

The MATHESIS Meta-Knowledge Engineering

Framework: Ontology-driven Development of

Intelligent Tutoring Systems

Dimitrios Sklavakis
*
 and Ioannis Refanidis

 Department of Applied Informatics, University of Macedonia, Egnatia 156, P.O. Box

1591, 540 06 Thessaloniki, Greece

E-mails: {dsklavakis, yrefanid}@uom.gr

Abstract: The effect of the knowledge acquisition bottleneck is still limiting the widespread use of knowledge-based

systems (KBS), especially in the area of model-tracing tutors, as they demand the development of deep domain

expertise, tutoring and student models. The MATHESIS meta-knowledge engineering framework for model-tracing

tutors, presented in this article, aims at maximizing knowledge reuse. This is achieved through ontological representation

of both the declarative and procedural knowledge of a KBS (model-tracing tutor), as well as of the declarative and

procedural authoring knowledge of the process to develop a KBS. Declarative knowledge is represented in Ontology

Web Language (OWL). Procedural knowledge is represented using the concepts of atomic and composite processes of

OWL-S web services description ontology. The framework provides knowledge engineering tools, integrated into the

Protégé OWL ontology editor, for the development and management of the KBS’s ontological representation. It also

provides meta-knowledge engineering tools for the ontological representation of the knowledge engineering expertise as

a set of composite knowledge engineering processes and atomic knowledge engineering statements. The latter constitute

a language, ONTOMATH, for building executable knowledge engineering models that, when executed by the tools, guide

non-expert knowledge engineers like domain experts to the creation of new knowledge-based systems (model-tracing

tutors). The framework, being in an experimental stage, was used for the development of a monomial multiplication and

division tutor. However, the overall design and implementation aimed at constituting the framework as a proof-of-

concept system that can be used for the meta-knowledge engineering of more complex model-tracing tutors.

Keywords. Meta-knowledge engineering, knowledge engineering tools, intelligent tutoring systems, model-tracing

tutors

1. Introduction

Intelligent tutoring systems (ITS), particularly model-tracing tutors (MTT), have been proven

quite successful in the area of mathematics (Koedinger, Anderson, Hadley, & Mark, 1997;

Koedinger & Corbett, 2006). Despite their effectiveness (Corbett 2001), these tutors are expensive

to build both in time and human resources (Aleven, McLaren, Sewall, & Koedinger, 2006).

Studies have shown that the development cost for one hour of teaching with a MTT is 200-300

hours (Koedinger, Anderson, Hadley, & Mark, 1997; Murray, 2003).This is due to the well-known

knowledge acquisition bottleneck (Hoffman 1987), comprising the extraction of knowledge from

domain experts, the representation of this knowledge and its implementation in effective

knowledge-based systems (KBS).

Knowledge acquisition and, its counterpart, knowledge reuse have been proven to be the key

problems for the development of expertise models, the models that represent and produce the

problem-solving knowledge in knowledge-based systems. The main consequences are:

 High development demands in human resources, time and money.

 Demand for knowledge engineers possessing significant expertise.

 Shallow, incomplete or even incorrect expertise models.

 Difficulties in modifying and/or expanding the expertise models.

*
 Corresponding author: Dimitrios Sklavakis, Department of Applied Informatics, University of Macedonia,

Egnatia 156, P.O.Box 1591, 54006 Thessaloniki, GREECE. E-mail: dsklavakis@uom.gr

 Inability to reuse developed expertise models in similar or new knowledge-based systems

(an effect described as “re-inventing the wheel”).

In the case of MTTs, the knowledge acquisition bottleneck gets even more serious as these

systems must contain two expertise models:

1. The domain expertise model or problem solver, which represents the problem-solving

knowledge of the tutored domain. This model is used to produce the valid solution steps of

the tutored problem and allow the tutor to provide guidance and feedback to the student.

2. The pedagogical or tutoring model, which represents the teaching knowledge of the

system such as how to present the problem, what problem-solving tools to provide to the

students for entering their solution steps, when and how to give help, what kind of

help/guidance to give, etc.

In turn, these models affect directly the design of the user interface model, which orchestrates

the interactions between the aforementioned two models to produce the desired tutoring behaviour.

In addition, some MTTs require the development of another model, the student model, which

represents students’ mastery of the tutored domain. This model is used by the system to provide

student-adapted tutoring either within problems (micro-adaptation) or between problems (macro-

adaptation).

The most difficult model to build is the domain expertise model. At the same time, it is the

most critical one since it defines:

1. The tutor’s breadth, that is, how many domain skills it can teach.

2. The tutor’s depth, that is, how complex skills, in terms of the sub-skills contained, it can

teach.

