomes clear that, even for a simple expansion exercise like the one in 

Table 2.1, a broad and deep domain expertise model containing all the potential skills is 

needed. In addition, intelligent recognition of the operations that are present in the 

expression is needed, whereas this is also a new cognitive skill that the tutor must be able 

to teach.  

 

2.2.2 Intelligent Task Recognition 

 

The key issue for tackling the scaling-up problem is the recognition by the tutor of 

the task(s) that must be performed, as well as of those entered by the student in order to 

match them, so as to provide guidance and feedback in each step of the tutoring process. 

In the MATHESIS tutor, these problems are tackled by parsing the MathML 

representation of the algebraic expressions and generating multiple internal 

representations. To illustrate how this is done, the algebraic expression            

will be used: 
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1. The tutor gets a tree representation of the expression‟s MathML presentation, 

analogous to the Document Object Model (DOM) of HTML. This is provided by 

the Input Control applet (Figure 2.1) through JavaScript scripting. In this 

MathML DOM tree, every element of the algebraic expression is represented as a 

node. 

Fig. 2.2. MathML Presentation code for expression             before and after intelligent 

task recognition 

2. This MathML DOM tree is parsed using special methods provided by the Input 

Control. Each element of the expression (node) is given a unique identification 

string (id), which is used in the internal representations of the expression to 

uniquely identify each element (Figure 2.2). At the same time, the “atomic” 

elements such as numbers, variables and operation symbols are grouped in 

MathML Presentation code for expression 

            without IDs 

 

MathML Presentation code for 

expression             with IDs 

 

<math> 

   <mrow> 

      <mrow> 

         <mn>4</mn> 

         <mi>x</mi> 

         <mo>*</mo> 

         <mo>(</mo> 

         <mi>x</mi> 

         <mo>+</mo> 

         <mn>7</mn> 

         <mo>)</mo> 

         <mo>+</mo> 

         <mn>48</mn> 

      </mrow> 

   </mrow> 

</math> 

 

<math> 

   <mrow id='1'> 

      <mrow id='1.1'> 

         <mn id='1.1.1'>4</mn> 

         <mi id='1.1.2'>x</mi> 

         <mo id='1.1.3'>*</mo> 

         <mo id='1.1.4'>(</mo> 

         <mi id='1.1.5'>x</mi> 

         <mo id='1.1.6'>+</mo> 

         <mn id='1.1.7'>7</mn> 

         <mo id='1.1.8'>)</mo> 

         <mo id='1.1.9'>+</mo> 

         <mn id='1.1.10'>48</mn> 

      </mrow> 

   </mrow> 

</math> 
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mathematical objects like monomials and polynomials. These are represented 

using custom JavaScript objects, and they also get unique identification strings. 

For each monomial, its coefficient, variables and their exponents are kept along 

with their unique identification numbers. For each polynomial, its monomial 

terms are kept. In the case of expression           , four monomials are 

created, 4x, x, 7 and 48, as well as a polynomial, x+7, having as its terms the 

monomials x and 7 (.  

 

ParsedMonomial Monomial_1 Monomial_2 Monomial_3 Monomial_4 

Coefficient 4 1 7 48 

Variables [ x ] [ x ] [ ] [ ] 

Exponents [ 1 ] [ 1 ] [ ] [ ] 

idString “1.1.1” “1.1.5” “1.1.7” “1.1.10” 

signID “” “” “1.1.6” “1.1.9” 

coefficientID “1.1.1” “” “1.1.7” “1.1.9” 

variablesID [ “1.1.2” ] [ “1.1.5” ] [  ] [  ] 

exponentsID [ “” ] [ “” ] [  ] [  ] 

 

Polynomial_1 {  

monomials = [ Monomial_2,  Monomial_3 ],  

exponent = 1  

}  

 

SumTerms  { 

 SumTerm_1 { 

  Factors = [ Monomial_1, Polynomial_1] 

 } 

 SumTerm_2 { 

  Factors = [ Monomial_4 ] 

 } 

} 

 

allowedOperations = [ “1.1.3”, “1.1.6” ] 

 

allowedOperads = [ [Monomial_1, Polynomial_1 ], [ Monomial_2, Monomial_3] ] 

Fig. 2.3 Mathematical objects created by intelligent task recognition for expression 
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3. Identifying each operations‟ precedence is a key top-level skill for the expansion 

and factoring of algebraic expressions. As it will be explained in the next 

subsection, the tutor teaches students the correct order of operations. 

Consequently, the intelligent parsing mechanism extracts this information from 

the algebraic expression and represents it appropriately. 

4. Finally, using the precedence of operations, the expression is represented as a sum 

of products using JavaScript arrays. The expression            is 

represented as a sum array of two product arrays,         and   . The first 

product array has two factors, monomial    and polynomial      , while the 

second product array has only one monomial,   . 
 

All this information is extracted and represented for the expression to be rewritten 

(Figure 2.3). When the student selects a part (or the whole) of the expression, this part is 

parsed again and the same information is extracted and represented by the tutor; however, 

now the parser does not assign identification strings to the elements of the selected 

expression but just gets the ones assigned by the original parsing of the expression. As a 

result, the tutor can identify exactly which part of the expression is selected, which 

operations are selected and whether they have the right precedence to be performed. 

Moreover, when the student suggests what kind of operation he/she has selected, the tutor 

can check whether this suggestion is correct. For example, in expression           , 

if the student selects         and proposes “Common Factor”, the tutor checks its 

internal representation and sees that the selected (sub)expression is not a sum and 

therefore it can‟t be factored. If the student selects the whole expression, the tutor sees 

that the expression is a sum with two terms and only then tries to extract a common 

factor. If it finds one, it proceeds by asking the student to give the common factor. 
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Otherwise, the student is given feedback that no common factor exists. Moreover, the 

tutor checks that the student has selected the whole expression, since there is no point in 

getting a common factor of part of an expression. 

This approach, with exhaustive and multiple representations of the algebraic 

expressions allows the tutor to handle even more subtle conditions like dealing with the 

commutative properties of addition (       ) and multiplication (       ). In 

practice, the commutative property means that in a sum or product, the order of the terms 

is not important. By representing the algebraic expressions as a sum of products, the 

MATHESIS tutor can easily check student answers that are sums or products. Thus, 

when expanding the expression        , the tutor can accept as a correct answer any of 

the expressions           ,           ,            and       

    . Moreover, it can detect if a term is missing or is wrong and give the appropriate 

feedback. This performance is achieved by JavaScript functions that compare the sum 

and product arrays. 

The overall result of this intelligent parsing is that the tutor can handle any 

algebraic expression that contains the math tasks (operations) described in the previous 

section. Therefore, the student can type any such expression and the MATHESIS tutor 

will parse it, detect which tasks are contained in it and guide the student appropriately. 

This feature is called intelligent task recognition. It is this feature combined with the 

broad and deep domain model that deals directly with the scaling-up problem: the 

MATHESIS tutor can handle any algebraic expression containing any combination of the 

math tasks described in the previous section. Thus, the MATHESIS tutor can guide a 

student in expanding expressions like                               or 

factor expressions like                . 
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2.2.3 The Tutoring Model: Deep Model Tracing With Intelligent Task Recognition 

 

Equipped with such a detailed cognitive model, the MATHESIS tutor is able to 

exhibit expert human-like performance. The tutor makes all the cognitive tasks explicit to 

the student through the structure of the interface. The whole process is described below 

using as an example a real student interaction with the tutor for factoring the algebraic 

expression            : 

1. The student enters the algebraic expression in one of the ways described in 

Section 2.2. 

2. The student starts the tutor by clicking “Start Exercise”, the tutor analyses the 

expression and recognizes the operations and their operands. As a result, the tutor 

displays an abstract representation of the algebraic expression, where each 

monomial in the expression has been substituted by an “m”. Thus, the algebraic 

expression            
 
is represented as m * (m + m) + m (Figure 2.1, 

Student Answering area). The purpose of this intelligent task recognition feature 

is to help the student understand the operations present in the expression through 

a visual, simplified and compact representation of the algebraic expression. It was 

realized that the use of letter “m” for representing a monomial could confuse the 

students, since this letter is normally used in mathematics to represent a variable. 

To avoid any such misconception, pen and paper exercises were given to the 

students, before using the system, where they had to transform algebraic 

expressions to the tutor‟s “m” letter representation (this is a common practice 

followed by human tutors). After a few exercices, all students, even the weakest 

ones, were able to correctly perform this transformation. On the other hand, 

alternative representations were considered. For example, one of them was to use 
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empty squares instead of “m”; however, it was abandoned as an option because a 

square symbol was used by the MATHESIS tutor to provide templates that guide 

student input (see step 4, below). Using a tree representation of the algebraic 

expression was also considered. However, in pen and paper exercises, where 

students were asked to transform between natural and tree representation, 

significant cognitive load and confusion were observed.  

3. The student selects a part (or the whole) of the expression and then chooses from 

a drop-down list the operation that he/she believes corresponds to that part. In 

Figure 2.4 the student selected the whole expression             

(highlighted) and the operation “FACTORING – Common Factor” from the drop-

down list. It must be noted that this tutoring step is not part of the “traditional” 

tutoring practice in the Greek educational system and, to the best of the author‟s 

knowledge, in many other educational systems. However, based on the author‟s 

personal tutoring experience, this step is considered to be crucial and constitutes 

what is known in expert systems as an expert’s blind spot. Math teachers tend to 

believe that once students have been taught and practiced each operation 

separately, they are able to recognize and perform them when they appear in more 

complicated algebraic expressions. The author‟s personal tutoring experience 

suggests that quite often students don’t know what to do because they cannot 

recognize which operations are present and the human tutor has to guide them in 

analyzing the expression under consideration. It is this step, in combination with 

the abstract representation of the algebraic expression presented in the previous 

step, that makes the analysis of the algebraic expression explicit to the student. 
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Fig. 2.4. The student proposes the operation “FACTORING-Common Factor” from the 

drop-down list of supported operations to be applied to the selected 

expression. 

4. The tutor, based on the results of the intelligent task recognition (step 2), confirms 

and continues or informs the student that the suggested operation is not correct. In 

Figure 2.5, the suggested operation, “Common Factor”, is correct; the tutor 

confirms that with an appropriate message and starts guiding the student to 

perform the operation in a step-by-step manner (Figure 2.5, top, messages 2.1 and 

2.2).  
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Fig. 2.5. The tutor checks and confirms the student‟s suggested operation “Common 

Factor” through messages 2.1 and 2.2 (top). The common factor under 

question here is 4, denoted by the empty square scaffold in the 

“ANSWERING SPACE” area (bottom right). 

The tutor also knows that the common factor for the expression          

   is the greatest common divisor of 4 and 48, that is, 4. The author‟s personal 

tutoring experience suggests that most students have considerable difficulties in 

finding the common factor. For this reason, the tutor displays in the student‟s 

answering area a visual scaffold of the common factor‟s form. Here, the common 

factor is only a number, denoted by a single square (Figure 2.5, bottom right). The 

tutor also displays a message that explains the meaning of the scaffold (Figure 

2.5, top, message 2.2). It must be noted that the tutor supports two other kinds of 

common factors: variables with exponents, denoted as □
□ 

and parentheses with 

exponents, denoted as (□)
□
. 

 



 

 

 

CHAPTER 2:  THE MATHESIS ALGEBRA SCHOOL

 

 48 

 

Fig. 2.6. The tutor confirms the entered common factor and asks for the first quotient by 

messages 2.3 and 2.4 (top). The quotient under question is 
        

 
   

      denoted by the □
□
 *(□)

□
 scaffold in the “ANSWERING SPACE” 

area (right). 

5. The student correctly enters 4 in the position indicated “ANSWERING SPACE” 

as the common factor and clicks the “Check Operation” button. The tutor 

performs intelligent parsing on the student‟s answer and confirms that it is correct 

(Figure 2.6, top, message 2.3). The tutor also displays the common factor 

followed by a multiplication symbol, 4*, in the “PERFORMED OPERATION” 

area (Figure 2.6, bottom right). The purpose of this area is to display the steps that 

have been performed in multi-step math skills. Now, the student must divide each 

one of the terms of the sum, i.e.          and 48, by the common factor. The 

first quotient that the student must calculate is 
        

 
        . The tutor 

displays the quotient and a visual scaffold of the expected answer in the 

“ANSWERING SPACE” area (Figure 2.6, right). The visual scaffold is □
□ 

*(□)
□
 

denoting the expected answer          .  
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6. The student enters in the squares of the visual scaffold □
□ 

*(□)
□
 the correct 

answer,           and clicks the “Check Operation” button. Once again, the 

tutor performs intelligent parsing on the student‟s answer and confirms that it is 

correct (Figure 2.7, top, message 2.7). The tutor also displays the expression 

            in the “PERFORMED OPERATION” area (Figure 2.7, bottom 

right) to denote the progress of the factoring process. The second quotient that the 

student must calculate is 
  

 
   . The tutor displays the quotient and a visual 

scaffold of the expected answer in the “ANSWERING SPACE” area (Figure 2.7, 

right). The visual scaffold is □
 
denoting the expected answer 12. 

 

 
 

Fig. 2.7. The tutor confirms the first quotient and asks for the second quotient through 

messages 2.7 and 2.8 (top). The quotient under question is 
  

 
    denoted 

by the empty square scaffold in the “ANSWERING SPACE” area (right). 

 

7. As soon as the student correctly enters the second quotient, the tutor displays a 

confirmation message (Figure 2.8, top, messages 2.10 and 2.11), rewrites the 

expression               , parses the rewritten expression, displays its 
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abstract representation and prompts the student to perform the next operation, as 

shown in Figure 2.8.  

 

 

 

Fig. 2.8. Successful completion of the common factor method in expression    
        . 

8. The student now selects         and performs monomial–polynomial 

multiplication. Once more the tutor exhibits its deep model tracing behavior and 

guides the student step-by-step to perform the two monomial multiplications, 

    and     yielding      . The result of this operation is shown in Figure 

2.9. 
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Fig. 2.9. Successful completion of the monomial-polynomial multiplication        . 

9. The student selects          and performs factoring of the quadratic form 

        (trinomial). In order to achieve this, the student must find two 

integers a and b, such that           and         . The tutor, 

tracing its deep math domain model, guides the student in detail. First, the tutor 

prompts the student to identify             (Figure 2.10, top, message 6.2) 

and displays the corresponding scaffold in the “ANSWERING SPACE” (Figure 

2.10, right). The student correctly enters 12 and 7 for             

correspondingly (not shown in Figure 2.10).  
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Fig. 2.10. First step of factoring         . The student must identify       
     and         . 

10. The student now has to discover that a=3 and b=4. The student enters the 

incorrect answer a=2 and b=6 (this step is not shown). The tutor displays an error 

message and suggests the possible pairs of values for a and b (Figure 2.11, top, 

message 6.4), asking again for the values of a and b (Figure 2.11, right)). It must 

be noted that, for each one of the supported elementary skills, the model contains 

possible mistakes that the student might make. Each mistake is associated with 

error messages of varying depth, ranging from general suggestions down to the 

correct answer for the subtask. The depth and order of these messages are preset. 
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Fig. 2.11. Responding to a student error. The tutor displays an error message, gives help (top, 

message 6.4) and asks for the correct answer (right). 

 

Fig. 2.12. Successful completion of factoring            . 
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11. The student now enters the correct answer, a=3 and b=4 (not shown). The tutor 

checks the answer, confirms and rewrites the expression, yielding          

      . The factoring of            
 

is now successfully completed 

(Figure 2.12). 
 

Once again, the scaling-up problem appears. The student could have followed a 

completely different solution path for factoring            . The MATHESIS 

Algebra Tutor, based on its broad and deep expertise model as well as on the intelligent 

task recognition feature, is able to recognize this path and guide the student along.  

Table 2.2 presents an alternative path in the solution space tree, involving only the 

top-level math skills (algebraic operations) the student could have followed and not the 

actual interaction with the tutor. As shown before, each one of these operations is a 

complex task that must be performed in a series of steps. The calculation of the quotient 

        

 
         presented in step 5 (Figure 2.6) demanded the development of a 

model for calculating quotients of arbitrary complexity, like, e.g., 
                  

                
 . 

Equally complex is the task of finding two integers with a given product and sum, like 

the task presented in steps 9-11. As a consequence, if someone tried to draw the solution 

space tree for the factoring of expression             it would end up with a tree 

of considerable breadth and depth. The fine-grained modelling of each top level math 

skill (algebraic operation) and its sub-skills in conjunction with the intelligent task 

recognition described in the previous section, allows the MATHESIS Algebra tutor to 

guide the student throughout this broad and deep solution space. Thus, this feature is 

called deep model tracing. 
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Table 2.2. Alternative Path for Factoring             

 

Operation Result 

Initial expression 

 

1. Monomial-polynomial multiplication 

 

2. Common Factor 

3. Factor 
2

x Sx P   

             

            

             

            

 

 

2.2.4 The Student Model 
 

Based on the breadth and depth of its math domain expertise model, the tutor 

creates and maintains in a database a deep and broad student model. For every step of the 

student‟s attempted solution, the tutor records the following information: 

 Skill: The algebraic operation that the student tried to perform in the specific step, 

e.g., “common factor calculation”. 

 Expression: The algebraic expression on which the algebraic operation was 

performed, like            . 

 Answer: The answer given by the student, for example      

 Correct: It signifies whether the answer was right (1) or wrong (-1). 

 Timestamp: The date and time the step was performed. 

 

This information is presented in a table, with one row for each solution step. The 

table for factoring the expression             is shown in Table 2.3. Rows with 

dark background emphasize incorrect steps. Both students and their teachers can see this 

tabular representation of the student‟s solution steps.  
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Table 2.3. The Fine-Grained Student Model: Solution Steps 

 
Skill Expression Answer Correct 

Automatic expression 

rewriting 
            

(this step is performed 

by the tutor) 
1 

Recognise the existence of a 

common factor 
            Common factor 1 

Calculate common factor             4 1 

Calculate the quotient of a 

term over the common factor 

        

 
         1 

Calculate the quotient of a 

term over the common factor 

  

 
    1 

Automatic expression 

rewriting 

             

               

(this step is performed 

by the tutor) 
1 

Recognise a monomial by 

polynomial multiplication 
        

monomial by 

polynomial 

multiplication 

1 

Monomial multiplication        1 

Monomial multiplication        1 

Monomial by polynomial 

multiplication 
              1 

Automatic expression 

rewriting 

                

             

(this step is performed 

by the tutor) 
1 

Recognise trinomial          Trinomial 1 

Identify a and b              {
   
   

 -1 

Identify a and b              {
   
   

 1 

Automatic expression 

rewriting 

              

  (           ) 

(this step is performed 

by the tutor) 
1 

 

In addition, the tutor can display statistics over a selected period of time about a 

specific cognitive skill, as shown in Figure 2.13. When a specific skill is selected, a table 

presenting the performance of the skill is displayed (Table 2.4).  

