
The MATHESIS Ontology: Reusable
Authoring Knowledge for Reusable

Intelligent Tutors
Dimitrios SKLAVAKIS a,1 and Ioannis REFANIDIS

a
a

 Department of Applied Informatics, University of Macedonia,
Thessaloniki, Greece

Abstract. This paper describes the MATHESIS Ontology, which is part of the
MATHESIS project that aims at the development of an intelligent authoring
environment for reusable model-tracing math tutors. The purpose of the ontology
is to provide a semantic and therefore inspectable and reusable representation of
the declarative and procedural authoring knowledge necessary for the development
of a model-tracing tutor as well as of the declarative and procedural knowledge of
the tutor under development. While the declarative knowledge is represented with
the basic OWL components, i.e. classes, individuals and properties, the procedural
knowledge is represented via the process model of the OWL-S web service
description ontology. By using OWL-S, every authoring or tutoring task is
represented as a composite process. Based on such an ontological representation, a
suite of authoring tools will be developed at the final stage of the project.

Keywords. authoring systems, ontologies, semantic web, model-tracing tutors

Introduction

Intelligent tutoring systems and especially model-tracing tutors have been proven quite
successful in the area of mathematics [1]. Despite their efficiency, these tutors are
expensive to build both in time and human resources. The main goal of the ongoing
MATHESIS project is to develop authoring tools for model-tracing tutors in
mathematics, with knowledge re-use being the primary characteristic of the authored
tutors as well as of the authoring knowledge used by the tools.

The MATHESIS ontology is an OWL ontology developed with the Protégé-OWL
ontology editor. Its development is the second stage of the MATHESIS project.
Aiming at the development of real-world, fully functional model-tracing math tutors,
the project is being developed in a bottom-up approach. In the first stage the
MATHESIS Algebra Tutor was developed in the domain of expanding and factoring
algebraic expressions [2]. The tutor is web-based, using HTML and JavaScript. The
authoring of the tutor as well as the code of the tutor were used to develop the
MATHESIS ontology in a bottom-up way, as it will be described later.

The rest of the paper is structured as follows: Section 1 gives a brief presentation
of the process model of OWL-S. Section 2 describes the part of the ontology that

1 Corresponding Author: Dimitrios Sklavakis, Department of Applied Informatics, University of

Macedonia, Egnatia 156, P.O. Box 1591, 540 06 Thessaloniki, Greece; E-mail: dsklavakis@uom.gr.

mailto:dsklavakis@uom.gr

represents the model-tracing tutor(s), while Section 3 describes the representation of
the authoring knowledge. Section 4 presents related work and, finally, Section 5
concludes with a discussion about the ontology and further work to complete the
MATHESIS project.

1. The OWL-S process model

OWL-S is a web service description ontology designed to enable the tasks of (semi-)
automatic discovery, invocation, composition and interoperation of Web services. It
provides a language for describing service compositions. Every service is viewed as a
Process. There are three subclasses of Process, namely the AtomicProcess,
CompositeProcess and SimpleProcess.

Composite processes are decomposable into other composite or atomic processes.
Their decomposition is specified by using control constructs such as Sequence and If-
Then-Else. Any composite process can be considered as a tree whose non-terminal
nodes are labeled with control constructs. The leaves of the tree are invocations of
other processes, composite or atomic. These invocations are indicated as instances of
the Perform control construct.

2. Tutor Representation in MATHESIS ontology

The MATHESIS project has as its ultimate goal the development of authoring tools
that will guide the authoring of real-world, fully functional model-tracing math tutors.
This means that during the authoring process and in the end, the result will be program
code that implements the tutor, i.e. the ontology must be able to represent the program
code. For this reason, in the first stage of the MATHESIS project the MATHESIS
Algebra tutor was developed to be used as a prototype target tutor.

The MATHESIS Algebra tutor is a Web-based, model-tracing tutor that teaches
expanding and factoring of algebraic operations: monomial and polynomial operations,
identities, factoring. It is implemented as a simple HTML page with JavaScript
controlling the interface interaction with the user and implementing the tutoring,
domain and student models. Therefore, it is the representation of the HTML and
JavaScript code that forms the low-level MATHESIS ontology of the tutor as described
below.