3. The tutor’s granularity, that is, how fine-grained are the solution steps that the tutor can

produce and guide.

4. The tutor’s scalability, that is, the ability to reuse the tutor’s domain expertise model for

extending its breadth and depth.

We were confronted with the knowledge acquisition bottleneck when we decided to develop a

model-tracing tutor to teach algebraic operations. In the Greek educational system, algebraic

expressions and their operations are taught in the 3
rd

 grade of Junior High School (ages 14-15).

The curriculum covers the following mathematical operations: monomial multiplication, division

and power; monomial-polynomial and polynomial-polynomial multiplication; parentheses

elimination; collect like terms; identities (square of sum and difference, product of sum-difference,

cube of sum and difference); factoring (common factor, identities, trinomial); combination of

factoring methods; and operations of rational expressions.

Furthermore, we wanted that the domain expertise model of our tutor would be extensible so

that it could cover new math sub-domains like second degree and rational equations solving. The

solution of these kinds of equations usually demands the transformation of the original equations

using the algebraic operations listed above. In our search for an authoring framework and tools

that could support this endeavour, we realized that despite the efforts, advancements and successes

in the currently developed authoring frameworks and the corresponding tutors, these frameworks

have worked around the knowledge acquisition problem rather than confronting it directly. As a

consequence, most of the developed tutors suffer from limited depth and breadth, whereas those

having broader and deeper domain expertise models suffer from scalability issues (see Section 2).

This was our motivation to deal directly with the knowledge acquisition problem in order to

produce tutors that cover broader and more complex domains in a scalable way.

The rest of the article is structured as follows: First we present the background of our work

consisting of an overview of the state-of-the-art in authoring (knowledge engineering) frameworks

for Intelligent Tutoring Systems, the tutors produced and how they suffer from the knowledge

acquisition bottleneck, coupled with a description of how the MATHESIS meta-knowledge

engineering framework provides the means to deal with this problem by using the results of

research in the ontological engineering field. Then, we present the prototypical MATHESIS

Algebra Tutor. Next, we present an overview of the MATHESIS meta-knowledge engineering

framework followed by its key characteristic, the representation of procedural knowledge

engineering expertise within the MATHESIS ontology as an executable knowledge engineering

model. Then, we describe how expert and non-expert knowledge engineers (domain experts) use

the meta-knowledge engineering and knowledge engineering tools to build the tutor’s ontological

representation. Finally, we discuss the results and identify potential directions of further work.

2. Background

In this Section we present an overview of the state-of-the-art in authoring (knowledge

engineering) frameworks for Intelligent Tutoring Systems and the tutors produced, focusing on the

knowledge acquisition bottleneck issue. Then we show how the MATHESIS meta-knowledge

engineering framework provides the means to deal with this problem.

2.1. Related work

The most successful and widely used math model-tracing tutors are Cognitive Tutors

developed by Carnegie Learning
1
, based on more than twenty years of cognitive science research

at CMU (Koedinger & Corbett, 2006). Cognitive Tutors are now an integral part of complete

curricula used in hundreds of middle and high schools throughout the United States. Cognitive

Tutors have to adapt to very strict guidelines and educational goals of the US educational system.

Thus, they follow the textbook by teaching specific exercises that train the students in specific,

simple domain tasks that don’t contain other sub-tasks. Each problem has its own simple domain

model and interface. Therefore, there is actually a set of independent tutors with narrow and

shallow domain models, with different interfaces and not one tutor with a broad and deep domain

model and a common interface. Concerning their scalability, for each problem the set of

anticipated steps is precomputed by solving the problem in all acceptable ways by running a rule-

based problem-solver (Van Lehn, 2006). Therefore, only the knowledge engineers can add new

problems and for each one they must pre-program its solution steps. In contrast, the MATHESIS

Algebra Tutor has a domain (math) expertise module that parses and solves each exercise

producing the correct solution steps in real time (see Section 3). Carnegie Learning uses a

proprietary knowledge engineering tool, the Cognitive Tutor SDK (Blessing, Gilbert, Ourada &

Ritter, 2009), which supports the development of domain models based on the ACT Theory of

cognition (Anderson, 1993). Problem solving states are represented by a hierarchy of goalnode

instances with their properties and values, while problem solving steps are represented by a

hierarchy of predicates that operate on the goalnodes. No information is given on how broad and

deep these domain models can be or if they can be reused between the various tutors developed.

The MATHESIS framework provides free, open authoring tools (Protégé) and representational

schemes (OWL, OWL-S).