It becomes obvious that such a detailed and time-stamped student model creates a 

digital timeline of the student‟s math skill mastery over time, with a number of possible 

uses: long term progress assessment, recent mastery status, automatic selection of 

exercises based on the student‟s weaknesses. The latter is not yet implemented in the 

system. 
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Fig. 2.13. The Student Model: Skill Performance Statistics 

 

Table 2.4. Performance of skill “Calculate common factor”. The percentage is 2/4=50% 

 
Operation Exression Answer Correct Date 

Calculate common factor             4 1 27-02-2011 16:55:33 

Calculate common factor             4 1 22-02-2011 18:26:07 

Calculate common factor                -1 22-02-2011 18:26:02 

Calculate common factor                -1 22-02-2011 18:19:53 

 

2.3 THE LEARNING MANAGEMENT SYSTEM 

 

The MATHESIS Intelligent Algebra Tutoring School is accessible through a web 

interface7. Each user gets a unique Username and Password. Users can register either as 

teachers or students. Students are guided to the MATHESIS Algebra Tutor interface 

(Figure 2.1), where they solve their assigned exercises as it was described in Section 

2.2.3. Teachers are taken to the Teacher Menu (Figure 2.14), which provides links for the 

following managerial tasks:  

                                                 
7 http://users.sch.gr/dsklavakis  
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Fig. 2.14. The Teachers‟ Menu 

 

 Classes: Teachers can create classes. For each class the teacher enters the real 

school, grade and name of the class. Students are registered to the class by their 

Usernames. That means that the students must be already registered in the system. 

Students can also be deleted from a class. (Figure 2.15). 
 

 

Fig. 2.15. The Classes Management Page. 

 

 Test Papers: The system provides an online HTML editor for the creation and 

editing of test papers (Figure 2.16). For each test paper the teacher enters the type 

of school, grade, book, chapter and section of a textbook that the contained 

exercises correspond to. Each test paper is also characterized as public or private 

(Figure 2.16a). Public test papers can be accessed and used (but not modified) 
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from any teacher registered in the system, while private ones can be used and 

edited only by their creator. Test papers are used for the assignment of exercises 

to students. Currently, the system provides five public test papers that contain 

exercises from the official textbook that is taught in the 3rd grade of Gymnasium 

(junior high school) in secondary education in Greece. Each test paper is an 

HTML page. Conceptually, each paper is organized as a set of exercises 

containing one or more questions. For each exercise, its questions are laid out in 

rows and columns using HTML tables. The author inserts new exercises by 

defining how many questions they contain and in how many rows and columns 

they will be arranged, using the “Insert Exercise” button and the corresponding 

fields (Figure 2.16, left, below the editor). The system creates the appropriate 

HTML code for the table and displays it in the editing area. It also generates 

check boxes with unique identification strings in front of the exercise and each of 

its questions (Figure 2.16b). These check boxes are used later for selecting and 

assigning exercises (Figure 2.17). The author adds any text for describing the 

exercise and its questions. In Figure 2.16, exercise 22 has just been added, 

containing 3 questions, arranged in one row and three columns, labeled by the 

author as „a)‟, „b)‟ and „c)‟ (Figure 2.16b). Finally, for each question, the author 

enters the algebraic expression using a WebEq Input Control. In Figure 2.16, the 

author has just entered the expression             in question (a) of 

exercise 22 (Figure 2.16c). The system displays on the right side of the editor the 

test paper as an HTML page, using the MathML viewer MathPlayer to display 

properly the mathematical expressions (Figure 2.16d). The HTML code of each 

test paper is saved in a database, together with the papers‟ information, and can be 

recalled and edited any time by changing, adding or deleting exercises. It must be 
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noted that, due to the intelligent task recognition feature of the tutor, the authors 

do not have to annotate or describe any solution steps for the questions. 
 

 

 

Fig. 2.16. Test Paper Editing. The author has just created exercise no. 22 using the HTML editor 

(b) and inserted expression             for the first question using the math 

editor (c). The paper is shown on the right with the newly added exercise at the 

bottom (d).  

 

 Exercise assignment: The system provides tools for individualized assignment of 

exercises. The teacher can assign different exercises to different students, 

according to their performance. The assignment process is simple: The teacher 

selects a class and any student(s) from this class as well as a test paper and any 

exercise(s) from it. By checking the appropriate boxes, the selected exercise(s) are 

assigned to the selected student(s) (Figure 2.17).  

(a) 

(b) 

(c) 
(d) 
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Fig. 2.17. Individualized Assignment of Exercises to Students. 

 

 Student assessment: The solution steps taken by a student are recorded in the 

database and statistics are computed about the correct/incorrect performance of 

operations. These steps and statistics can be retrieved and viewed by the teacher. 

On the left side of Figure 2.18, the teacher selects the time interval for which 

he/she wants to assess the student(s). He/She opens a classroom and selects a 

student. The system displays in a drop down list all the test papers containing 

exercises that were assigned to the student during the selected time period. The 

teacher selects a test paper and its contents are displayed (Figure 2.18, right). 

Assigned exercises for which no solution was attempted by the student are 

marked in a red background. In Figure 2.18, these are questions 13a)        

and 15a)         located in the middle of the test paper (red color appears as 

dark grey in grayscale). Those with at least one attempted solution, either correct 
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or wrong, are marked with green background. In Figure 2.18 this is question 21a) 

          (green color appears as light grey in grayscale).  
 

 
 

Fig. 2.18. Student Assessment: Selecting a Solved Exercise 

By selecting an exercise and clicking the “Select Exercise” button, the attempted 

solution steps are displayed as shown in Table 2.3. The teacher can also select a 

specific math skill from the drop-down list on the lower left part of Figure 2.18. 

As mentioned in Section 2.2.3, the list displays all skills performed by the student 

with their corresponding percentage of correct performances during the selected 

time period, as shown in Figure 2.13. By selecting a specific skill, a table of the 

skill performances taken into account is displayed (Table 2.4).  

Questions 13a and 15a 

with no attempted 

solution marked in red 

Question 21a with an attempted 

solution marked in green 
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2.4 RELATED WORK 

 

The development of the domain expertise and the implementation of the model-

tracing tutoring model in model-tracing tutors are so demanding in time and human 

resources (Aleven et al. 2006) that these tutors are currently developed by specialised 

research teams, they are usually experimental prototypes and they are used in strictly 

controlled and supervised educational settings, mainly in universities (VanLehn 2006). 

The most successful and widely used math MTTs are Cognitive Tutors developed by 

Carnegie Learning8, based on more than twenty years of cognitive science research at 

CMU (Koedinger & Corbett 2006). Cognitive Tutors are now an integral part of complete 

curricula used in hundreds of middle and high schools throughout the United States. 

However, despite their innovative nature and practical success, Cognitive Tutors are 

commercial products that have to adapt to very strict guidelines and educational goals of 

the US educational system. They have to follow the textbook by teaching specific 

exercises that train the students in specific cognitive skills. In the case of algebraic 

expressions‟ operations, they teach each operation separately and not in combinations 

with each other. They also teach a fixed set of exercises where all the anticipated solution 

steps are pre-computed by solving the problem in all acceptable ways by running a rule-

based problem-solver (Van Lehn 2006). Therefore, these tutors do not tackle the problem 

of parsing an arbitrary algebraic expression, identifying the existence of any possible 

combination of operations and their precedence and following the student in any possible 

                                                 
8 www.carnegielearning.com 
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correct path of the solution space tree. In other words, they are not designed to deal with 

the scaling-up problem (Aleven, McLaren, & Sewall, 2009). 

Another kind of pseudo-MTTs is the example-tracing tutors (Aleven, McLaren, 

Sewall, & Koedinger, 2009) under development at Carnegie Mellon University. There are 

two websites that provide example-tracing tutors for middle-school mathematics: the 

Mathtutor
9
 website (Aleven, McLaren, & Sewall, 2009) and the Assistments10 website 

(Razzaq, Feng, Nuzzo-Jones, Heffernan, Koedinger, Junker et al. 2005). Example-tracing 

tutors have a very narrow and shallow, exercise-specific, domain expertise model. They 

offer considerable reduction in development time but are even further away from dealing 

with the scaling-up issue.  

ActiveMath
7
 is another web-based intelligent tutoring system for mathematics 

(Melis, Andrès, Büdenbender, Frischauf, Goguadze, Libbrecht et al. 2001). The systems 

aims mainly for adaptive guidance and presentation of mathematical content based on 

ontological representation of mathematical concepts, learning goals and acquired 

knowledge. However, when it comes to problem-solving skills, ActiveMath offers mainly 

multiple choice questions and some more interactive exercises. In these, the system does 

not guide the student along a solution path. It uses the external Computer Algebra 

Systems (CAS) to simply check the correctness of the student‟s solution. Therefore, the 

system completely avoids the hard problems of model tracing, that is, generating the 

correct solution(s) at each step, comparing the students‟ input, recognising errors and 

providing feedback.  

                                                 
9 https://mathtutor.web.cmu.edu/ 
10 www.assistments.org 
7 www.activemath.org 
8 www.aplusix.com 

http://www.activemath.org/
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Aplusix
8
 is an Algebra Learning Assistant. After several years of research 

(Nicaud, Bouhineau, & Chaachoua, 2004), it is now a commercial product. It covers the 

domains of arithmetic calculations, expansion, simplification and factoring of algebraic 

expressions, solution of polynomial and rational equalities and inequalities. The system 

combines features of microworlds and Computer Algebra Systems. The student can type 

an algebraic expression, suggest its domain (calculation, expansion-simplification, 

factoring, solution) and enter the solution steps. At each step, the system checks the 

student‟s input for equivalence using encoded transformation rules. As a result of this 

type of checking, the system only suggests if the expression entered by the student is 

correct or incorrect, without any further feedback about the error committed. However, 

the student can ask for suggestions about the possible operations that he/she can perform 

and can also ask the system to perform them. We could say that the resulting tutoring 

model is almost equivalent with that of the MATHESIS tutor though less fine-grained. In 

unusual situations, this can lead the Aplusix system to “miss” intermediate student errors. 

For example, the expression                is correctly expanded and 

simplified by changing the signs of the parenthesized terms as in            

     . However, a student can arrive at the correct result by making the same mistake 

twice, that is, not changing the signs of –   in the first parenthesis and of    in the 

second one, as in                 ! Moreover, the Aplusix system has 

considerable limitations to the kind of expressions that it can factor: polynomial 

expressions in one variable and degree no higher than 4, or in two variables and degree at 

most 2. It cannot handle expressions like              ,      ,           or 

          . 
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As far as the author knows, the MATHESIS Algebra Tutor is unique with regard 

to the combined breadth and depth of its domain expertise model as well as the intelligent 

task recognition feature. 

 

2.5 EVALUATION OF THE MATHESIS SYSTEM 

The MATHESIS Algebra Tutor is a research prototype, performance-oriented, 

domain expert system with emphasis on the scaling up problem. The tutor is part of the 

MATHESIS project, which aims at the development of authoring tools for real world 

model-tracing math tutors. Therefore, the MATHESIS Algebra Tutor and the 

MATHESIS tutoring school built around it were designed to become part of real 

educational settings. For this reason, the following factors were taken into consideration: 
 

1) Teaching performance: In order for an intelligent system to be used by teachers and 

students, it should contribute to observable positive learning outcomes. Besides any 

kind of scientific evaluation, teachers and students must feel and see that using the 

system helps students learn more effectively. It has been shown that model-tracing 

tutors do produce considerable learning outcomes, mainly because of their domain 

expertise models (Corbett 2001; Ritter, Kulikowich, Lei, McGuire, & Morgan 2007). 

In this work a holistic approach was adopted: developing a deep model of a 

sufficiently broad domain in mathematics with intelligent task recognition and deep 

model-tracing.    

2) Usability: This factor is multidimensional, with the most important dimensions being:  

a) Easy to learn and use interface. Care has been taken to keep the user interface as 

simple as possible – given the complex task of teaching that this interface must 

perform – and as close as possible to the “traditional” way of doing things. For the 
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teachers, this means following the day-to-day workflow of selecting, assigning 

and assessing exercises. For the students, effort has been made to keep the 

problem-solving procedure as close as possible to the pen and paper paradigm 

without losing the benefits of a digital environment.  

b) Easy access to the system. The MATHESIS system is web based and therefore 

accessible anytime from anywhere, provided there is an internet connection. In 

addition, it has minimal requirements in hardware and connection speed. 

3) Scalability: The set of exercises that the tutor is able to teach has to be of considerable 

breadth and depth. Limiting the set of supported exercises is a major factor of system 

rejection by the teachers. Teachers must be given the flexibility to choose exercises of 

different complexity and difficulty levels in order to accommodate the varying levels 

of competence of their students. The systems‟ deep and broad domain expertise 

model in conjunction with the intelligent task recognition system covers a 

considerable set of exercises. 

 

2.5.1 Evaluation by Teachers 

 

The system has been demonstrated to real math teachers, both through on-site live 

presentations and through invitations to use it online. The most extensive evaluation of 

the system was held in a three hours‟ workshop at the 2
nd

 PanHellenic Conference on 

Digital and Web Applications in Education, held in Naoussa in April of 2010 

(http://hmathia10.ekped.gr/) The purpose of the workshop was to teach math teachers the 

use of the system and investigate their attitude towards adopting the system in their 

everyday teaching. More specifically, the author wanted to investigate their opinions 

http://hmathia10.ekped.gr/
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regarding the following system features, which we consider the most decisive for the 

adoption of the system by a broad group of math teachers: 

 The usability of the system. 

 The ability to create their own exercises and assign them to individual students. 

 The teaching performance of the system, particularly the depth and granularity of 

the domain model. 

 The value of the fine-grained student model for their assessment tasks. 
 

Forty (40) math teachers in secondary education participated in the workshop. 

Most of them were young, around 30 years old, self-motivated and positive in using 

computer programs for math teaching. 

First, the teachers used the LMS to sign up, create students and enroll them to 

classes. Then, they used the existing test papers to assign exercises to their students. They 

have actually assigned one exercise for each one of the 16 top-level skills covered by the 

tutor as well as a few exercises with combinations of these skills. The teachers spent most 

of their time solving the assigned exercises as if they were students. They were also 

instructed to make deliberate mistakes to test the system‟s responses. They were also 

instructed to inspect the student model between the solutions of the exercises to see how 

this model was dynamically updated by their performance as students.  

After using the system, the teachers filled in a short questionnaire. The questions 

and the teachers‟ answers are shown in Table 2.5. These questions are in direct 

correspondence with the aforementioned system features the author wanted to evaluate.  

Thirty five teachers (87.5%) found the system easy or fairly easy to use (Question 

1). Thirty two teachers (80%) agreed that it naturally follows the short- and long-term 

tutoring tasks workflow (Question 2). Twenty eight teachers (70%) appreciated the 
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freedom provided by the system to create their own work papers with their own 

exercises, as well as the ability for individualized assignment of exercises (Questions 3 

and 4). Thirty two teachers (80%) found the fine grained student model unique and 

decisive when it came to assessment. However, five teachers (12.5%) considered that it 

might be too fine-grained for well-performing students. Three teachers (7.5%) 

complained that this step-by-step guidance of the model-tracing algorithm could be too 

authoritative and restrictive in the development of the students‟ self-confidence (Question 

5). All forty (40) teachers were impressed by the human-like step-by-step guidance given 

to the student by the system and the ability to see the students‟ solution steps (Questions 

6 and 7). 
 

Table 2.5. Evaluation results given by forty (40) math teachers after a three-hour hands-

on workshop (questions are translated from Greek) 

 

Questions Answers 

1. You find the overall use of 

the system... 

Easy 

31/40 

(77.5%) 

Fairly Easy 

4/40 

(10.0%) 

Fairly Hard 

3/40 

(7.5%) 

Hard 

2/40 

(5.0%) 

2. How well does the Learning 

Management System fits your 

day-to-day teaching tasks? 

Very much 

19/40 

(47.5%) 

 

Much 

13/40 

(32,5%) 

Quite well 

8/40 

(20.0%) 

Not at all 

0/40 

(0.0%) 

3. You find the ability to create 

your own exercises as... 

Very Important 

18/40 

(45.0%) 

Important 

10/40 

(25.0%) 

Indifferent 

12/40 

(30.0%) 

Useless 

0/40 

(0.0%) 

4.You find the ability to assign 

different exercises to different 

students as... 

Very Important 

18/40 

(45.0%) 

Important 

10/40 

(25.0%) 

Indifferent 

12/40 

(30.0%) 

Useless 

0/40 

(0.0%) 

5.Do you think that the level of 

analysis for the solution steps 

proposed for each operation is... 

Excessive 

8/40 

(20.0%) 

Normal 

32/40 

(80.0%) 

Inadequate 

0/40 

(0.0%) 

 

6.How would you characterize 

the step-by-step guidance of the 

student? 

Very Important 

40/40 

(100.0%) 

Important 

0/40 

(0.0%) 

Indifferent 

0/40 

(0.0%) 

Useless 

0/40 

(0.0%) 

7. How would you characterize Very Important Important Indifferent Useless 
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the ability to see the students’ 

solution steps regarding his/her 

assessment? 

40/40 

(100.0%) 

0/40 

(0.0%) 

0/40 

(0.0%) 

0/40 

(0.0%) 

 

 

2.5.2 Evaluation in a Real Classroom 

 

In late 2011 the system was also used and evaluated for three months in a third 

grade class (ages 14-15) of 20 students in a junior high school at the town of Drama, in 

northern Greece. The purpose of this evaluation was to integrate the use of the system in 

the normal, daily, official educational practice and investigate the following features: 

 The usability of the system. 

 The students‟ attitude towards the tutoring performance of the system, particularly 

the fine-grained, step-by-step guidance provided by the system.  

 The affective impact of the system to the students, particularly the impact on 

frustration and fear during the solution of exercises. 

 The potential raise of student performance. 
 

Mathematics in this grade is taught four hours a week using the textbook, 

blackboard lessons and worksheet practice both in classroom and at home. In this 

evaluation three hours were taught in the traditional way using blackboard lessons and 

worksheet practice. The fourth hour was taught in the school‟s computer laboratory, 

where students used the MATHESIS system. Some of the students also used the system 

from their homes for extra practice. The system was evaluated by the students for its 

usability and tutoring ehavior using short questionnaires (Table 2.6). The results of the 

students‟ evaluation are: 
 

Usability: 85% of the students found the system easy to learn and use, while the rest 15% 

found it fairly easy to learn (Question 1). In practice, the first group of students 
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(85%) needed one or two 45-minute sessions with the system to get fully 

acquainted while the second group (15%) needed three or four sessions.   
 

Tutoring performance: 75% of the students said that the guidance and assistance they got 

from the system was similar to the human tutor‟s teaching. The rest 25% found 

the help and guidance of the system too detailed and fine grained (Question 2). 

These students were the best performing ones and they proposed that the system 

should allow the student to skip some “trivial” problem solving steps. 
 

Affective impact: 85% of the students replied that the use of the system helped them to 

overcome the most common emotional problems they face with mathematics, that 

is, frustration and disappointment (Question 3). The reasons are that they have the 

time they need to think (75%), they get step-by-step guidance (65%), they have 

the freedom to try the solution steps they think correct (65%) and make mistakes 

(90%) (Question 4).  