Figure 1. The HTML code and the corresponding DOM representation

body_1
body-onload = InitialiseControls()

hasFirstChild = heading_1

heading_1
hasFirstChild = div_1

hasNextSibling = input_1

div_1
div-align = center

hasFirstChild = text_1

text_1
text_content =

MATHesis Algebra Tutor

input_1
input-onclick = closeTutor()

input-type = button
hasNextSibling = paragraph_1

HTMLProgramLine_1
HTMLCode=

<body onload =
“InitialiseContols()”>

correspondingHTMLObject =
body_1

hasNextLine =
HTMLProgramLine_2

HTMLProgramLine_2
HTMLCode=

<h2><div align = “center”>
MATHesis Algebra Tutor

correspondingHTMLObject =
heading_1, div_1
hasNextLine =

 HTMLProgramLine_3

HTMLProgramLine_3
HTMLCode =

<input type=’button’
 oncklick = ‘closeTutor()’>

correspondingHTMLObject =
 input_1

hasNextLine =
HTMLProgramLine_4

2.1. Representation of the HTML Code of the Tutor

The representation of the HTML code and the corresponding Document Object Model
(DOM) of the user interface are shown in Figure 1. Each line of the HTML code is
represented as an instance of the HTMLProgramLine class having three properties: the
HTMLCode, hasNextLine and correspondingHTMLObject. The last one points to the
HTMLObject defined by the HTML code.

Each HTMLObject has the corresponding HTML properties as well as the
hasFirstChild and hasNextSibling which implement the DOM tree. Therefore, there are two
representations of the HTML code enabling a bottom-up creation of the ontology (from
HTML code to DOM) and a top-down (from the DOM to HTML code).

2.2. Representation of the JavaScript Code of the Tutor

The representation of the JavaScript code is shown in Figure 2. Each line of the
JavaScript code is represented as an instance of the JavaScript_ProgramLine class having
three properties: the javascriptCode, hasNextLine and hasJavaScriptStatement. The last one
points to a JavaScript_Statement instance which is an AtomicProcess of the OWL-S
process model.

Figure 2. The JavaScript code and the corresponding JavaScript_Statement Atomic processes

Once again, there are two representations of the JavaScript code enabling a
bottom-up creation of the ontology (from JavaScript code to JavaScript_Statement
atomic processes) and a top-down (from the JavaScript_Statement atomic processes to
JavaScript code).

2.3. Representation of the Tutoring Model

Being procedural knowledge, the model-tracing algorithm is represented as a
composite process named Model_Tracing_Algorithm, shown in Figure 3. Each step of the
algorithm is also a composite process. For example the Task_Execution_Expert_Process
step can be described by an algorithm that performs other composite processes. These
processes are instances of subclasses of the Task_Execution_Expert_Process class, shown
in Figure 4. During the authoring of a specific tutor, the authoring tools will parse the
tree of the Model_Tracing_Algorithm composite process and invoke for each tutoring task
a corresponding authoring task represented also as a composite process in order to
implement the tutoring task for the specific tutor (described in Section 3).

consider_student_operation_
selection_is_correct

hasJavaScriptCode =
JavaScript_ProgramLine_680

JavaScript_ProgramLine_680
javascriptCode=

var correctSelection = 1;
hasJavaScriptStatement =
consider_student_operation_

selection_is_correct
hasNextLine =

 JavaScript_ProgramLine_681

get_selected_operation
hasJavaScriptCode =

JavaScript_ProgramLine_681

JavaScript_ProgramLine_681
javascriptCode=

currentOperation =
operationsList.options[operations

List.selectedIndex].value;
hasJavaScriptStatement =

get_selected_operation
hasNextLine =

 JavaScript_ProgramLine_682

get_expression_mathML_formatted
hasJavaScriptCode =

JavaScript_ProgramLine_682

JavaScript_ProgramLine_682
javascriptCode=

expressionMathML =
expressionInputControl.getFormatted

MathML(1,1,false,"",0);
hasJavaScriptStatement =

get_expression_mathML_formatted
hasNextLine =

 JavaScript_ProgramLine_683

Figure 3. The Model_Tracing_Algorithm process Figure 4. The model-tracing processes taxonomy

2.4. Representation of the Domain Expert Model

In a model-tracing tutor the Domain Expert Model executes the next step of the
problem and produces the correct solution(s) to compare them with the student’s
proposed solution. If the solution step is simple, then it is represented as an instance of
the atomic process JavaScript_Statement (see Section 2.2). If the step is complex, then it
is represented as a composite process. This analysis ends when the produced composite
processes contain only atomic processes, i.e. JavaScript_Statement instances.