Table 2.6. Evaluation results given by twenty (20) students after a three-month period 

(questions are translated from Greek) 

Questions Answers 

1. You find the overall use of 

the system... 

Easy 

17/20 

(85.0%) 

Fairly Easy 

5/20 

(15.0%) 

Fairly Hard 

0/20 

(0.0%) 

Hard 

0/20 

(0.0%) 

2. How would you characterize 

the step-by-step guidance of the 

tutor? 

Too detailed 

5/20 

(25.0%) 

Natural 

15/20 

(75.0%) 

Inadequate 

0/20 

(0.0%) 

 

3. You find that your frustration 

when you solve an exercise with 

the tutor is... 

Bigger 

2/20 

(10.0%) 

Equal 

1/20 

(5.0%) 

Lower 

17/20 

(85.0%) 

 

4. Which do you think are the 

most important advantages for 

you when using the tutor? 

(multiple answers) 

Adequate time 

to think 

15/20 

(75.0%) 

Freedom to 

make 

mistakes  

18/20 

(90.0%) 

Step-by-

step 

guidance 

13/20 

(65.0%) 

Ability to 

try 

possible 

solutions 

16/20 

(65.0%) 
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 Cognitive performance: It is the author‟s belief that the most important attribute of an 

intelligent tutoring system is its cognitive performance, that is, its ability to build 

deep, long-term and transferable knowledge within the student‟s minds. The 

cognitive performance of the MATHESIS Algebra Tutor was specifically tested 

in the domain of factoring, using the methods of common factor and identities 

difference of squares                 , square of sum        

          and square of difference                 . The students 

were initially taught this subject for six weeks without using the system at all. 

After this period, the students completed a test to assess mastery of the subject. 

Then, the students used the MATHESIS system for two weeks to solve all the 

relevant exercises provided by the system. Some of these exercises can be found 

in: Figure 2.17, exercises 1, 2, 3 and 4; Figure 2.16, exercise 15; and Figure 2.18, 

exercise 9. Right after they had completed these exercises, they took a post-test 

with exercises similar to those of the pre-test. The results are shown in Table 2.7. 

There, the pre-test items are denoted by “Pre”, while post-test items are denoted 

by “Post”. In the left column four pairs of exercises are shown. For each pair the 

pre-test and the post-test exercises are shown. The next three columns show the 

elementary math skills needed to correctly perform each factoring method. For 

each skill, the percentages of students who performed it correctly are shown both 

for the pre-test and post-test exercises.  
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Table 2.7. Students’ performance rise by the MATHESIS Algebra Tutor 

 
Exercise 1 

Pre: 

               

            

 

Post: 

                  = 

                 

Math Skills 

Recognize 

Common Factor 

Method 

Calculate 

Common Factor 

Calculate 

Quotients 

inside the 

parenthesis 

Pre Post Pre Post Pre Post 

85% 90% 65% 85% 70% 80% 

Exercise 2 

Pre: 

        

          
             

 

Post: 

      = 

          
             

Math Skills 

Recognize 

Difference of 

Squares Method 

     

            

Find the Squares 
Apply the 

Identity 

Pre Post Pre Post Pre Post 

85% 95% 50% 65% 60% 80% 

Exercise 3 

Pre: 

            

                 

        
 

Post: 

                

                    

          

Math Skills 

Recognize Square 

of Sum Method 

         

        

Find the Squares 

and the Double 

Product 

Apply the 

Identity 

Pre Post Pre Post Pre Post 

85% 95% 50% 65% 60% 80% 

Exercise 4 

Pre: 

       

          

              

                 
 

Post: 

       

          

               

Math Skills 

Recognize 

Difference of 

Squares Method 

     

            

Find the Squares 
Apply the 

Identity 

Pre Post Pre Post Pre Post 

9/20 

45% 

12/20 

60% 

7/20 

35% 

11/20 

55% 

7/20 

35% 

9/20 

45% 

                

                  
 

4/20 

20% 

 

( 4/9 

44%) 

9/20 

45% 

 

(9/12 

75%) 

4/20 

20% 

 

(4/7 

57%) 

6/20 

30% 

 

(6/11 

55%) 

3/20 

15% 

 

(3/7 

43%) 

6/20 

30% 

 

(6/9 

67%) 
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Exercise 1 is a common factor method. Exercises 2 and 3 correspond to the three 

different identities mentioned above. Although they seem to share some identical sub-

skills, like the “Find squares” and “Apply identity”, in practice the identity        

          is more demanding: the student has to verify that the third term is actually 

the double product of the two squares and take into account the sign of the double 

product. The similar success percentages in Exercises 2 and 3 do not reflect these subtle 

differences in the application of these identities. Exercise 4 is a more complex one. First, 

the term    is a square of a square that is,      . Second, after the first application of the 

identity                ), the term       , which is also a difference of 

squares, appears. These two difficulty factors significantly reduce the success 

percentages. In the pre-test only nine students (45%) recognized that          and of 

these students, only four (20%) factored the term       . The corresponding results for 

the post-test (60% and 45% correspondingly) are considerably raised but still remain low. 

It is the author‟s opinion that this comparison further supports the empirical 

observation that in mathematics there are non-intuitive practical differences in what are 

formally “identical tasks”. It seems that the application of the same task (square 

recognition) in a more complicated expression, like   , demands the recall and 

application of “deeper” sub-skills like the one expressed by the formula          . In 

turn, this fact supports the necessity for broader and deeper models in intelligent tutoring 

systems. In any case, the results in Table 2.7 show a considerable performance rise, given 

the limited time of two weeks that the students had in their disposal for using the 

MATHESIS system. 
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2.6 DISCUSSION AND FURTHER WORK 

 

The MATHESIS system and especially the MATHESIS Algebra Tutor is a 

successful proof-of-concept system. The basic research hypothesis of the MATHESIS 

project is that, in order to build successful intelligent real-world tutoring systems, we 

must build powerful domain expertise models. The engineering of such broad and deep 

models has to overcome the common obstacle of all expert systems, the knowledge 

acquisition bottleneck: the extraction of the expertise from domain experts and its 

representation in efficient ways. In the domain of knowledge engineering, the most 

profitable solution up to now is knowledge reuse, which is achieved through open, 

modular, interchangeable, inspect-able, formal knowledge representations and system 

implementations (Aitken & Sklavakis 1999). Equally important, the models must be deep 

and broad, having a wide basis of low level knowledge about simple task performance, 

on top of which is built the knowledge for performing higher level domain tasks. 

Otherwise, models are brittle (Lenat & Guha 1990), performance is limited, scaling up is 

intractable and the systems fail to cope with real-world demands. The author believes that 

the MATHESIS Algebra Tutor incorporates all these characteristics that make it a 

successful real-world intelligent tutoring system. 

Of course, the system is an experimental prototype and more evaluation is needed. 

The teachers that took part in its evaluation were self-motivated and enthusiastic about 

the use of technology in education. Also, they did not use the system for a long period of 

time in their everyday teaching duties and they were under direct supervision when they 

met any difficulties in using the system. Therefore, more evaluation is needed before the 

system is ready for widespread use by a broad group of teachers. As for the learning 
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outcomes, a comparison group of students was not used. The reason is that the system is 

designed as an additional learning aid and not as a self-contained teaching method. In 

addition, the system was evaluated only in the domain of factoring and not the whole 

domain that the system covers. Finally, a feature of the system that has not been 

adequately evaluated is its fine-grained student model and the possible benefits of the 

detailed information it provides to both students and teachers. 

In order to further investigate the reusability and expandability of the system, one 

could try to extend its domain model to teach algebraic operations of rational algebraic 

expressions. To simplify rational expressions, a student should make full use of the 

operations already taught by the MATHESIS Algebra Tutor. Implementing such a 

demanding task will be the best test for the knowledge reusability and implementation 

extensibility of the MATHESIS system.
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Chapter 3:  The MATHESIS Meta-Authoring Framework 

 

 

 

 

 

 

 

 

 

 

3.1 INTRODUCTION 

The MATHESIS tutor forms a challenging landmark for existing authoring 

frameworks and their authoring tools, for the following reasons: 

a) To the best of the author‟s knowledge, there is no other model-tracing Algebra 

Tutor able to teach the expansion and factoring of any algebraic expression that 

contains any combination of the math skills (algebraic operations) covered by the 

MATHESIS tutor. 

b) None of the Algebra Tutors created so far features real time problem analysis, 

solution and tutoring. 

c) Supported by its intelligent task recognition feature, the MATHESIS tutor can be 

expanded with other algebraic operations like rational expressions, equations of 

first and second degree as well as rational equations.  
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d) Current authoring frameworks and their authoring tools cannot support the 

authoring of such a tutor.  

 

Despite the efforts, advancements and successes in the currently developed 

authoring frameworks and the corresponding tutors, these frameworks have worked 

around the knowledge acquisition problem rather than confronting it directly. As a 

consequence, most of the developed tutors suffer from limited depth and breadth, 

whereas those having broader and deeper domain expertise models suffer from scalability 

issues. This is the motivation to deal directly with the knowledge acquisition problem in 

order to produce tutors that cover broader and more complex domains in a scalable way. 

The rest of the chapter is structured as follows: Section 3.2 presents the 

background of the thesis work consisting of an overview of the state-of-the-art in 

authoring frameworks, the tutors produced and how they suffer from the knowledge 

acquisition bottleneck, coupled with a description of how the MATHESIS meta-

authoring framework provides the means to deal with this problem by using the results of 

research in the ontological engineering field. Section 3.3 presents an overview of the 

MATHESIS meta-authoring framework. Section 3.4 describes the key characteristic of 

the framework, OntoMath ,  a meta-knowledge engineering language for the 

representation of procedural authoring knowledge within the MATHESIS ontology as an 

executable authoring model. Finally, Section 3.5 presents the MATHESIS authoring and 

meta-authoring tools. 
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3.2 BACKGROUND  

 

This Section presents an overview of the state-of-the-art in authoring frameworks 

and the tutors produced, focusing on the knowledge acquisition bottleneck issue. Then it 

shows how the MATHESIS meta-authoring framework provides the means to deal with 

this problem. 

 

3.2.1 Related Work 

 

The most successful and widely used math MTTs are Cognitive Tutors developed 

by Carnegie Learning11, based on more than twenty years of cognitive science research at 

CMU (Koedinger & Corbett, 2006). Cognitive Tutors are now an integral part of 

complete curricula used in hundreds of middle and high schools throughout the United 

States. Cognitive Tutors have to adapt to very strict guidelines and educational goals of 

the US educational system, thus they are not designed to face the breadth, depth and 

scalability issues. Instead, they follow the textbook by teaching specific exercises that 

train the students in specific, simple cognitive skills that don‟t contain other sub-skills. 

Each problem has its own simple cognitive model and interface. Therefore, there is 

actually a set of independent tutors and not one tutor with a common cognitive model and 

interface. Concerning their scalability, the set of anticipated steps for a problem is 

precomputed by solving the problem in all acceptable ways by running a rule-based 

problem-solver (Van Lehn, 2006). Carnegie Learning uses a proprietary authoring tool, 

the Cognitive Tutor SDK (Blessing, Gilbert, Ourada & Ritter, 2009), which supports the 

development of cognitive models based on the ACT Theory of cognition (Anderson, 

1993). Problem solving states are represented by a hierarchy of goalnode instances with 

                                                 
11  www.carnegielearning.com 
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their properties and values, while problem solving steps are represented by a hierarchy of 

predicates that operate on the goalnodes. No information is given on how broad and deep 

these cognitive models can be or if they can be reused between the various tutors 

developed. 

A publicly available set of authoring tools for Cognitive Tutors are the Cognitive 

Tutors Authoring Tools (CTAT12) developed at the Human-Computer Interaction 

Institute of Carnegie Mellon University (Aleven, McLaren, Sewall, & Koedinger, 2006). 

After 7 years of use, CTAT is the most mature and widely used authoring tool. It supports 

two types of tutors, cognitive tutors, which were described above, and example-tracing 

tutors (Aleven, McLaren, Sewall, & Koedinger, 2009). While cognitive tutors have a 

cognitive model, implemented as a set of production rules in Jess13, example-tracing 

tutors have a “generalized example” of the solution of a specific problem, implemented 

as a “behavior graph”, an acyclic graph where nodes represent problem-solving states and 

links represent problem-solving steps. Example-tracing tutors are authored using a 

programming-by-demonstration technique by creating initially a tutor interface for the 

targeted problem type through drag-and-drop techniques, then demonstrating through this 

interface the problem‟s solution and finally editing, annotating and generalizing the 

resulting behavior graph. In the case of cognitive tutors, the last step demands the 

development of the cognitive model implemented as production rules in Jess by AI 

programmers. 

ASTUS14 is a framework for domain independent model-tracing tutors‟ 

development. It is designed to provide a knowledge representation language for the 

                                                 
12 http://ctat.pact.cs.cmu.edu 
13 http://www.jessrules.com 
14 http://astus.usherbrooke.ca 
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development of the cognitive model richer than that of CTAT (Paquette, Lebeau, & 

Mayers, 2010). The purpose is to model domains from a pedagogical perspective rather 

than a cognitive one, allowing experimentation with varied pedagogical strategies. The 

framework is relatively new and the authoring language is not yet fully developed, with 

only a few tutors implemented and no authoring tools developed. 

ASPIRE15 is an authoring framework for the development of constrained-based 

tutors (Mitrovic, Martin, Suraweera, Zakharov, Milik, & Hooland, 2009). These tutors do 

not use a cognitive model to trace the student‟s solution in a step-by-step basis, but they 

are equipped with a set of constraints that describe the forms of correct solution(s) for the 

tutored problem. In a comparative study between model-tracing and constraint-based 

tutors (Mitrovich, Koedinger, & Martin, 2003), the authors conclude that “Model-tracing 

is an excellent choice for domains where appropriate problem solving strategies are 

well-defined, and where comprehensive feedback on them is desirable. On the other 

hand, CBM offers a workable alternative when such strategies are not available or 

appropriate, or there is too little time or resources to build a model-tracing knowledge 

base”. Therefore, in addition to the breadth and depth issue, constraint-based tutors 

cannot provide the granularity necessary for, e.g., an algebra tutor. 

Whenever there is need for a broad and/or deep cognitive model, authors usually 

start from scratch and fall back to customized solutions. Two such examples are the 

Andes16 physics tutor (VanLehn, Lynch, Schulze, Shapiro, Shelby, Taylor, Treacy, 

Weinstein, & Wintersgill, 2005) and the Visual Classification Tutoring Framework 

(VCT) (Crowley & Medvedeva, 2006). 

                                                 
15 http://aspire.cosc.canterbury.ac.nz 
16 http://www.andestutor.org/ 
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Andes contains 356 physics problems (mechanics, electricity and magnetism) 

solved by a knowledge base of 550 physics rules. These rules comprise “major 

principles”, like Newton‟s second law (F = m∙a), as well as “minor principles”, like 

mathematical and common sense justifiers. The creation and maintenance of such a 

broad, deep and granular cognitive model raises drastically the demands in expertise and 

time resources (VanLehn et al., 2005). As far as it concerns the development time, Andes 

itself took five years to be built, while its development was based on the Cascade 

(VanLehn, 1999) and Olae (VanLehn, Johnes, & Chi, 1992) projects. Finally, there were 

significant scalability problems, since in order to add a new rule to the cognitive model 

authors should re-inspect the whole model! (VanLehn et al., 2005)  

The same findings hold for the Visual Classification Tutoring (VCT) framework, 

which generally supports the development of tutors for visual classification, but 

specialises in medical domains like radiology, haematology and pathology. The 

framework makes the best provision for accommodating broad, deep, granular and 

scalable cognitive models by using ontologies to represent separately generic models for 

the domain model, the task model and the pedagogic model. This generic framework was 

used to develop SlideTutor
7
, a model-tracing tutor for a sub-domain of inflammatory 

diseases of skin, covering 33 diseases with 50 different diagnostic features. Once again, 

the expertise and time costs are high: an expert pathologist in cooperation with a 

knowledge engineer must annotate each diagnostic case with the contained disease and its 

diagnostic features. Based on this information, the task model produces dynamic solution 

graphs that guide the student in his/her diagnosis. 

The use of ontologies and semantic web services in the field of ITSs is relatively 

new. Ontological engineering is used to represent learning content, organize learning 

repositories, enable sharable learning objects and learner models and facilitate the reuse 
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of content and tools (Dicheva, Mizoguchi, & Greer, 2009). Examples of intelligent 

tutoring systems that use ontologies are Activemath (Melis, Andrès, Büdenbender, 

Frischauf, Goguadze, Libbrecht et al. 2001), which uses ontological representation of 

mathematical concepts, learning goals and acquired knowledge, and SlideTutor17. 

However, these are intelligent tutoring systems and not authoring systems. 

An ontology-based authoring system for constraint-based tutors is ASPIRE 

(Suraweera et al., 2009), which uses ontologies to define the concepts of the domain and 

then, based on these definitions, to provide the constraints for possible solutions used by 

the authored constraint-based tutors.  

The most relevant work to the MATHESIS framework is the 

OMNIBUS/SMARTIES project (Mizoguchi, Hayasi, & Bourdeau, 2009). The 

OMNIBUS ontology is a heavy-weight ontology of learning, instructional and 

instructional design theories. Based on the OMNIBUS ontology, SMARTIES (SMART 

Instructional Engineering System) is a theory-aware system that provides a modelling 

environment and guidelines for authoring learning/instructional scenarios. While the 

OMNIBUS/SMARTIES system provides support mainly for the design phase of ITS 

building, the MATHESIS framework aims at the analysis and development phases. It 

provides a semantic description of both tutoring and authoring knowledge of any kind of 

tutor in the form of composite processes and the way to combine them as building blocks 

of intelligent tutoring systems. Thus, it provides the ground for achieving reusability, 

shareability and interoperability. 

Although ASPIRE and OMNIBUS/SMARTIES are ontology-based authoring 

systems, they differ from MATHESIS framework being a meta-authoring system. These 

                                                 
17 http://slidetutor.upmc.edu/ 
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systems provide specific authoring programs that use a static ontological representation 

of tutoring and authoring knowledge to build a specific kind of tutors. The MATHESIS 

framework provides meta-authoring tools and an authoring language for expert authors to 

write authoring programs in the form of executable OWL-S authoring processes. These 

authoring programs can then be executed by the authoring tools to guide less expert 

authors in generating the ontological representation of any kind of tutor. This ontological 

representation of the tutor can then be translated to program code. 

 

 

3.2.2 Ontological Engineering and the Knowledge Gap Problem 

The approach adopted in this thesis combines the research in the field of 

authoring tools for ITSs with the field of knowledge engineering tools for knowledge-

based systems. This line of research starts with the first attempts to define reusable 

problem-solving knowledge through the introduction of the concepts of Generic Tasks 

(Chandrasekaran, 1986) and heuristic classification (Clancey, 1985). It continues with 

the concepts of task ontologies (Mizoguchi, Vanwelkenhuesen, & Ikeda, 1995) and the 

development of knowledge modeling frameworks like the MULTIS project (Mizoguchi, 

Vanwelkenhuesen, & Ikeda, 1995), the Protégé project (Puerta & Musen, 1992) and the 

KADS (Wielinga, Schreiber, & Breuker, 1992) and CommonKADS (Schreiber, et al., 

1999) projects. The latter introduced the concept of Problem Solving Methods (PSMs). 

With the emergence of the Web, the necessity for representing and deploying PSMs in a 

shareable and reusable way led to their semantic (ontological) representation as Web 

Services.  The ultimate goal is the development of knowledge-based systems from 

reusable knowledge components found on the web, a task known as automated web 
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service composition. Various frameworks with web services description languages have 

been developed, OWL-S being one of them. Although it is not an immediate intention of 

this thesis to view ITS authoring as a web service composition task, it sets the 

foundations, focusing on the shareability and reusability of authoring and tutoring 

knowledge provided by OWL-S. 

Based on the success of the ontological engineering approach in the domain of 

expert systems (Aitken & Sklavakis, 1999; Lenat, 1995; Sklavakis, 1998), as well as in 

the domain of intelligent tutoring systems ( Mizoguchi, Hayashi, & Bourdeau, 2009), two 

research goals were set:  

i. the complete ontological representation of a model-tracing tutor‟s modules, that 

is, the user interface, the tutoring model, the domain expertise model and the 

student model,  

ii. the complete ontological representation of the authoring knowledge that was used 

to build these models, and  

iii. the extensive use of standardized languages and publicly available modular tools. 

 

For these reasons, a bottom-up approach was adopted: Initially, the MATHESIS 

Algebra Tutor was developed to be used as a prototype target tutor (Sklavakis & 

Refanidis, 2008). Then, based on the knowledge used to develop the Algebra Tutor, an 

initial version of the MATHESIS ontology has been developed using the Ontology Web 

Language - OWL18 (Sklavakis & Refanidis 2009b; Sklavakis & Refanidis, 2010b). As 

this first version of the ontology was developed in a bottom-up direction, it emphasized 

on the representation of the tutor‟s models, namely the interface, tutoring and domain 

                                                 
18http://www.w3.org/TR/owl-features/ 
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expertise models. The ontology also contained a representation of the authoring 

knowledge at a rather conceptual level. At the final stage of the project, the generic meta-

authoring tools were developed (Sklavakis & Refanidis, 2014). These tools include: 

i. An executable authoring language,  ONTOMATH, based on the process model of 

OWL-S19,  

ii. editing tools for the development of  ONTOMATH executable authoring expertise 

models, that is, an ontological representation of the declarative and procedural 

authoring knowledge, and  

iii. an interpreter for executing the ONTOMATH authoring models.  

Using these tools, an authoring model was built that, when executed, builds the 

ontological representation of a model-tracing monomial multiplication tutor identical to 

the one contained in the original Algebra Tutor. In parallel, authoring tools for the 

development of model-tracing tutors have been developed. These tools are used to 

support the meta-authoring tools in the development of the executable authoring model 

by automating some top-level authoring processes of the MTT under development and 

providing visualisation and browsing facilities for the inspection of the tutor‟s developed 

models. 

 

3.3 AN OVERVIEW OF THE MATHESIS META-AUTHORING FRAMEWORK 

 

The MATHESIS framework is mainly a meta-knowledge engineering framework. 

It is well known that knowledge engineering is knowledge of how to extract problem-

solving knowledge from domain experts, represent this knowledge in a suitable format 

and implement a system that uses this knowledge to solve problems like a human expert 

                                                 
19 http://www.w3.org/Submission/OWL-S/ 
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(Aitken & Sklavakis, 1999; Lenat, 1995; Sklavakis, 1998). In the case of authoring 

systems for ITSs, a meta-authoring framework should enable knowledge engineers 

(meta-authors) to extract authoring knowledge from expert authors, that is, cognitive 

scientists and programmers (Artificial Intelligence or general purpose); represent 

authoring knowledge in a suitable format; and implement a system that uses this 

knowledge to guide authors of lower levels of expertise to build tutoring systems. To 

achieve these three objectives, the MATHESIS meta-authoring framework adds a 

semantic level on top of the knowledge level of each authoring framework (Figure 3.1). 

Its purpose is to represent declaratively (ontologically) the authoring expertise used to 

build ITSs, now lying partially unexpressed into the heads of authoring experts and 

partially expressed into the authoring tools, as well as the authored tutoring knowledge 

hard-wired into the ITSs themselves.  

The key point of the proposed framework is the ontological declarative 

representation of these two kinds of knowledge. At the same time, and that was the most 

challenging problem, these declarative representations should also be executable. More 

specifically, the deployment of the framework is done in the following stages (Figure 3.1, 

bottom to top): 

1. A knowledge engineer specialized in the MATHESIS framework (meta-author), 

extracts the authoring expertise from the domain experts, that is, cognitive 

scientists and AI programmers. The expertise must cover all stages of ITS 

development, that is, analysis, design and implementation. This constitutes a 

crucial difference between the framework-specific authoring tools described in 

the previous Section and the objectives of the MATHESIS framework: the former 

support parts of the ITS development stages, usually leaving out the most difficult 
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ones like the analysis stage, while the latter allows meta-authors to encode 

authoring knowledge of any stage. 

2. Using the meta-authoring tools, the meta-author creates an executable ontological 

model of the extracted authoring knowledge, the authoring expertise model. This 

model contains authoring processes of ONTOMATH, a special purpose language 

developed within the framework. ONTOMATH defines two kinds of authoring 

processes: (a) composite authoring processes, which correspond to the 

functions/procedures of a programming language and are represented using the 

process model of OWL-S, and (b) atomic authoring processes, which correspond 

to the statements of a programming language. When the authoring model is 

executed by a non-expert author (e.g. domain expert), the ONTOMATH interpreter 

executes them  by calling corresponding Java methods that in turn use the Protégé 

API to guide the non-expert author in building the ontological representation of 

the ITS models (cognitive, tutoring, interface) into the MATHESIS ontology. 

Therefore, the authoring processes are the semantic representation of the 

framework-specific authoring tools.  

3. The ontological representation of the ITS‟s various models (cognitive, teaching, 

interface) contain both declarative and procedural knowledge. An example of 

declarative knowledge would be the interface structure (interface model) or the 

problem-solving concepts and stages of the cognitive model. An example of 

procedural knowledge would be the model-tracing algorithm (tutoring model) or 

the problem-solving steps of the cognitive model. In the MATHESIS framework 

these knowledge elements are defined by the meta-author as generic elements. 

Declarative knowledge elements are defined using the common OWL structures: 

classes, instances, properties and values. Procedural knowledge elements are 
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defined using the process model of OWL-S, just like the composite authoring 

processes described in stage 2. It is these generic knowledge elements that the 

executed authoring processes act on, guiding the non-expert author to create 

specific-ones for the tutor under development. 

4. The meta-author may develop framework-specific (e.g. model tracing) authoring 

tools to help himself develop the authoring model and the non-expert authors in 

developing the tutor(s). These are mainly visualisation tools, although they can 

also provide manual creation and editing of tutor-specific knowledge elements 

based on generic ones. This last facility aims at accommodating more expert 

authors that can develop parts of the tutor directly, without executing the 

corresponding authoring processes. A suite of such framework-specific tools for 

model-tracing tutors has been developed.  

5. Having created the ontological representation of the tutor, the non-expert author 

can create its implementation by translating the ontological model to specific 

programming languages. For example, in the case of the MATHESIS Algebra 

Tutor, the interface model is translated to HTML and the cognitive and tutoring 

models to JavaScript. These translations are performed automatically by special 

translation tools. In case of other target programming languages, we need to 

develop its corresponding ontological representation as well as the translation 

tool.  

All stages are performed using the MATHESIS tools (Figure 3.2) 
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Fig. 3.1 The MATHESIS Meta-Authoring Framework 
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Fig. 3.2. The MATHESIS Tools as a tab widget in Protégé: (a) Framework-specific (model-

tracing) Tutor Authoring Tools, (b) Authoring Processes (Meta-Authoring) Tools, 

(c) The MATHESIS Ontology Tab 

 

3.4 THE ONTOMATH META-KNOWLEDGE ENGINEERING LANGUAGE 

The main component of the MATHESIS authoring framework is the MATHESIS 

Ontology. It contains three kinds of knowledge:  

i. The declarative knowledge of the tutor, such as the interface structure and the 

problem-solving concepts and stages of the cognitive model,  

(a) 

(b) 

(c) 
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ii. the procedural knowledge of the tutor, such as the teaching and math domain 

expertise models and, finally,  

iii. the authoring knowledge, that is, the declarative and procedural knowledge that is 

needed to develop the tutor.  

 

3.4.1 Procedural Knowledge Representation: The OWL-S Process Model 

While the declarative knowledge is represented with the basic OWL components, 

the procedural knowledge, both tutoring and authoring, is represented via the process 

model of the OWL-S web services description ontology. Through OWL-S, every 

authoring or tutoring task is represented as an authoring or tutoring process, composite or 

atomic.  

Using the OWL-S process model to represent ontologically procedural 

knowledge, like teaching, math problem-solving or authoring knowledge, is the key 

advantage of the MATHESIS framework that gives a new perspective in the development 

of reusable authoring knowledge for intelligent tutors. OWL-S is a web service 

description ontology designed to enable the following tasks: 

 Automated discovery of Web services that can provide a particular class of 

service capabilities, while adhering to some client-specified constraints. 

 Automated Web service invocation by a computer program or agent, given only a 

declarative description of the service. 

 Automated Web service selection, composition and interoperation to perform 

some complex task, given a high-level description of an objective. 
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The last task is of interest for the MATHESIS framework and therefore the focus 

will be set on it. To support this task, OWL-S provides, among other things, a language 

for describing service compositions as seen in Figure 3.3 (Martin et al., 2005). Every 

service is viewed as a process. OWL-S defines Process as a subclass of ServiceModel. There 

are three subclasses of Process, namely the AtomicProcess, CompositeProcess and 

SimpleProcess. Atomic processes correspond to the actions a service can perform by 

engaging it in a single interaction. In the MATHESIS ontology they represent simple 

statements, either tutoring or authoring, grounded to JavaScript or Java code 

correspondingly. Composite processes correspond to actions that require multi-step 

protocols. In the MATHESIS ontology they represent functions, either tutoring or 

authoring, that call other functions (composite processes). Finally, simple processes 

provide an abstraction mechanism to provide multiple views of the same process. 

Currently, they are not used in the MATHESIS framework. 

Composite processes are decomposable into other composite or atomic processes. 

Their decomposition is achieved by using control constructs such as Sequence or If-Then-

Else. Table 3.1 shows the most common control constructs that OWL-S supports. 

Any composite process can be considered as a tree whose non-terminal nodes are 

labelled with control constructs. The leaves of the tree are invocations of other processes, 

composite or atomic. These invocations are indicated as instances of the Perform control 

construct. This special control construct takes as a parameter a process, either composite 

or atomic. In the MATHESIS framework a Perform with an atomic process corresponds to 

the execution of a statement, whereas a Perform with a composite process corresponds to 

calling a function. This tree-like representation of composite processes is the key 

characteristic of the OWL-S process model and has been used in the MATHESIS 

ontology to represent both authoring and tutoring procedural knowledge. 
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Fig. 3.3. Top level of the OWL-S process ontology (from Martin et al., 2005) 

Table 3.1. Common control constructs supported by the OWL-S process model 

 
Control Construct Description 

Sequence A list of control constructs to be performed in order 

Choice 

Calls for the execution of a single construct from a given bag 

of control constructs (given by the components property). 

Any of the given constructs may be chosen for execution 

If-Then-Else 

 

It has properties ifCondition, then and else holding different 

aspects of the If-Then-Else construct 

 

Repeat-While & Repeat-Until 

The initiation, termination or maintenance condition is 

specified with a whileCondition or an untilCondition 

respectively. The operation of the constructs follows the 

familiar programming language conventions. 
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3.4.2 Procedural Authoring Knowledge Representation: The ONTOMATH language 

The MATHESIS framework allows expert meta-authors to capture the whole 

authoring effort by providing an executable authoring model building language, namely 

ONTOMATH. In ONTOMATH, each authoring step is represented as an authoring process, 

composite or atomic (Figure 3.4). Composite authoring processes correspond to functions 

of a programming language that can be called, get and return values. This is achieved by 

two means: a) Εach composite process has a property, hasFormalParameters, which keeps a 

list of the process formal parameters, and b) each Perform has a property, hasRealParameters, 

which keeps the list of the parameters at call time. During execution of a Perform construct 

by the authoring tools, the interpreter matches the values of the real parameters to those 

of formal parameters. The values of the two properties, hasFormalParameters and 

hasRealParameters, are defined by the meta-author in the ontology with the help of the 

meta-authoring tools. The recursive analysis of composite authoring processes ends to 

atomic authoring processes, which are instances of the OntoMathStatement, a subclass of 

AtomicProcess. Each OntoMathStatement instance corresponds to an operation that must be 

performed to the MATHESIS Ontology. Table 3.2 presents a concise description of the 

ONTOMATH authoring statements. For  a complete description, see Appendix B. 

ONTOMATH authoring processes, composite and atomic, are classified in classes 

and subclasses according to the kind of authoring knowledge they represent and the part 

of the authoring endeavour they implement. For example, in Figure 3.4, there are 

ONTOMATH processes (identify-input-knowledge-components, define-interface-elements-for-input-

knowledge-components, define-variables-for-interface-elements, define-code-to-initialise-interface-

elements ) for implementing the authoring task of the problem presentation tutoring task 

(class Authoring-Task-Present-Domain-Task). Other ONTOMATH processes, like get-HTML-
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Element-Property, serve the authoring task of HTML programming (class Programming-Task-

HTML). Others, like get-interface-element-reference, serve the authoring task of JavaScript 

programming (class Programming-Task-JavaScript). As a consequence, the ONTOMATH 

language is not only capturing authoring knowledge but, at the same time, is classifying 

authoring knowledge thus enabling reasoning on that knowledge, that is, discovery, 

retrieval, reuse and modification, by authors of different expertise levels. 

 

 

Fig. 3.4. Part of the ONTOMATH Authoring Processes Ontology 
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Table 3.2. The ONTOMATH Statements and their operations 

 

Browse Statements Purpose 

setSelectedClass(className) 
Sets the Class named by className as selected in the 

Classes Panel 

getSelectedClass(className) 
Sets className to the name of the Class selected in 

the Classes Panel 

setSelectedInstance(instanceName) 
Sets the Instance named by instanceName as selected 

in the Instances Panel 

getSelectedInstance(instanceName) 
Sets instanceName to the name of the Instance 

selected in the Instances Panel 

Collection Statements Purpose 

iteratorNext (iterator, element) Sets element to the next element of iterator 

String Statements Purpose 

strConcat(newString,string1,string2) 

Concatenates string1 and string2 and returns the 

concatenated string to newString 

Dialog Statements Purpose 

showMessageDialog(message) Displays a Message Dialog with message 

showInputDialog(userInput, message, 

defaultValue) 

Displays an Input Dialog with message and 

defaultValue. Returns user input to userInput 

Ontology_Editing Statements Purpose 

createInstance(instanceName,className) 
Creates a new instance of class className named 

instanceName 

copySelectedInstance(newInstanceName) 

Creates a new copy of the instance that is currently 

selected in the Instances Panel with name 

newInstanceName. 

createSubclass(subclassName,superclassName) 
Creates a new subclass named subclassName of class 

superclassName 

getObjectProperty(instance,property,propertyV

alues) 

Gets the values of object property property of 

instance instance and stores them to variable 

propertyValues. 

setObjectProperty(instance,property,value) 

If object property of instance is functional (takes 

only one value), its value is set to value. Otherwise, 

value is added to the list of the property‟s values. 

getDataProperty(instance,property,propertyVal

ues) 

Gets the values of data property property of 

instance instance and stores them to variable 

propertyValues. 

setDataProperty(instance,property,value) 

If data property of instance is functional (takes only 

one value), its value is set to value. Otherwise, value 

is added to the list of the property‟s values. 

removePropertyValue(instance,property,value) Removes instance value from the value(s) of property 
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property of instance instance.  

getLocalName(instance, instanceName) 
Gets the local name of instance instance and stores it 

in variable instanceName. 

setVariable(variable,value) 
Sets the value of variable variable to value. 

Tutoring_Processes_Editing Statements Purpose 

addPerform(performStatement) 

Adds a Perform Control Construct (tutoring 

statement) as a child to the currently selected 

construct in the displayed tutoring process tree 

 

ONTOMATH statements are grounded to actual Java program code. When the 

MATHESIS authoring tools interpret a Perform construct that calls an ONTOMATH 

statement, they execute its corresponding Java code, which performs the corresponding 

operations on the ontology that represents the tutor under development. It must be noted 

that the set of ONTOMATH statements is not fixed. Expert meta-authors can define their 

own atomic authoring (ONTOMATH) statements by using the meta-authoring tools to 

define in the ontology the values of property hasFormalParameters for the new statement 

and writing the Java code that, during execution, gets the values of property 

hasRealParameters of the calling Perform construct and performs the statement‟s intended 

operation(s). The interpretation and execution of the ONTOMATH code by the 

MATHESIS authoring tools leads to the creation of the tutor‟s ontological representation 

and, consequently, to the implementation of the authored tutor 
 

Therefore, the ONTOMATH authoring processes form an ontological representation 

of a meta-program that handles the ontological representation of the tutor as its data. 

They capture the authoring expertise of expert meta-authors and make it available to non-

expert authors. They constitute the expertise model of an ITS meta-authoring shell that, 

when executed, guides non-expert authors to develop their own tutors. 
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3.5 THE MATHESIS AUTHORING TOOLS 

This section describes the use of the MATHESIS authoring tools. The tools have 

been implemented as a tab widget in Protégé (Figure 3.2). The tools are grouped in three 

windows according to their functionality: (a) Framework-specific (model-tracing) Tutor 

Authoring Tools, (b) Authoring Processes (Meta-Authoring) Tools, and (c) The 

MATHESIS Ontology Tab. This section presents an overview of the tools. An extensive 

description of their use is presented in the next section. For this reason, this section 

contains some references to figures of the next section. 

3.5.1 The Tutor Authoring Tools 

The Tutor authoring tools (Figure 4.1) are used both by less-expert domain 

authors as well as by expert meta-authors. They are organized in three parts: (a) The 

Tutor Initialization Tools, (b) The Advanced Tools for Tutoring Processes Authoring, 

and (c) The Tutoring Processes Display/Editing area.  