3. Authoring Knowledge Representation in MATHESIS Ontology

As mentioned in Section 2.3, for each tutoring task of the model-tracing algorithm,
there is a corresponding authoring task in the MATHESIS ontology, represented as a
composite process. The authoring_task_execute_task_by_expert (Figure 5) for example
corresponds to the Task_Execution_Expert_Process_Simple tutoring task (Figure 3). The
define_data_structures_for_knowledge_components process, one of the composite processes
that form this authoring task, is shown in Figure 6.

Figure 5. The authoring process for the Figure 6. The authoring composite process
Execute_Task_By_Expert tutoring task define_data_structures_for_knowledge_componets

Based on all the above representations, the overall authoring process will have as
follows: The tools will parse the model-tracing algorithm (Section 2.3). For each step
of the algorithm, the corresponding authoring process will be called and traced. This
authoring process will guide the author in creating recursively the various parts of the

tutor (Sections 2.1, 2.2, 2.4); as a consequence, any newly created tutor part becomes
new knowledge in the ontology to be used later.

4. Related Work

The use of ontologies and semantic web services in the field of ITSs is relatively new.
Ontological engineering is used to support authoring of instructional scenarios [3],
provide educational feedback, or plan learning resources. However, there is a lack of
semantic expressiveness and, more important, the difficult task of using and integrating
low-level learning services to compose more complex ones, is not faced at all.

It is this difficult task that the MATHESIS project is trying to address using as
low-level learning services the concept of problem-solving tasks and providing through
the MATHESIS ontology a semantic description of these tasks and the way they can be
combined to create more complex learning services (intelligent tutors).

5. Discussion and Further Work

In an overview of intelligent tutoring system authoring tools [4], it is suggested that
authoring tools should support interoperability, re-usability, durability, scalability and
accessibility. Even in this preliminary form, the MATHESIS ontology provides a
proof-of-concept that it can serve as the basis for the development of authoring tools
and implemented tutors that will match these criteria. The main reason for this claim is
that the ontology provides an open, modular and multi-level representation (ranging
from conceptual design to program code) of both authoring and tutoring knowledge.

Of course, it is expected that a lot of work has to be done: the ontology must be
extended, refined and formalized. This will be done by representing the whole
MATHESIS Algebra tutor into the ontology. Because of the tremendous workload this
task entails, an initial set of authoring tools are being developed: parsers for HTML
to/from MATHESIS interface model and for JavaScript to/from MATHESIS
JavaScript_Statements/Program code translation; interpreters for the authoring and
tutoring OWL-S processes; visualization tools for the authoring processes, the tutoring
model (model-tracing algorithm) and the tutor parts being developed. Most of these
tools will be implemented as Java plug-ins for the Protégé-OWL editor, accessing and
updating the MATHESIS ontology.

References

[1] K.R. Koedinger, J.R. Anderson, W.H. Hadley, M.A. Mark, Intelligent Tutoring Goes to School in the
Big City, International Journal of Artificial Intelligence in Education 8 (1997), 30-43.

[2] D. Sklavakis, I. Refanidis, An Individualized Web-Based Algebra Tutor Based on Dynamic Deep
Model Tracing, Proceedings of the 5th Hellenic Conference on Artificial Intelligence (SETN ’08), LNAI
vol. 5138, 389-394, Springer, Berlin/Heidelberg, 2008.

[3] R. Mizoguchi, Y. Hayashi, J. Bourdeau, Inside Theory-Aware and Standards-Compliant Authoring
System, Proceedings of the Fifth International Workshop on Ontologies and Semantic Web for E-
Learning (SWEL ’07), http://compsci.wssu.edu/iis/Papers/SWEL07-Proceedings.pdf.

[4] T.Murray, An Overview of Intelligent Tutoring System Authoring Tools: Updated Analysis of the State
of the Art, Authoring Tools for Advanced Technology Learning Environments, 491-544, Kluwer
Academic Publishers, Netherlands, 2003.

http://compsci.wssu.edu/iis/Papers/SWEL07-Proceedings.pdf