The Tutor Initialization Tools are shown in Figure 3.5. Tools 1-5 (Create 

Tutor,Open Tutor, Create Domain Task, Add Domain Task and Select Tutoring Model) 

will be  described in detail in the next section. The rest of the tools are: 

Fig. 3.5 The Tutor Initialization Tools 

3. Create Domain Task 

4.Add Domain Task 

5.Select Tutoring Model 

6.Create XML DOM Tree 

7.Switch namespace 

8.Display Tutor Interface 

9.Display Authored Domain task  10.Display Tutoring Model  

2.Open Tutor 

1.Create Tutor 
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6-Create XML DOM Tree: Creates an XML Document Object Model tree from an 

XML or HTML file. An Open File dialogue asks from the author to locate a file 

containing a web page. Then the file is parsed and an XML DOM tree is created. From 

this XML tree, the ontological representation of the tutor‟s interface DOM can be created 

(not implemented). Figure 3.6 shows (part of) the XML DOM tree generated from the 

MATHESIS Algebra Tutor web page file. 

7-Switch Namespace: This tool toggles the ontology namespace between this of 

the currently developed tutor, e.g. http://users.uom.gr/~dsklavakis/monomial-

multiplication-tutor#monomial-multiplication-tutor, and that of the MATHESIS 

ontology. This switching is necessary when a meta-author needs to add a generic element 

in the MATHESIS ontology while developing a specific tutor. 

8-Display Tutor Interface: Displays the tutor‟s interface DOM tree (Figure 4.11, 

right top) in the Tutoring Process Display/Edit Area (Figure 4.1c). It also sets the focus 

on the tutor‟s instance in the MATHESIS ontology. 

9-Display Authored Domain Task: Sets the focus on the instance of the currently 

authored domain task in the MATHESIS ontology. 

10-Display Tutoring Model: Displays the Tutoring Model process in the Tutoring 

Process Display/Edit Area (Figure 4.1c).  

The Advanced Tools for Tutoring Processes Authoring are shown in Figure 3.7. 

These tools are used by experienced meta-authors to directly create hard to build tutoring 

processes – without using authoring processes –and provide them as libraries to domain 

authors. The most characteristic example of such a tutoring process is the Tutoring Model 

of the tutor, the ModelTracingAlgorithm tutoring process, described in the previous section. 

The use of the tools will be exemplified in Section 4 by describing how they are used by 

a meta-author to create/edit the generic ModelTracingAlgorithm tutoring process. 
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Fig. 3.6 The XML DOM tree of the MATHESIS Algebra Tutor interface 
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Fig. 3.7 The Tutoring Processes Advanced Authoring Tools 

1-Create Tutoring Process: The (meta-) author selects a class in the CLASS 

BROWSER of the MATHESIS ontology window. In the case of the ModelTracingAlgorithm 

tutoring process, this is class ITS-Teaching-Model (Figure 4.7a). By clicking the button the 

system asks for the number of the process‟ parameters and a new instance of the class is 

created and displayed in the Display/Edit area (Figure 3.8). 

Fig. 3.8 A newly created Tutoring Process 

1. Create Tutoring Process 

2. Display Tutoring Process 

3. Display Calling Process 

4. Display Called Process 

5. Set Authoring Process 

6. Execute Authoring Process 

7. Edit/Set Parameters 

8. Create Perform 

9. Create Sequence 10.Create If-

Then-Else 

11. Create Repeat-Until 

12. Create Repeat-

While 

13.Create Include 

14. Move Construct Up 

15. Move Construct Down 

16. Delete Construct 
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2-Display Tutoring Process: Displays the Tutoring Process selected by the author 

in the MATHESIS ontology window (Figure 4.7). It also displays the tutoring process as 

the root of the call sequence tree just above the Display/Edit area (Figure 4.1c). 

Fig. 3.9 The Calling Sequence Tree for Tutoring Process multiplyMainParts 

3-Display Calling Process:  Displays (pops) in the Display/Edit area the tutoring 

process that calls (parent) the currently displayed tutoring process (child). Figure 3.9 

shows the calling sequence tree for tutoring process multiplyMainParts. The process is called 

Tutoring 

Processes 

Calling 

Sequence 

Tree 
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by process execute-monomial-multiplication. Clicking the Display Calling Process button 

would display the calling (parent) tutoring process, execute-monomial-multiplication and 

remove the multiplyMainParts process from the calling sequence tree. 

4-Display Called Process: When the author selects a Perform that calls (parent) a 

composite tutoring process (not a JavaScript statement) the called process (child) is 

displayed in the Display/Edit area. The called process is added as a child of the calling 

process in the calling sequence tree. This tool, in combination with the Display Calling 

Process tool, allows authors to browse the tutor‟s code (tutoring processes). 

5-Set Authoring Process: As explained before, each tutoring process can have a 

corresponding authoring process that, when executed, guides authors in creating the 

tutoring process. The meta-author selects the authoring process in the MATHESIS 

ontology BROWSER and clicks the button to associate it with the tutoring process 

displayed.  

6-Execute Authoring Process: When a tutoring process has an associated 

authoring process this button displays the authoring process in the Display/Edit/Execute 

area of the Meta-Authoring Tools. In Figure 4.1 tutoring process execute-monomial-

multiplication-Presentation (Perform-6) is associated with authoring process authoring-task-present-

domain-task. Clicking the Execute Authoring Process button displays the authoring-task-

present-domain-task process in the Display/Edit/Execute area of the Meta-Authoring Tools 

(Figure 4.12). 

7-Edit/Set Parameters: This tool is used in two ways. If the name (root node) of a 

tutoring process is selected in the Display/Edit area is selected, the tool asks form the 

(meta-) author to set the formal parameters of the process. The author must enter the 

number of the parameters and for each one, an identifier and a short description 

(optional). If a Perform is selected, the tool asks form the (meta-) author to enter the 
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identifiers and descriptions of the real parameters. As a default, the tool proposes the 

identifiers and descriptions of the called process‟ formal parameters. 

The remaining tools (8-16) are for editing the OWL-S constructs (program 

structures) that form the tutoring processes‟ code: 

8-Create Perform to 12-Create Repeat-While: They create the corresponding 

OWL-S constructs. The author selects an already existing construct and then clicks the 

corresponding button to create a new construct as the next sibling (tree node) of the 

selected construct.  

13-Create Include is a special purpose (not OWL) construct that creates include 

statements for target programming languages  that use this directive to load libraries, like 

JavaScript, C, Java etc. 

14-Move Construct Up: Moves upwards the selected construct by switching it 

with its previous sibling construct (tree node). 

15-Move Construct Down: Moves downwards the selected construct by switching 

it with its next sibling construct (tree node). 

16- Delete Construct: Deletes the selected construct. 

 

3.5.2 The Authoring Processes (Meta-Authoring) Tools 

The Authoring processes authoring tools (Figure 4.12) are used by expert meta-

authors to develop the authoring processes as well as by domain authors to execute them. 

Since authoring processes are OWL-S services, they are composed by the same OWL-S 

structures (Perform, Sequence, If-Then-Else, Repeat-Until, Repeat-While). Consequently, the 

authoring tools are almost identical with those for the tutoring processes. As seen in 

Figure 4.12, the layout of the tools is similar to that of the tutoring processes authoring 
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tool. At the upper part lie the button tools for displaying, editing and executing authoring 

processes (Figure 3.10). In the middle lies the calling stack represented as a tree and at 

the bottom lies the Display/Edit/Execute area. 

  Fig. 3.10 The Authoring Processes (Meta-Authoring) Tools 

1-Create Authoring Process: The meta-author selects a class in the CLASS 

BROWSER of the MATHESIS ontology window. By clicking the button the system asks for 

the number of the process‟ parameters and a new instance of the class is created and displayed in 

the Display/Edit area.  

2-Display Authoring Process: Displays the Authoring Process selected by the meta-

author in the MATHESIS ontology window. It also displays the authoring process as the 

root of the call sequence tree just above the Display/Edit/Execute area. 

3-Return to Calling Process:  This tool is part of the ONTOMATH language 

interpreter. It returns execution control to the calling authoring process. It displays (pops) 

in the Display/Edit/Execute area the authoring process that has called (parent) the 

currently executed authoring process (child).  

1. Create Authoring Process 

2. Display Authoring Process 

3. Return to Calling Process 

4. Execute ONTOMATH Statement 

5. Edit/Set Parameters 
6-10. Create 

OWL-S 

(Programming) 

Construct 

14. Move Construct Up 

15. Move Construct Down 

16. Delete Construct 

11. Copy Construct 

12. Cut Construct 

13. Paste Construct 
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4-Execute ONTOMATH Statement: This tool executes the currently selected 

ONTOMATH statement. If it is a Perform with a composite authoring process, it pushes 

the process onto the calling stack, displays the called process in the Display/Edit/Execute 

area and continues execution with it. If it is a Perform with an atomic authoring process, 

the process is interpreted and the corresponding Java code is executed to perform its 

operation. In case of another construct (Sequence, If-Then-Else, Repeat-Until, Repeat-While), the 

appropriate interpretation of the structure is achieved through the interpreter‟s Java code. 

5-Edit/Set Parameters: This tool is used in two ways. If the name (root node) of 

an authoring process is selected in the Display/Edit/Execute area is selected, the tool asks 

form the meta-author to set the formal parameters of the process. The author must enter 

the number of the parameters and for each one, an identifier and a short description 

(optional). If a Perform is selected, the tool asks from the meta-author to enter the 

identifiers and descriptions of the real parameters. As a default, the tool proposes the 

identifiers and descriptions of the called process‟ formal parameters. 

6-10-Create OWL-S Programming Construct: These tools create the 

corresponding OWL-S constructs. The author selects an already existing construct and 

then clicks the corresponding button to create a new construct as the next sibling (tree 

node) of the selected construct.  

11-Copy Construct: Copies the selected construct 

12-Cut Construct: Cuts the selected construct 

13-Paste Construct: This tool is used in combination with the previous two tools. 

It pastes to the selected construct the construct previously copied or cut. If the selected 

construct is a Perform then the pasted construct is added as the next sibling. If the selected 

construct is a Sequence, If-Then-Else, Repeat-Until or Repeat-While, then the pasted construct is 

added as a child to the selected construct. 
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14-Move Construct Up: Moves upwards the selected construct by switching it 

with its previous sibling construct (tree node). 

15-Move Construct Down: Moves downwards the selected construct by switching 

it with its next sibling construct (tree node). 

16- Delete Construct: Deletes the selected construct. 
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Chapter 4:  Tutor Authoring in the MATHESIS Framework 

 

 

 

 

 

 

 

 

 

4.1 INTRODUCTION 

 

This Section describes how meta-authors create an authoring knowledge model 

using as an example the meta-authoring of a model-tracing tutor for monomial 

multiplication, as well as how non-expert domain authors can create the monomial 

multiplication tutor by executing the authoring model. The meta-authoring model for the 

monomial multiplication tutor was based on the authoring knowledge that was used to 

create the monomial multiplication part of the MATHESIS Algebra Tutor. Provision has 

been taken so that both the authoring model and the tutor‟s model can be extended for 

meta-authoring all the math skills tutored by the MATHESIS Algebra Tutor.  

In the MATHESIS framework authors perform all authoring steps by executing 

the corresponding authoring processes created by meta-authors. However, special Tutor 

Initialization Tools have been developed, lying at the top of the Model-Tracing Tutor 

Authoring Tools window (Figure 4.1a). Instead of executing authoring processes, authors 
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use these tools to perform common authoring steps for the initialization of the tutor as it 

is described below.  

Fig. 4.1. The Model-Tracing Tutor Authoring Tools Window: (a) The Tutor Initialization Tools, 

(b) The Advanced Tools for Tutoring Processes Authoring, (c) Tree representation 

of tutoring process  Model-Tracing-Algorithm for the execute-monomial-multiplication 

task 

4.2 TUTOR INITIALIZATION20  

The first authoring action is to define an instance of the tutor in the ontology. At 

the top level of the MATHESIS ontology, every tutor is represented as an instance of 

class ITS-Implemented. In Figure 4.2 this instance is monomial_multiplication_tutor. The author 

                                                 
20 http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/01-Authorring_Tools.mp4 

(a) 

(b) 

(c) 
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creates this instance once in the first authoring session using the “Create New Tutor” 

button (Figure 4.1a). The author is prompted to enter the tutor‟s name (Figure 4.3). In 

subsequent authoring sessions the author selects the tutor to edit using the “Open Existing 

Tutor” button . In both cases, the Tutor Initialization Authoring Tools (Figure 4.1a) 

automatically select the ITS_Implemented class in the ontology tab (Figure 4.4). 

 

 

Fig. 4.2. The top-level ontological representation of the tutor 
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Fig. 4.3. Author is prompted by the tools to enter the name of a newly created tutor instance. 

Class ITS-Implemented is a top class created by the meta-author and can have 

subclasses like the ITS-Implemented_Algebra subclass (Figure 4.4a), which are used for 

classifying the various tutors. This classification can use various criteria defined by the 

meta-author(s) such as the tutors‟ domain (math, physics, programming), thus making 

easier for authors to locate a specific tutor in the ontology.  
 

 

Fig. 4.4. (a) The ITS_Implemented hierarchy (b) Instance monomial-multiplication-tutor is selected    

(c) Properties of the selected instance 

 

(b) 

(c) 
(a) 
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4.3 COGNITIVE MODEL INITIALIZATION 

 

The next authoring action is to define the domain task that the tutor teaches, e.g., 

monomial multiplication. The author can add in the ontology new tasks using the “Create 

New Cognitive Task” button  (Figure 4.1a). The author is prompted to enter the 

cognitive task‟s name (Figure 4.5).  

Fig. 4.5. Author is prompted by the tools to enter the name of a newly created cognitive task 

instance.  

Authors can also select existing cognitive tasks to edit them, using the “Select 

Existing Cognitive Task” button  (Figure 4.1a). The created or selected instance of the 

domain task is added to property hasDomainTask that keeps a list of the tasks (here execute-

monomial-multiplication) that the tutor teaches (Domain-Task instances). Figure 4.4c shows the 

domain task instance execute-monomial-multiplication listed as a value of the hasDomainTask 

property. The author fleshes out the domain tasks by executing the authoring processes 

developed by the meta-author according to each domain task as it will be explained later. 

As with the tutor instances, domain task instances are classified in a hierarchy with 

Domain-Task being the root (Figure 4.6). Notice that task execute-monomial-multiplication is 

actually an instance of the Algebraic-Operation-Task subclass. 
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Fig. 4.6. (a) The Domain_Task hierarchy (b) Instance execute-monomial-multiplication is selected   (c) 

Properties of the selected instance 

 

For each domain task, the author must define in the ontology the tutoring model 

to be used, as well as the domain concepts given for the task and the domain concepts 

asked for the task. These authoring steps are performed by executing the corresponding 

authoring processes created by the meta-author as it will be exemplified in section 4.7. 

Instances of tutoring models are model-tracing, example-tracing, constraint-based 

and multiple-choice. These instances are initially just placeholders being able to represent 

any tutoring model; however, these instances turn from simple placeholders to specific 

implementations of the tutoring model they stand for. The meta-authoring model allows 

domain authors to associate each domain task with (possibly) a different teaching model. 

Furthermore, it allows using variations of the same tutoring model. For example, it could 

allow the domain author to add to the model-tracing teaching algorithm a service for 

(a) 

(b) 

(c) 
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presenting solved examples of the tutored domain task. This was done to increase the 

model‟s flexibility. Of course flexibility increases complexity for the domain author who 

has to decide what tutoring model to choose for each domain task.  This flexibility vs. 

complexity trade-off can be balanced using a default tutoring model. The meta-authoring 

model currently supports a single tutoring model, model-tracing, and the only flexibility 

provided to domain authors is to add or remove specific services. Tutoring model 

instances are classified in a hierarchy which has class ITS-Teaching-Model on top (Figure 

4.7). In the ontology, the tutoring model of the domain task is kept by property 

hasTutoringModel of the domain task instance as shown in Figures 4.2 and 4.6c. 
 

 
 

Fig. 4.7. (a) The ITS-Teaching-Model hierarchy. (b) Instance execute-monomial-multiplication-Model-

Tracing-Algorithm has been selected. (c) Properties of the selected instance are 

shown. 

 

 

(a) 

(b) 

(c) 
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Fig. 4.8. (a) The Domain-Knowledge-Component hierarchy. (b)  Instance monomial has been selected. 

(c) Properties of the selected instance are shown. 

For the execute-monomial-multiplication task the input knowledge components are two 

monomials and the output knowledge component is their product, a monomial too. 

Domain concepts‟ instances are classified in a hierarchy with class Domain-Knowledge-

Component on top (Figure 4.8a). In the ontology, the given and asked domain concepts of 

the domain task are kept by properties hasInputKnowledgeComponents and 

hasOutputKnowledgeComponents respectively (Figures 4.2 and 4.4c). Notice that the domain 

concept monomial is actually an instance of the Algebraic-Expression-Monomial subclass. In 

Figure 4.8b there are four instances: monomial, monomial-1, monomial-2 and monomial-3. 

Instance monomial is a generic instance created by the meta-author. When an author needs 

to define in a tutor the domain concept of monomial he/she has to clone the generic 

(a) 

(b) 

(c) 
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instance monomial. The author creates these clones by executing the appropriate authoring 

processes created by the meta-author. Therefore, the state of the ontology shown in 

Figure 4.8 is after the author has executed the appropriate authoring processes that guided 

him to create the three specific instances, monomial-1, monomial-2 and monomial-3, by cloning 

monomial. 

 

4.4 TUTORING MODEL INITIALIZATION 

The top level representation of the tutor‟s procedural knowledge in the ontology is 

the model-tracing algorithm represented as a generic composite tutoring process, named 

ModelTracingAlgorithm. This algorithm is an implementation of the two-loop structure of 

intelligent tutoring systems described in (VanLehn, 2006) and was developed by the 

meta-author using the advanced Tutor Authoring Tools (Figure 4.2b). The tools allow 

meta-authors and advanced domain authors to create parts of the tutor‟s procedural 

knowledge (tutoring processes) directly, without executing authoring processes. This 

ability is necessary for complicated tutoring processes, like the ModelTracingAlgorithm, 

which demand high expertise and must be provided to non-expert authors as libraries, 

that is, generic tutoring processes in the MATHESIS framework terminology. When the 

non-expert author selects the ModelTracingAlgorithm as the tutoring model, the Tutor 

Initialization Authoring Tools (Figure 4.1a) copy its structure and create a new instance 

for the authored task, execute_monomial_multiplication-Model_Tracing _Algorithm (Figure 4.1c). 

Consequently, the meta-author can define any number of framework-specific, generic 

tutoring models (e.g. model-tracing, example-tracing, constrained-based, other) ready to 

be selected by the non-expert author and adapted by the execution of authoring processes 

for the authored domain task. 
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The tree structure of the process, adapted and displayed by the Tutor Initialization 

Authoring tools for the execute-monomial-multiplication task, is shown in Figure 4.1c. Each 

step of the algorithm is a top level tutorial action: 

1. Loop over problems with the same domain task, e.g., monomial multiplication, 

until the assessment subsystem signifies that the task is adequately acquainted by 

the student (Repeat-Until_1(tutoring-done))). Instance tutoring-done is a MATHESIS 

generic predicate created by the meta-author. The implementation of this 

predicate in the target language is performed by executing authoring processes. 

2. Present, for each problem, the initial problem solving state (Perform_6 (execute-

monomial-multiplication-Presentation()). 

3. Loop over the solution steps for a specific problem that teaches the domain skill, 

e.g.           (Repeat-Until_8(task_is_achieved)). 

4. Get the correct solution(s) from the domain expertise model (Perform_13 (execute-

monomial-multiplication-Execution()). 

5. Provide help/hint (Perform_17 (execute-monomial-multiplication-Help()). 

6. Get the student solution (Perform_21 (execute-monomial-multiplication-Execution-Student()). 

7. Provide feedback to the student (Perform_25 (execute-monomial-multiplication-Feedback()). 

8. Assess student solution (Perform_29(execute-monomial-multiplication-Assessment()).  

9. Discuss student solution (Perform_33 (execute-monomial-multiplication-Discussion()). 
 

Each of these steps is also a composite tutoring process that analyses the tutorial 

steps further down to more simple ones like giving a hint, showing an example, recalling 

math formulas or rules and so on. In programming terms, the ModelTracingAlgorithm 

composite tutoring process, when translated to code, constitutes the main function that 

controls the whole tutoring process by calling other functions. This recursive analysis of 
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the tutoring steps ends when a composite tutoring process contains only atomic processes 

corresponding to simple statements. 

For example, in the case of the execute-monomial-multiplication task, the execute-

monomial-multiplication-Execution process (Figure 4.1c, Perform_13) is analyzed in two other 

composite processes: multiplyCoefficients and multiplyMainParts. These two processes form the 

tutor‟s domain expertise model, which calculates the correct answer(s) in each step in 

order to be compared against the student‟s answer. Figure 4.9 shows part of the structure 

of process multiplyMainParts. Once again, there are two options for the meta-author on how 

to create these processes from the side of the non-expert author:  

i. The meta-author must develop the authoring processes that, when executed, guide 

the non-expert author in a  step-by-step manner to implement them, and  

ii. the meta-author creates these tutoring processes directly, using the advanced 

Tutor Authoring Tools (Figure 4.1b), and then develops simpler authoring 

processes that just guide the non-expert author in selecting the former from the 

MATHESIS ontology.  

 

The first option entails considerable workload for the meta-author but it is closer 

to the principles and objectives of the MATHESIS framework, which aims at the 

representation of authoring and tutoring knowledge at the greatest possible detail. The 

second option is easier for the meta-author but hides and obscures the authoring 

knowledge that was actually used to develop these tutoring processes.  
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Fig. 4.9. Representation of the JavaScript function multiplyMainParts 

4.5 PROGRAM CODE MODEL 

 

Each JavaScript statement is represented by an instance of the JavaScriptStatement 

class, a subclass of AtomicProcess (Figure 4.10). Following the OWL-S representational 

scheme, these instances are parameters to Perform constructs. The JavaScriptStatement class 

has subclasses which classify the JavaScript statements in various classes such as 

DefineVariable, InitializeVariable, AssignValueToVariable, InvokeFunction, InvokeMethod, SetProperty. 

Each subclass has properties that represent the various parts of the corresponding 

JavaScript statements. For example, the InvokeFunction class has three properties, 

hasInvokedFunction, hasArgumentsList and hasAssignedVariable.  
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Fig. 4.10 Part of the JavaScript_Statement ontology 

 

From the values of these properties, the authoring tools create and display the 

actual JavaScript code as shown in Figure 4.9 (the small disks under the Perform 

constructs). Such a detailed model of the JavaScript language allows the authoring 

processes to guide the non-expert author in building the tutor‟s code by selecting the 

appropriate JavaScriptStatement subclass and the values of the related properties. Therefore, 

a non-expert author does not need to know the JavaScript syntax but only needs to have 

some general programming knowledge. As far as it concerns the semantic validation of 

the produced JavaScript code, the tools do not provide any special assistance to the 

authors. That is, the produced JavaScript code is syntactically correct, however whether 

this code exhibits the intended behavior is a matter of correct design and analysis of the 

authoring processes. 
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4.6 INTERFACE MODEL INITIALIZATION 

The tutor‟s author must also create in the MATHESIS ontology the user interface 

model. In the current implementation the interface is a web page and therefore the user 

interface model is a representation of the HTML Document Object Model (DOM). The 

tutor‟s placeholder for the interface model is kept by property hasTopInterfaceElement that 

holds the root element of the user interface, a Document instance (Figures 4.2 & 4.4c). An 

ontological representation of the HTML elements with their properties and values has 

been developed. When the author creates the tutor‟s instance for the first time, the Tutor 

Initialization Authoring Tools automatically create the ontological representation of an 

empty HTML page. The representation of the HTML code and the corresponding DOM 

of the user interface for the monomial multiplication tutor are shown in Figure 4.11.  

The instances surrounded by the dotted line (Document_49, Html_51, Head_53 and  

Body_54) were created automatically by the Tutor Initialization Authoring Tools, while the 

rest were created by the execution of authoring processes. Each object defined in the 

HTML code is represented as an instance of the corresponding HTMLObject subclass 

(Document, Html, Head, Body, Applet, Web_Eq_Input_Control). Each HTMLObject instance has the 

corresponding HTML properties, like the id property, pointed by property hasHTMLProperty 

(instances Web-Eq-Input-Control-1-id, Web-Eq-Input-Control-2-id). The HTML values of these 

properties are represented by their corresponding ontological properties (html-property-value 

= “expressionInputControl”). The DOM tree structure is represented via two properties, 

hasFirstChild and hasNextSibling. 
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Fig. 4.11. The HTML User Interface DOM Ontological (left) and Visual (right, top) 

Representation 

This representation allows for bi-directional creation of the HTML part of the user 

interface: 

i. The author, either guided by the authoring processes or using the Tutor Authoring 

Tools, creates within the MATHESIS ontology the representation of the DOM 

tree and then, by traversing the ontology, the translation tools generate the 

corresponding HTML code (top-down), or  
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ii. The user interface is created using any Web-page authoring program and then the 

HTML file is parsed by Java‟s XML parser creating a DOM structure, which in 

turn is transformed into its corresponding ontological representation for further 

authoring by the authoring tools (bottom-up).  

 

For different interface implementations like Java or Flash, appropriate ontological 

representations and translation programs must be developed.  

Instances WebEq-Input-Control-1 and WebEq-Input-Control-2 were created by the author. 

The first one is the interface element that is used to present the two monomials to be 

multiplied and represents the algebraic expression area of the MATHESIS Algebra Tutor 

(Figure 2.1, bottom left). The second one is used for the student answering area of the 

MATHESIS Algebra Tutor (Figure 2.1, bottom right). The meta-author associated 

monomial instances with the WebEq Input Control interface elements by setting property 

has-Interface-Elements of the generic monomial instance to WebEQ-Input-Control (Figure 4.8c). 

Then, the meta author created two authoring process called define-interface-elements-for-input-

knowledge-components and define-interface-elements-for-output-knowledge-components 

correspondingly that guide the author in creating the two WebEq instances and naming 

them “expressionInputControl” and “answerInputControl” correspondingly (Figure 4.11, 

bottom right). 

4.7 EXECUTION OF AUTHORING PROCESSES 

In the previous paragraphs the initial, simple, top-level authoring tasks were 

described. As these constitute authoring expertise they should be carried out from the 

author by executing the corresponding authoring processes developed by the meta-

author. However, as these authoring tasks are initial, simple and top-level, it was decided 
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to implement them as tools in the Tutor Authoring Tools window (Figure 4.1a); 

alternatively, they could have been implemented as authoring processes.  

 

 

Fig. 4.12. The Authoring Processes Authoring (Meta-Authoring) Tools displaying Authoring 

Process authoring_task_present_domain_task.   

In the MATHESIS framework, authoring processes capture the authoring 

expertise of expert authors and make it available to non-expert authors. They form an 

executable model of the expert authors‟ expertise. When executed, authoring processes 

guide non-expert authors to develop their own tutors. Meta-authors develop authoring 

processes using the Authoring Processes Authoring Tools (Meta-Authoring Tools) 

(Figure 4.12). These tools allow creating, editing and executing authoring processes21. 

                                                 
21 http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/02-Authoring_Processes.mp4 
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For example, each tutoring process of the execute_monomial_multiplication-Model_Tracing 

_Algorithm (Figure 4.1c) has a corresponding authoring process. The code for tutoring 

process execute-monomial-multiplication-Presentation (Figure 4.1c, Perform_6) is created by the 

execution of the corresponding authoring process authoring-task-present-domain-task shown in 

Figure 4.12. The author must perform the following authoring sub-tasks: 
 

1. Identify the input (given) domain concepts of the domain task. For the domain 

task of monomial multiplication these are the two monomials to multiply. This 

authoring task demands authoring knowledge of cognitive task analysis. This 

authoring knowledge is encoded by the meta-author in authoring process identify-

input-knowledge-components (Figure 4.12, Perform_167). 

2. Define the interface elements that present the given math concepts (monomials) 

identified in the previous step. In our implementation of the tutor this is a 

WebEq_Input_Control applet, WebEq_Input_Control_1 (see Figure 4.11). This authoring 

task demands authoring knowledge of interface design and HTML programming. 

This authoring knowledge is encoded by the meta-author in authoring process 

define-interface-elements-for-input-knowledge-components (Figure 4.12, Perform_73). 

3. Repeat the aforementioned steps for the task‟s output (asked) concepts, that is, a 

monomial holding the product. The corresponding interface element is another 

WebEq_Input_Control applet, WebEq_Input_Control_2 (see Figure 4.11). This authoring 

knowledge is encoded by the meta-author in authoring processes identify-output-

knowledge-components (Figure 4.12, Perform_104) and define-interface-elements-for-output-

knowledge-components (Figure 4.12, Perform_215). 

4. Define the JavaScript variables that hold the references of the WebEq_Input_Control 

applets. This authoring task demands authoring knowledge of JavaScript 
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programming. This authoring knowledge is encoded by the meta-author in 

authoring process define-variables-for-interface-elements (Figure 4.12, Perform_225). 

5. Define the JavaScript code that initializes the variables referencing the 

WebEq_Input_Control applets. This authoring task also demands authoring 

knowledge of JavaScript programming. This authoring knowledge is encoded by 

the meta-author in authoring process define-code-to-initialise-interface-elements (Figure 

4.12, Perform_32). 
 

These are top-level authoring tasks. The ONTOMATH language allows the analysis 

of these tasks in any level of detail, that is, in authoring tasks of any granularity. To 

illustrate this key point, the execution of  the authoring processes that perform tasks 1,2, 4 

and 5 are describe in more technical detail. Programming-savvy readers can follow the 

ONTOMATH code using the definitions of the ONTOMATH statements given in Table 3.2 as 

well as in Appendix B.  

The execution of these authoring processes starts from process authoring-task-

present-domain-task (Figure 4.12). Statement Perform_76(setVariable($domainRootClass, 

Domain_Knowledge_Component)) sets the value of variable $domainRootClass to 

Domain_Knowledge_Component. This is the root class that contains the math domain concepts 

(Figure 4.8a). Statement Perform_167(identify-input-knowledge-components($domainRootClass)) 

calls process identify_input_knowledge_components (Figure 4.13) with $domainRootClass as a 

parameter. This process guides the author to find the input math concept(s) for the task of 

monomial multiplication, i.e. two monomials. It is executed as follows: 
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Fig. 4.13. The identify_input_knowledge_components authoring process. 

1. Perform_45(setSelectedClass($domainRootClass) sets the focus on class Domain-Knowledge-

Component in the CLASS BROWSER panel of the MATHESIS ontology tab (Figure 

4.14). Repeat-While_2(authorConfirmation(Do you want to identify another input knowledge 

component?)) starts an iteration for each input knowledge component that the author must 

identify. The condition, authorConfirmation, is an OntoMath predicate that displays a 
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Yes/No question to the author and evaluates to True/False according to the author’s 

answer. The author must look into the subclasses of class Domain_Knowledge_Component 

to find whether the input knowledge component, in our example monomial, already exists 

in the ontology or not. The author is asked about that fact by statement If-Then-

Else_1(authorConfirmation(Does the input knowledge component already exists?)). Since the 

knowledge component, monomial, exists (Figure 4.14), the author answers “Yes” and 

Sequence_20 is executed. If the monomial input knowledge component does not exist then 

Sequence_22 is executed. Repeat-While_1(authorConfirmation(Do you want to create a new 

category – Subclass – for the new Knowledge Component?)) initiates a loop (Sequence-25) that 

guides the author in creating new subclass(es) of the Domain-Knowledge-Component class. 

When the author creates the last subclass of the hierarchy, Perform_91(createInstance(null, 

$selectedClass)) creates a new instance and asks the author for its name (e.g. monomial_1).  

2. Perform_47(showMessageDialog(Select the existing knowledge component)) prompts the 

author to select monomial in the INSTANCE BROWSER panel of the MATHESIS 

ontology tab (Figure 4.14). Statement If-Then-Else_22(authorConfirmation(Click „Yes‟ to 

make a copy or „No‟ to create a new instance)) asks the author whether he/she wants to 

copy the existing monomial instance or create a new one. In Protégé, copying an 

instance also copies its properties and their values, while creating a new instance 

sets property values to null. In our example the author wants to keep the default 

values of the generic monomial instance and therefore Sequence_29 will be executed. 

3. Perform_243(getSelectedInstance($specifiedInstance)) gets the selected monomial instance 

from the INSTANCE BROWSER panel of the MATHESIS ontology tab (Figure 

4.14) and sets variable $specifiedInstance to hold a reference to it.  
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Fig. 4.14. Locating a monomial instance in the ontology 

4. Perform_228(copySelectedInstance(null)) gets the selected monomial instance from the 

INSTANCE BROWSER panel of the MATHESIS ontology tab (Figure 4.14) and 

creates a new copy of it. The parameter to this OntoMath statement is the name of 

the newly created instance. If it is null, as in our example, the author is prompted 

for the name. In our example, the author named the new monomial instance 

monomial_1 (Figure 4.15).  

5. Perform_249(setObjectProperty($selectedInstance, specifies, $specifiedInstance)) sets the value 

of property specifies of the newly created monomial_1 ($selectedInstance) to monomial 

($specifiedInstance). Property specifies of a knowledge component (mathematical 

concept), points to the generic knowledge component instance from which a 
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specific knowledge component was generated. In our example the semantics is 

that monomial_1 is a specification of monomial (Figure 4.15). 

Fig. 4.15. Creating a new instance of monomial 

6. Perform_55(getObjectProperty(currentAuthoringSession, hasCurrentCognitiveTask, $current-

CognitiveTask)) gets the value of property hasCurrentCognitiveTask of instance current-

AuthoringSession, i.e. execute-monomial-multiplication, and assigns it to variable $current-

CognitiveTask. Instance currentAuthoringSession (Figure 4.16) keeps information about 

the current authoring session like which is the tutor currently being authored, 

what is the cognitive task currently being authored etc. 

7. Perform_58(setObjectProperty($currentCognitiveTask, hasInputKnowledgeComponents, $sele-

ctedInstance) sets the value of property hasInputKnowledgeComponents of instance 
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execute-monomial-multiplication ($currentCognitiveTask) to monomial_1 ($selectedInstance) 

(Figure 4.16). 

  

Fig. 4.16 Instance currentAuthoringSession for the monomial-multiplication-tutor 

 

Up to this point the author has been guided in creating and defining instance 

monomial_1 as an input math concept of the monomial multiplication task. Execution 

control returns to Repeat-While_2 and the author is asked if he/she wants to define another 

input component. By answering „Yes‟, the author creates the second input math concept , 

monomial_2. The author terminates the execution of this loop when he/she thinks all input 
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knowledge components have been defined. That also terminates execution of authoring 

process identify_input_knowledge_components and control is returned back to the calling 

process, authoring-task-present-domain-task (Figure 4.12). This one calls in turn authoring 

process define-interface-elements-for-input-knowledge-components (Figure 4.17).  

Fig. 4.17. The define-interface-elements-for-input-knowledge-components authoring process 

This process guides the author in defining the HTML interface elements that will 

present the input knowledge component(s) defined previously, here monomial_1 and 

monomial_2. The execution of this process takes the following steps: 
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1. Perform_78(getObjectProperty(currentAuthoringSession, hasCurrentCognitiveTask, $curren-

tCognitiveTask)) gets the value of property hasCurrentCognitiveTask of instance current-

AuthoringSession, i.e. execute_monomial_multiplication, and assigns it to variable $current-

CognitiveTask (Figure 4.16). 

2. Perform_174(getObjectProperty($currentCognitiveTask, hasInputKnowledgeComponents, $in-

putKnowledgeComponents)) gets the value of property hasInputKnowledgeComponents of 

instance execute_monomial_multiplication (pointed by $currentCognitiveTask) and assigns it 

to variable $inputKnowledgeComponents. This value is the list of the input knowledge 

components of the monomial multiplication task. In our example, these are 

monomial_1 and monomial_2 (Figure 4.16). Hence, $inputKnowledgeComponents = 

{monomial_1, monomial_2}. 

3. Repeat-While_22(iteratorHasNext($inputKnowledgeComponents)) loops over the list of the 

$inputKnowledgeComponents = {monomial_1, monomial_2}. 

4. Perform_92(iteratorNext($inputKnowledgeComponents,$inputKnowledgeComponent) gets the 

next input knowledge component, here monomial_1.  

5. Perform_108(getObjectProperty($inputKnowledgeComponent, hasInterfaceElement, $inter-

faceElements) gets the list of the HTML interface elements ($interfaceElements) that can be 

used to represent monomial_1 ($inputKnowledgeComponent), here WebEQ-Input-Control 

(Figure 4.15). This list has been inherited from the generic monomial instance when it 

was copied to give monomial_1. Of course, the values of this list (WebEQ-Input-Control) had 

been defined beforehand by an expert author (meta-author). This represents a good 

example of lowering the expertise threshold via expert knowledge reuse. The WebEQ 

input control is a highly sophisticated Java applet for displaying and editing mathematical 

expressions. The knowledge of its existence and usage is definitely top level expertise. 
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6. Repeat-While_208(iteratorHasNext($interfaceElements)) loops over the list of the proposed 

HTML interface elements. In our example there is only one, WebEQ-Input-Control. 

7.  Perform_110(setSelectedInstance($interfaceElement)) sets the focus on WebEQ-Input-Control, 

in order to be specified into a new instance, Applet-WebEQ-Input-Control-1, just like 

monomial was specified to monomial_1. 

8. The OntoMath statements of Sequence_303 guide the author in creating the new 

instance, Applet-WebEQ-Input-Control-1, and replace WebEQ-Input-Control with Applet-

WebEQ-Input-Control-1 in the hasInterfaceElements list of monomial_1.  

Fig. 4.18 The add-interface-element-to-DOM authoring process 

9. Finally, process add-interface-element-to-DOM (Figure 4.18) is called to add the newly 

created instance Applet-WebEQ-Input-Control-1 in the ontological representation of the 
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HTML interface’s Document Object Model (Figure 4.11, dotted rectangle). The 

statements of Sequence_253 travel through the ontological representation of the DOM tree 

to get to the Body element of the tutor’s user interface, Body_54 (Figure 4.11, bottom of 

dotted rectangle).  Perform_355(setObjectProperty($body, hasFirstChild, $interfaceElement)) 

adds AppletWebEQ_Input_Control-1 ($interfaceElement) as a child of Body_54 (Figure 4.11, 

below the dotted rectangle). 

10. The execution of process add-interface-element-to-DOM is terminated and execution control 

returns back to process define-interface-elements-for-input-knowledge-components (Figure 

4.17).  

11. Repeat-While_208(iteratorHasNext($interfaceElements)) ends as there is not any interface 

element left for monomial_1.  

12.  Repeat-While_22(iteratorHasNext($inputKnowledgeComponents)) loops over the list of the 

$inputKnowledgeComponents = {monomial_2}. 

13. Steps 5 to 7 are repeated for monomial_2.  However, the author now does not want to 

define a new interface element for monomial_2 since AppletWebEQ_Input_Control-1 will be 

used to present it. Therefore, steps 8 to 10 are not executed by the author. All Repeat-

While loops are terminated and control returns back to process authoring-task-present-

domain-task (Figure 4.12). 

Processes identify-output-knowledge-components (Perform_104) and define-interface-elements-

for-output-knowledge-components (Perform_215), perform the authoring actions described above 

but for the output knowledge components of the monomial multiplication task. These 

processes guide the author to create a new instance of monomial, monomial_3 that 

corresponds to the result of the multiplication and a new WebEQ-Input-Control instance, 

Applet-WebEQ-Input-Control-2, where the student enters his/her answer. The resulting 

ontological representation of the tutor, with its user interface is shown in Figure 4.19. 
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Fig. 4.19 Ontological representation of a monomial tutor with its user interface 

The next authoring task is to define the JavaScript variables that will hold the 

references of the WebEq_Input_Control applets. This authoring task demands authoring 

knowledge of JavaScript programming. To perform this task process authoring-task-present-
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domain-task calls authoring process define-variables-for-interface-elements (Figure 4.20). This 

process is executed as follows: 

Fig. 4.20 Authoring process define-variables-for-interface-elements 

1. Perform_5(showMessageDialog(Select the interface element)) prompts the author to 

select the interface element for which the reference variable will be 

created, here WebEq_Input_Control_1. 

2. Perform_86(getLocalName($interfaceElement,$name)) makes the assignment 

$name=WebEq_Input_Control_1. Perform_143(strConcat($name,var_,$name))  sets 

$name to var_WebEq_Input_Control_1. 

3. Perform_1(setSelectedClass(JavaScript_Variable_HTML_Reference)) sets the focus 

on class JavaScript_Variable_HTML_Reference in the CLASS BROWSER. This 

class contains the JavaScript variables that hold references to HTML 

interface elements (Figure 4.21, left). 

4. Perform_99(showInputDialog($variableName, Enter the name of the variable, $name)) 

prompts the author to input the name of the JavaScript variable that will be 

created and suggests as a default name var_WebEq_Input_Control_1. The 

author can give a different name, expressionInputControl in this example. 
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Perform_119(createInstance($variableName,mathesis:JavaScript-Variable-HTML-

Reference)) creates the variable (Figure 4.21, center). 

5. Perform_111(showInputDialog($scope,”Enter the scope of the variable: local, parameter, 

global”, local)) prompts the author to enter the scope of the variable, local, 

parameter or global suggesting as default local. The author enters global 

and its input is stored in variable $scope.  

6. Perform_133(setDataProperty($variable, hasScope, $scope) sets the hasScope 

property of the newly created variable expressionInputControl to global 

(Figure 4.21, right). 

Fig. 4.21 The expressionInputControl JavaScript variable 

By re-executing process define-variables-for-interface-elements the author also defines 

JavaScript variable answerInputControl that will reference applet WebEq_Input_Control_2. Now, 

the final authoring task is to define the JavaScript code that will initialize the newly 

created variables. This code is actually two JavaScript assignment statements. To write 

this code an author must have knowledge of JavaScript and HTML programming: 



Chapter 4:  Tutor Authoring in the MATHESIS Framework 

 

 144 

a. First, the HTML id property of WebEq_Input_Control_1 must be set to a value, e.g. 

“expressionInputControl”, and that of WebEq_Input_Control_2 to another value, e.g. 

“answerInputControl”. 

b. Then the author must write the two JavaScript statements that assign to two 

variables references to the HTML elements WebEq_Input_Control_1 and 

WebEq_Input_Control_2 using the getElementById JavaScript function. These 

statements are expressionInputControl = getElementById(“expressionInputControl”) and 

answerInputControl = getElementById(“answerInputControl”) correspondingly. 

Fig. 4.22 The define_code_to_initialize_interface_elements  authoring process 

To perform these tasks, process authoring-task-present-domain-task calls authoring 

process define_code_to_initialize_interface_elements (Figure 4.22). This process is executed as 

follows: 



 

 

4.7 Execution of Authoring Processes  

 

 145 

Fig. 4.23 The getHTMLElementProperty authoring process 

1. Perform_10(getHTMLElementProperty(id,$interfaceElement,$id) calls authoring 

process getHTMLElementProperty (Figure 4.23) with the following bindings: 

$propertyName=id, $htmlElement=null and $propertyValue=null. The purpose of this 

process is to get the value of property defined by $propertyName of the 

HTML element defined by $htmlElement and return it in $propertyValue. In 

case $htmlElement is null (Figure 4.23, If-Then-Else-53), the process sets the 

focus in class HTMLObject (Perform-51) and asks from the author to select 

the HTML object whose property will be read (Perform-68). In our example, 

the author must select WebEq_Input_Control_1. Perform-138, Perform-148 and 

Perform-162 create the name of the property‟s instance in the MATHESIS 

ontology, WebEq-Input-Control-1_id in our example, and assign it to 

$propertyName. Perform-183 actually reads the value of the id property, by 

getting the value of the data property html-property-value of instance WebEq-
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Input-Control-1_id (see Figure 4.11). Execution control returns back to 

process define_code_to_initialize_interface_elements (Figure 4.22). 

2. If-Then_Else-38(isNull($id)) checks whether the id property of the HTML 

element Web-Eq-Input-Control-1 actually has a value. In our example, this 

property has not been given a value by the author yet ($id=null) and 

therefore needs to be assigned a value (Sequence-42). Perform-54 displays an 

input dialog prompting the author to enter the value of the id property of 

Web-Eq-Input-Control-1. The statement proposes as a default the name of the 

element itself. The author may enter “expressionInputControl” as the 

value of the id property for Web-Eq-Input-Control-1. 

3. Perform-4(createInstance($id,mathesis:JavaScript-Variable-HTML-Reference)) creates 

the JavaScript variable that will reference Web-Eq-Input-Control_1, an instance 

of class JavaScript-Variable-HTML-Reference named expressionInputControl (Figure 

4.21). Perform-44(setDataProperty($variable,hasScope,global)) sets the variable‟s 

scope to global.  

4. Perform-6(createInstance(any,JavaScript_Assignment)) creates a JavaScript-

Assignment instance, JavaScript-Assignment-2 in our example,  that will 

represent JavaScript statement expressionInputControl = 

getElementById(“expressionInputControl”). The ontological representation of such 

an assignment statement is shown in Figure 4.24. 
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Fig. 4.24 Ontological representation of JavaScript statement 

expressionInputControl=document.getElementById(“expressionInputControl”) 
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5. Perform_90(setObjectProperty($assignment,hasjsLHSExpression,$variable)) sets 

property hasjsLHSExpression of the JavaScript-Assignment-2 instance to point at 

the expressionInputControl  instance of  class JavaScript-Variable-HTML-Reference.  

6. Perform-7(get_interface_element_reference($id,$dotExpression) calls authoring 

process get_interface_element_reference (Figure 4.25) that creates an instance 

of class JavaScript_DotExpression, JavaScript-DotExpression-3 in Figure 4.24. 

This instance represents the right-hand side of the JavaScript statement, 

i.e. document.getElementById(“expressionInputControl”).  

7. Perform-95 assigns instance JavaScript-DotExpression-3 as the right-hand side of 

instance JavaScript-Assignment-2. The ontological representation of JavaScript-

Assignment-2 is now completed and the statement is ready to be added as the 

first statement of the tutoring process execute-monomial-multiplication-

Presentation (Figure 4.1c, Perform_6). This is achieved by statement 

Perform_8(addPerform($assignment)).  

Fig. 4.25 Authoring process get_interface_element_reference 
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In the same way, JavaScript statement answerInputControl = 

getElementById(“answerInputControl”) is represented by instance JavaScript-Assignment-3 and is 

added as the second statement of tutoring process execute-monomial-multiplication-Presentation 

as shown in Figure 4.26. At this point, the execution of authoring process authoring-task-

present-domain-task (Figure 4.12) is completed.  

 

Fig. 4.26 Tutoring process execute-monomial-multiplication-Presentation 

The detailed, step-by-step description of the execution of authoring processes as 

well as of the ontological representations they act on, clearly shows that it is technically 

possible to achieve the main research goal of the MATHESIS framework: to represent 

ontologically the whole knowledge that is needed to develop an Intelligent Tutoring 

System, declarative and procedural, domain and authoring, in order to perform reasoning 

on it, that is, making it inspect-able, reusable and reasonable. 
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Chapter 5:  Discussion 

 

 

 

 

 

 

 

 

 

5.1 KNOWLEDGE REUSE AND SCALABILITY 

Building from scratch any kind of knowledge-based system, like a model-tracing 

tutor, requires a tremendous effort, even with the use of authoring tools (Murray, 2003b). 

The main reason for this problem is the knowledge acquisition bottleneck. Domain 

experts are not trained in articulating their (teaching) expertise in a more abstract way. 

Highly trained authors are needed to perform the following knowledge engineering tasks: 

Develop ontologies, represent the curriculum, represent teaching strategies and diagnostic 

procedures and create student models. 

Existing authoring tools fall in either side of the breadth vs. depth trade-off: a) 

Tools that build tutors for very specific domains but with a deep domain model, or b) all-

purpose authoring shells that build tutors for various domains but with shallow domain 

knowledge models. In addition to this trade-off, the problem of knowledge reuse - both 

for the developed tutoring (domain) knowledge as well as for the authoring expertise – is 
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severely restraining the widespread use of model-tracing tutors in particular and 

knowledge based systems in general in the real world. 

As a solution to these problems, a three tiered meta-authoring framework was 

proposed by Murray (2003b). At its base there is a generic ITS authoring tool that 

requires the top level of authoring expertise like knowledge/ontological engineering, 

cognitive task analysis, instructional design, learning theories. This system is used to 

develop the middle tier, that is, reusable libraries of domain ontologies, student modeling 

rules, interface templates and generic teaching strategies. At the top level there are fairly 

simple tools for trained teachers that make use of the reusable libraries to develop 

powerful tutors for real world use. It is this meta-authoring model that the MATHESIS 

framework implements: 
 

a) The base level is the ONTOMATH language and the Meta-Authoring tools used by 

meta-authors to represent authoring expertise as an ontology of executable 

authoring processes. These processes can guide domain experts in performing any 

kind of authoring tasks.  

b) The middle tier corresponds to the MATHESIS Ontology, consisting of reusable 

parts of the tutors‟ cognitive, teaching and interface models. In the case of the 

monomial multiplication tutor development presented in section 4, these reusable 

parts where generic instances like monomial (domain concept), the 

ModelTracingAlgorithm (tutoring model), WebEq-Input-Control (HTML 

element) as well as reusable authoring processes like the assign_js_method 

(JavaScript programming process). These generic instances are used by either the 

authoring tools or the authoring processes to create specific instances that 

represent the various parts of the monomial multiplication tutor.  
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c) The top level comprises the domain-specific authoring tools, model-tracing in our 

case. The key characteristic of these tools is that they facilitate trained teachers 

(domain experts) to browse, locate and (re-)use the components of the middle tier. 

In the case of the MATHESIS model-tracing tutor authoring tools (Figure 4.1), 

this facilitation depends on the depth of the authoring ONTOMATH model, as it is 

the authoring processes that guide domain experts in locating and reusing existing 

or creating new tutors‟ parts. In that sense, each authoring process is an authoring 

tool at a different level. This multi-level classification of authoring processes as 

authoring tools is illustrated even better by the fact that each one of the tools for 

tutor creation/selection, domain task creation/selection and teaching strategy 

model selection are shortcuts to common, top level authoring actions. They could 

be easily removed from the interface and replaced by authoring processes that 

would perform the same authoring actions. The same holds for middle or low 

level authoring processes (tools). The more fine-grained they become the more 

authoring expertise they give to the system and the less expertise they demand 

from the domain expert.  
 

The problem of the authoring model‟s granularity was faced in an evaluation of 

the system. A trained teacher of mathematics and expert computer user was asked to use 

the tools to re-implement the monomial multiplication task of the MATHESIS Algebra 

Tutor. After 35 hours of training with the tools, he was capable of executing the 

authoring model and re-implement the monomial multiplication tutor.  Then he tried to 

implement a monomial division tutor by executing the same model. Monomial division 

was selected as it has minor differences from the multiplication task, mainly in the 

domain expertise model. When the author tried to implement tutoring process 
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DivideMainParts that would perform the monomial division, the counterpart of tutoring 

process MultiplyMainParts (Figure 4.9), he had to modify the MultiplyMainParts process so that 

it would subtract the exponents of common variables (            rather than 

adding them             . In the MATHESIS framework there are two ways to 

solve this problem:  

i. The non-expert author must use the Advanced Authoring Tools for Tutoring 

Domain Processes (Figure 3.7) to change the representation of the JavaScript 

statement that adds the exponents, so as to perform a subtraction instead of an 

addition. However, this elementary change entails a considerable raise at the 

expertise level required by the author; he must identify that statement (knowledge 

of JavaScript and programming) and change directly its ontological representation 

(knowledge of the MATHESIS ontology).  

ii. The meta-author develops authoring processes that guide the domain expert in 

defining mathematical operations between mathematical objects. Then, the 

domain expert is guided by these processes to define whether the exponents 

(integers) of common variables are added (monomial multiplication), subtracted 

(monomial division) or even multiplied (monomial powers), like in       

    . 
 

Therefore, the MATHESIS framework deepens Murray‟s three tier structure of 

the tools to an arbitrary depth. Any time that the MATHESIS framework must cover the 

creation of tutors in a new domain, meta-authors must create both the generic instances 

that represent declarative and procedural knowledge of the new domain as well as the 

authoring processes that use them. Of course, parts of the new tutor(s) that are common 

with already developed tutors are readily reusable. In the case of the monomial division 
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tutor monomial, ModelTracingAlgorithm and WebEq-Input-Control can be reused along with the 

authoring processes that use them. This is possible due to the representation of the 

authoring processes via the ONTOMATH language ontologically, that is in a declarative 

form, which makes them open for inspection and therefore mostly reusable (Gómez-

Pérez, Fernández-López, Corcho, 2004). In existing authoring systems, adding new 

authoring knowledge would entail modifying the authoring program and adding new 

tools with their corresponding interfaces. This modification can be done only by the 

creators of the authoring program. 

 

5.2 CONCLUSIONS AND FURTHER WORK 

The MATHESIS meta-authoring engineering framework primary goal is to spread 

the load of authoring over various levels of reusable authoring processes and over various 

authors that can reuse them by browsing, locating and modifying them. For example, the 

ontological representation of any programming language like HTML or JavaScript and 

the authoring processes that create these representations can be standardized by 

authorised organizations and then used by any meta-author. Experts from any domain can 

develop libraries of ontological representations for their tutors and the authoring 

processes that create them. They could even develop their customized meta-authoring and 

domain-specific authoring tools and distribute them as Java applets. The implementation 

of the MATHESIS framework as an all-in-one package inside the Protégé OWL editor 

was done for easing the implementation of the system. The framework could have been 

implemented with its parts distributed: The MATHESIS ontology being still an OWL 

ontology and the authoring tools being Java applications. Even Protégé‟s API used for 

grounding the ONTOMATH statements is a Java library. This distributed and collaborative 
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authoring scheme can be supported by modern tools such as the WebProtégé 

collaborative ontology editor and knowledge acquisition tool (Tudorache, Nyulas, Noy, 

& Musen, 2013). 

Of course, this multi-layered meta-authoring framework doesn‟t force the 

knowledge acquisition bottleneck and the efforts of knowledge engineering to disappear. 

The ontological representation of the tutor‟s (KBS) models, the structure of the authoring 

processes and the execution details that have to be taken into consideration for their 

development, suggest that there is no royal road to knowledge engineering. For the 

moment, the MATHESIS ontology contains the authoring knowledge just for the 

development of two model tracing tutors, one for multiplication and one for division of 

monomials. Therefore, it is not claimed that the problem of knowledge acquisition and 

reuse was solved. Being in an experimental stage, the MATHESIS framework must be 

considered as a proof-of-concept system. To investigate the issues of knowledge reuse 

and scalability, authoring models for monomial by polynomial multiplication and 

polynomial multiplication must be developed. In the long term, an authoring model that 

could create the entire MATHESIS Algebra Tutor should be developed. To facilitate this 

procedure, new authoring tools are needed, such as parsers for transforming between 

HTML and MATHESIS DOM representation; parsers for transforming between 

JavaScript and MATHESIS tutoring processes; extension of the ONTOMATH language and 

elaboration of its interpreter. These tools call for further research. 
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Appendix A:  Complete Math Domain Cognitive Model of the 

MATHESIS Algebra Tutor 

A1. MONOMIAL MULTIPLICATION:  

1. Multiply monomials:                       

1.1. Multiply coefficients:            

1.2. Multiply main parts: 

1.2.1. Add exponents of common variables:              

1.2.2. Copy exponents of single variables:          

1.2.3. Multiply all variables (common error):                      

1.2.4. Add  one for common variables not having exponents (common error) 

:                       

1.2.5. Do not introduce non-existent variables (common error):      

                  

 

A2. MONOMIAL DIVISION 

2. Divide monomials: 
        

    
       

2.1. Divide coefficients:          

2.2. Divide main parts: 

2.2.1. Subtract exponents of common variables:            

                    

2.2.2. Copy exponents of single variables:       

2.2.3. Divide all variables (common error): 
        

    
      

2.2.4. Subtract  one for common variables not having exponents (common 

error) : 
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2.2.5. Do not introduce non-existent variables (common error): 
        

    
        

2.2.6. Eliminate variables with equal exponents (zero exponent) (common 

error): 
        

    
      

A3. COLLECTION OF  LIKE TERMS 

3. Collect like terms:  

3.1. Recognize two identical monomials (“like terms”) 

3.1.1. Every variable of the first one must be present in the second one 

3.1.2. Every variable of the second one must be present in the first one 

3.1.3. Common variables must have the same exponents 

3.2. Group Identical Monomials by marking them (same group number):  

   ⏟
 

   ⏟
 

    ⏟  
 

    ⏟  
 

 

3.2.1. All monomials in a group must be identical to the first term of the 

group (3.1) 

3.3. Add the coefficients of each group:                 

3.4. Keep the main part of each group:                            

 

A4. MONOMIAL POWER 

4. Raise monomial to power:                     

4.1. Raise the coefficient to the power:          

4.2. Raise main part to the exponent: 

4.2.1. Multiply the exponents:                               

4.2.2. Raise all variables (common error):                   

4.2.3. Do not introduce non-existent variables (common error). 
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A5. MONOMIAL BY POLYNOMIAL MULTIPLICATION 

5. Multiply monomial by polynomial:                           

5.1. Identify the monomial terms of the polynomial:            

5.2. Multiply each one of them with the monomial (A1):  

5.3.                                      

NOTICE: In the current implementation the tutor displays automatically the partial 

products that the student must execute and therefore there can be no assessment of the 

application of the distributive property. 

 

A6. POLYNOMIAL BY POLYNOMIAL MULTIPLICATION 

6. Multiply polynomial by polynomial: 

                                              

6.1. Identify the monomial terms of the first polynomial:             

6.2. Identify the monomial terms of the second polynomial:               

6.3. Multiply each term of the first monomial with each term of the second monomial 

(A1):                                                

                                   

NOTICE: In the current implementation the tutor displays automatically the partial 

products that the student must execute and therefore there can be no assessment of the 

application of the distributive property. 

A7 PARENTHESES’ ELIMINATION 

7. Eliminate parentheses: 
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7.1. Keep the sign of each parenthesized term if the sign in front of the parenthesis is 

a plus (+):                       

7.2. Change the sign of each parenthesized term if the sign in front of the parenthesis 

is a minus (-):                       

7.3. Collect like terms if there are any (A3):                    

            

 

A8. SQUARE OF SUM/DIFFERENCE EXPANSION 

8. Expand Square of Sum/Difference:                   

8.1. Recall the expanded form of the identity:                  

 

NOTICE: Because of the complexity of this task, the tutor displays a visual scaffold of 

the expanded form of the identity:        

 

8.2. Substitute a and b for the real terms                               

          

8.2.1. Write the first term of the sum/difference, squared:     
 

    

   

8.2.2. Write the first term of the sum/difference as the second term of the 

double product:     
 

         

8.2.3. Write the second term of the sum/difference as the third term of the 

double product:      
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8.2.4. Write the second term of the sum/difference, squared:     
 

   

       
 

 

8.2.5. Take care for parenthesized terms (common error):             

          

8.3. Perform monomial multiplications and powers (A1 and A4):              

             

 

A9. PRODUCT OF SUM BY DIFFERENCE EXPANSION 

9. Expand Product of Sum by Difference:                     

9.1. Recall the expanded form of the identity:                    

NOTICE: Because of the complexity of this task, the tutor displays a visual scaffold of 

the expanded form of the identity:   

9.2. Substitute a and b for the real terms                               

         

9.2.1. Write the first term of the sum/difference, squared:     
 

  

9.2.2. Write the second term of the sum/difference, squared:     
 

  
 

 

9.2.3. Take care for parenthesized terms (common error):        

             

9.3. Perform monomial powers (A4):                 

 

A10. CUBE OF SUM/DIFFERENCE EXPANSION 

10. Expand cube of sum/difference:                         

10.1. Recall the expanded form of the identity:                      
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NOTICE: Because of the complexity of this task, the tutor displays a visual scaffold 

of the expanded form of the identity: 
 
   

 
     

 
 

 
 

 

10.2. Substitute a and b for the real terms               :         

                           

10.2.1. Write the first term of the sum/difference, cubed:     
 
   

 
 

    
 
 

 
 

10.2.2. Write the first term of the sum/difference squared, as the second term of 

the first triple product:     
 
       

 
     

 
 

 
 

10.2.3. Write the second term of the sum/difference as the third term of the first 

triple product:     
 
       

 
      

 
 

 
 

10.2.4. Write the first term of the sum/difference as the second term of the 

second triple product:     
 
       

 
        

 
 

 
 

10.2.5. Write the second term of the sum/difference squared, as the third term 

of the second triple product:     
 
       

 
         

 
 

 
 

10.2.6. Write the second term of the sum/difference, cubed:     
 
   

    
 
         

 
  

 
 

10.2.7. Take care for parenthesized terms (common error):              

                   

10.2.8. Perform monomial multiplications and powers (A1 and A4):       
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A11. FACTORING BY COMMON FACTOR 

11. Factoring by common factor:                              

            

11.1. Find the common factor:          

11.1.1. Find the GCD of the coefficients:           =2 

11.1.2. Find the GCD of common variables:                  

11.1.3. Find the DCG of common parentheses:    (                 

  )        

11.2. Divide terms by the common factor: 
        

        
       

          

        
             

         

        
    

11.2.1. Divide numerical coefficients 

11.2.2. Subtract exponents of common variables. 

11.2.3. Subtract exponents of common parentheses 

 

 

NOTICE: Due to the complexity of the cognitive tasks described above, the tutor 

automatically displays templates for both the common factor and the partial quotients, 

indicating the kind of terms that appear in these results: numbers, variables with 

exponents, parentheses with exponents. In addition, the tutor automatically writes 

progressively the product of the common factor by the parenthesis containing the partial 

quotients.  The template for the common factor          is       

while the template for partial quotient  
          

        
         is     
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A12 FACTORING BY DIFFERENCE OF SQUARES 

12. Factor using Difference of Squares identity:                       

       

12.1.  Find the square roots of the two terms: √           √     

12.1.1. Find the square root of the numerical coefficient: √        √    

12.1.2. Check that the exponents of all variables are even and divide them by 

two:          

12.1.3. Check that the exponents of all parenthesized factors are even and 

divide them by two 

12.1.4. NOTICE: The factored form of the identity is given automatically as a 

template (   )  (   ) 

12.2. Substitute the square roots into the template:  

12.2.1.  Enter the square root of the first term as the first term of the sum: 

(     )  (   ) 

12.2.2.  Enter the square root of the second term as the second term of the sum: 

(      )  (   ) 

12.2.3.  Enter the square root of the first term as the first term of the difference: 

(      )  (     ) 

12.2.4.  Enter the square root of the second term as the second term of the 

difference: (      )  (      ) 

 

A13. FACTORING BY SUM OF CUBES 

13. Factor using Sum of Cubes identity:                             
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13.1.  Find the cubic roots of the two terms: √    
        √  

 
   

13.1.1. Find the cubic root of the numerical coefficient: √ 
 

       √  
 

   

13.1.2. Check that the exponents of all variables are multiples of three and 

divide them by 3:          

13.1.3. Check that the exponents of all parenthesised factors are multiples of 

three and divide them by 3 

NOTICE: The factored form of the identity is given automatically as a template 

(   )  ( 
 
     

 
) 

 

13.2. Substitute the cubic roots into the template: 

13.2.1.  Enter the cubic root of the first term as the first term of the first 

parenthesis: (     )  ( 
 
     

 
) 

13.2.2.  Enter the cubic root of the second term as the second term of the first 

parenthesis: (      )  ( 
 
     

 
) 

13.2.3.  Enter the cubic root of the first term squared, as the first term of the 

second parenthesis(      )  (     
 
     

 
) 

13.2.4.  Enter the cubic root of the first term as the first term of the product: 

(      )  (     
 
       

 
) 

13.2.5.  Enter the cubic root of the second term as the second term of the 

product: (      )  (     
 
        

 
) 

13.2.6.  Enter the cubic root of the second term squared, as the last term of the 

second parenthesis: (      )  (     
 
         

 
) 

13.3. Perform monomial multiplications and powers (A1 and A4):          
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A14. FACTORING BY DIFFERENCE OF CUBES 

14. Factor using Difference of Cubes identity:                      

             

14.1.  Find the cubic roots of the two terms: √    
        √  

 
   

14.1.1. Find the cubic root of the numerical coefficient: √ 
 

       √  
 

   

14.1.2. Check that the exponents of all variables are multiples of three and 

divide them by 3:          

14.1.3. Check that the exponents of all parenthesised factors are multiples of 

three and divide them by 3 

NOTICE: The factored form of the identity is given automatically as a template (  

 )  ( 
 
     

 
) 

 

14.2. Substitute the cubic roots into the template: 

14.2.1.  Enter the cubic root of the first term as the first term of the difference: 

(     )  ( 
 
     

 
) 

14.2.2.  Enter the cubic root of the second term as the second term of the 

difference: (      )  ( 
 
     

 
) 

14.2.3.  Enter the cubic root of the first term squared, as the first term of the 

second parenthesis: (      )  (     
 
     

 
) 

14.2.4.  Enter the cubic root of the first term as the first term of the product: 

(      )  (     
 
       

 
) 

14.2.5.  Enter the cubic root of the second term as the second term of the 

product: (      )  (     
 
        

 
) 

14.2.6.  Enter the cubic root of the second term squared, as the last term of the 

second parenthesis: (      )  (     
 
         

 
) 
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14.3. Perform monomial multiplications and powers (A1 and A4):          

                                    

 

A15. FACTORING BY SQUARE OF SUM/DIFFERENCE 

15. Factor an expanded Square of Sum/Difference:                        

           

15.1. Find the square roots of the first and third term ( A12.3.1): √    

       √    

15.2. NOTICE: The factored form of the identity is given automatically as a 

template (   )
 
  

 

15.3.  Verify that the middle term is the double product of the square roots of the 

first and third term:            

15.4. Substitute the square roots of the terms into the template: 

15.4.1.  Enter the square root of the first term as the first term of the 

sum/difference: (     )
 
  

15.4.2.  Enter the square root of the second term as the second term of the 

sum/difference: (      )
 
  

A16. FACTORING THE QUADRATIC FORM 

16. Factor the quadratic form   

                                  : 

                   

16.1. Identify                 :             

16.2. Find the pairs of integers a, b that have a product of      
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16.3.                                              

16.4. Find the pair a, b that gives a sum of            

16.5. Write the factored form:                       

 

A17. FACTORING BY TERM GROUPING 

NOTICE: Grouping is the most difficult of the factoring techniques as it demands 

backtracking, according to the next algorithm: 

                               

       [        ]                     

17.1 Group the terms in various groups. The number of terms in each group 

depends on the total number of terms:               

17.2 Factor each group separately using any of the previous factoring methods: 

                        (Difference of squares) 

                     (CommonFactor) 

17.3 Check that the products that come from each group now have a common 

factor (always a parenthesis). If not, BACKTRACK to step 17.1 and change 

the groups:        is the common factor of the two groups. 

17.4 If there is a common factor, use the common factor method to factor the 

expression:                            [        ]  

                   

The tutor supports all these steps separately but it doesn‟t provide automatic 

checking for a common factor and backtracking from 17.3 to 17.1. The student 

must manually restart the grouping and re-group the terms. 
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Appendix B:  The ONTOMATH Atomic Authoring Statements Reference 

B1. ONTOMATH_BROWSE STATEMENTS 

  Parameters 

Statement Purpose Name Type I/O 

setSelectedClass 
(classNameIdentifier) 

Sets the Class named by classNameIdentifier as 

selected in the Classes Panel 
classNameIdentifier String Literal/Variable Input 

getSelectedClass 
(classNameIdentifier) 

Sets classNameIdentifier to the name of the Class 

selected in the Classes Panel 
classNameIdentifier String Variable Output 

setSelectedInstance 
(instanceNameIdentifier) 

Sets the Instance named by 

instanceNameIdentifier as selected in the 

Instances Panel 

instanceNameIdentifier String Literal/Variable Input 

getSelectedInstance 
(instanceNameIdentifier) 

 

Sets instanceNameIdentifier to the name of the 

Instance selected in the Instances Panel instanceNameIdentifier String Variable Output 

getInstance 
(instanceNameIdentifier, 

instanceReference) 

Sets instanceReference to point to the instance 

named by instanceNameIdentifier 
instanceNameIdentifier String Literal/Variable Input 

instanceReference 
DefaultOWLIndividual 

Variable 
Output 

 

B2. ONTOMATH_COLLECTION STATEMENTS 

  Parameters 

Statement Purpose Name Type I/O 

iteratorNext 
(iteratorIdentifier, 

elementIdentifier) 

Sets elementIdentifier to the next element of 

iteratorIdentifier 
iteratorIdentifier Iterator Variable Input 

elementIdentifier OWLIndividual Variable Output 
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B3. ONTOMATH_STRING STATEMENTS 

  Parameters 

Statement Purpose Name Type I/O 

strConcat 
(newString,string1,string2) 

Concatenates string1 and string2 and returns the 

concatenated string to newString 

newString String Variable Output 

string1 String Literal/Variable Input 

string2 String Literal/Variable Input 

 

B4. ONTOMATH_DIALOG STATEMENTS 

  Parameters 

Statement Purpose Name Type I/O 

showMessageDialog 
(message) 

 

Displays a Message Dialog with message 

message String Literal/Variable Input 

showInputDialog 
(userInput, message, 

defaultValue) 

Displays an Input Dialog with message and 

defaultValue. Returns user input to userInput 

userInput String Variable Output 

message String Literal/Variable Input 

defaultValue String Literal/Variable Input 
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B5. ONTOMATH_ONTOLOGY_EDITING STATEMENTS 

  Parameters 

Statement Purpose Name Type I/O 

createInstance 
(instanceName,className) 

 

 

Creates a new instance of class className 

named instanceName. After creation the instance 

is set as selected in the Instances Panel.  

If instanceName is "null" , the author is asked for 

the name of the instance. 

If instanceName is "any" , a random name is 

given by the Protege system.  

instanceName String Literal/Variable Input 

className String Literal/Variable Input 

copySelectedInstance 

(newInstanceName) 

Creates a new copy of the instance that is 

currently selected in the Instances Panel with 

name newInstanceName. 

If newInstanceName is "null" , the author is 

asked for the name of the new, copied instance. 

newInstanceName String Literal/Variable Input 

createSubclass 

(subclassName, 

superclassName) 

Creates a new subclass named subclassName of 

class superclassName. After creation, the 

subclass is set as selected in the Classes Panel.  

If subclassName is "null" , the author is asked 

for the name of the subclass. 

subclassName String Literal/Variable Input 

superclassName String Literal/Variable Input 

getObjectProperty 

(instanceIdentifier, 

propertyIdentifier, 

propertyValues) 

 

Gets the values of object property 

propertyIdentifier of instance instanceIdentifier 

and stores them to variable propertyValues. 

If the property is functional (it has only one 

value) then propertyValues is a single 

DefaultOWLIndividual. Otherwise, property-

Values is an Iterator containing the property’s 

values. 

instanceIdentifier 

String Literal 

Or 

DefaultOWLIndividual 

Variable 

Input 

propertyIdentifier String Literal Input 

propertyValues 

DefaultOWLIndividual  

Or 

Iterator Variable 

Output 
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  Parameters 

Statement Purpose Name Type I/O 

setObjectProperty 

(instanceIdentifier, 

propertyIdentifier, 

valueIdentifier) 

 

If object property propertyIdentifier of instance 

instanceIdentifier is functional (takes only one 

value), its value is set to valueIdentifier. 

Otherwise, valueIdentifier is added to the list of 

the property’s values. 

instanceIdentifier 

String Literal 

Or 

DefaultOWLIndividual 

Variable 

Input 

propertyIdentifier String Literal Input 

valueIdentifier 

String Literal 

Or 

DefaultOWLIndividual 

Variable 

Input 

getDataProperty 

(instanceIdentifier, 

propertyIdentifier, 

propertyValues) 

 

Gets the values of data property 

propertyIdentifier of instance instanceIdentifier 

and stores them to variable propertyValues. 

If the property is functional (it has only one 

value) then propertyValues is a single 

DefaultOWLIndividual. Otherwise, property-

Values is an Iterator containing the property’s 

values. 

instanceIdentifier 

String Literal 

Or 

DefaultOWLIndividual 

Variable 

Input 

propertyIdentifier String Literal Input 

propertyValues 

DefaultOWLIndividual  

Or 

Iterator Variable 

Output 

setDataProperty 

(instanceIdentifier, 

propertyIdentifier, 

valueIdentifier) 

 

If data property propertyIdentifier of instance 

instanceIdentifier is functional (takes only one 

value), its value is set to valueIdentifier. 

Otherwise, valueIdentifier is added to the list of 

the property’s values. 

If valueIdentifier is “null” the author is asked for 

the new value. 

instanceIdentifier 

String Literal 

Or 

DefaultOWLIndividual 

Variable 

Input 

propertyIdentifier String Literal Input 

valueIdentifier String Literal/Variable Input 
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  Parameters 

Statement Purpose Name Type I/O 

removePropertyValue 

(instanceIdentifier, 

propertyIdentifier, 

valueIdentifier) 

 

Removes instance valueIdentifier from the 

value(s) of property propertyIdentifier of 

instance instanceIdentifier. The statement applies 

both to functional and non-functional properties. 

instanceIdentifier 

String Literal 

Or 

DefaultOWLIndividual 

Variable 

Input 

propertyIdentifier String Literal Input 

valueIdentifier 

String Literal 

Or 

DefaultOWLIndividual 

Variable 

Input 

getLocalName 

(instanceIdentifier, 

 instanceName) 

Gets the local name (without the namespace 

prefix) of instance instanceIdentifier and stores it 

in variable instanceName. 

instanceIdentifier 
DefaultOWLIndividual 

Variable 
Input 

instanceName String Variable Output 

setVariable 

(variableIdentifier, 

valueIdentifier) 

Sets the value of variable variableIdentifier to 

valueIdentifier. 

variableIdentifier String Literal Input 

valueIdentifier 

String Literal 

Or 

ANY Variable 

Input 
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B6. ONTOMATH_TUTORING_PROCESSES_EDITING STATEMENTS  

 

B7. ONTOMATH_ONTOLOGY_PREDICATES 

  Parameters 

Predicate Purpose Name Type I/O 

authorConfirmation 

(message) 

 

Displays  a Java Yes/No message box displaying 

message. If the author clicks on “Yes” it returns 

TRUE. If the author clicks on “No” it returns 

FALSE. 

message 

String Literal 

Or 

Variable 

Input 

iteratorHasNext 

(iterator) 

Returns TRUE if iterator is non-empty. 

Otherwise it returns FALSE.  
iterator Iterator Variable Input 

isNull 

(object) 

Returns TRUE if object is NULL. Otherwise it 

returns FALSE. 
object Object Variable Input 

isNotNull 

(object) 

Returns TRUE if object is NOT NULL. 

Otherwise it returns FALSE. 
object Object Variable Input 

 

 

 

 

 

  Parameters 

Statement Purpose Name Type I/O 

addPerform 
(performStatementIdentifier) 

Adds a Perform Control Construct (tutoring 

statement) as a child to the currently selected 

construct in the displayed tutoring process tree 

performStatementIdentifier 

OWL-S Perform 

Control Construct 

Literal or Variable 

Input 
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