A publicly available set of authoring (knowledge engineering) tools for Cognitive Tutors are

the Cognitive Tutors Authoring Tools (CTAT
2
) developed at the Human-Computer Interaction

Institute of Carnegie Mellon University (Aleven, McLaren, Sewall, & Koedinger, 2006). After 8

years of use, CTAT is the most mature and widely used authoring tool. It supports two types of

tutors, cognitive tutors, which were described above, and example-tracing tutors (Aleven,

McLaren, Sewall, & Koedinger, 2009). While cognitive tutors have a cognitive model,

implemented as a set of production rules in Jess
3
, example-tracing tutors have a “generalized

example” of the solution of a specific problem, implemented as a “behavior graph”, an acyclic

graph where nodes represent problem-solving states and links represent problem-solving steps.

Example-tracing tutors are authored using a programming-by-demonstration technique by creating

initially a tutor interface for the targeted problem type through drag-and-drop techniques, then

demonstrating through this interface the problem’s solution and finally editing, annotating and

1
 www.carnegielearning.com

2
 http://ctat.pact.cs.cmu.edu

3
 http://www.jessrules.com

generalizing the resulting behavior graph. In the case of cognitive tutors, the last step demands the

development of the cognitive model implemented as production rules in Jess by AI programmers.

ASTUS
4
 is a framework for domain independent model-tracing tutors development. It is

designed to provide a knowledge representation language for the development of the domain

model richer than that of CTAT (Paquette, Lebeau, & Mayers, 2010). The purpose is to model

domains from a pedagogical perspective rather than a cognitive one, allowing experimentation

with varied pedagogical strategies. The framework is relatively new and the knowledge

engineering language is not yet fully developed, with only a few tutors implemented and no

knowledge engineering tools developed. The MATHESIS framework provides both general,

domain-independent knowledge engineering tools and a knowledge engineering language as well

as special authoring tools for model-tracing tutors.

ASPIRE
5
 is a knowledge engineering framework for the development of constrained-based

tutors (Mitrovic, Martin, Suraweera, Zakharov, Milik, & Hooland, 2009). These tutors do not use a

domain model to trace the student’s solution in a step-by-step basis, but they are equipped with a

set of constraints that describe the forms of correct solution(s) for the tutored problem. In a

comparative study between model-tracing and constraint-based tutors (Mitrovich, Koedinger, &

Martin, 2003), the authors conclude that “Model-tracing is an excellent choice for domains where

appropriate problem solving strategies are well-defined, and where comprehensive feedback on

them is desirable. On the other hand, CBM offers a workable alternative when such strategies are

not available or appropriate, or there is too little time or resources to build a model-tracing

knowledge base”. Therefore, in addition to the breadth and depth issue, constraint-based tutors

cannot provide the granularity necessary for, e.g., an algebra tutor.

Whenever there is need for a broad and/or deep domain model, authors (knowledge engineers)

usually start from scratch and fall back to customized solutions. Two such examples are the

Andes
6
 physics tutor (VanLehn, Lynch, Schulze, Shapiro, Shelby, Taylor, Treacy, Weinstein, &

Wintersgill, 2005) and the Visual Classification Tutoring Framework (VCT) (Crowley &

Medvedeva, 2006).

Andes contains 356 physics problems (mechanics, electricity and magnetism) solved by a

knowledge base of 550 physics rules. These rules comprise “major principles”, like Newton’s

second law (F = m∙a), as well as “minor principles”, like mathematical and common sense

justifiers. The creation and maintenance of such a broad, deep and granular domain model raises

drastically the demands in expertise and time resources (VanLehn et al., 2005). As far as it

concerns the development time, Andes itself took five years to be built, while its development was

based on the Cascade (VanLehn, 1999) and Olae (VanLehn, Johnes, & Chi, 1992) projects.

Finally, there were significant scalability problems, since in order to add a new rule to the domain

model knowledge engineers should re-inspect the whole model. (VanLehn et al., 2005)

The same findings hold for the Visual Classification Tutoring (VCT) framework, which

generally supports the development of tutors for visual classification, but specialises in medical

domains like radiology, haematology and pathology. The framework makes the best provision for

accommodating broad, deep, granular and scalable domain models by using ontologies to

represent separately generic models for the domain model, the task model and the pedagogical

model. This generic framework was used to develop SlideTutor
7
, a model-tracing tutor for a sub-

domain of inflammatory diseases of skin, covering 33 diseases with 50 different diagnostic

features. Once again, the expertise and time costs are high: an expert pathologist in cooperation

with a knowledge engineer must annotate each diagnostic case with the contained disease and its

diagnostic features. Based on this information, the task model produces dynamic solution graphs

that guide the student in his/her diagnosis.

From the description of these two systems, Andes and VCT, it becomes clear that the

development of model-tracing tutors with broad and deep domain expertise models without the use

of authoring tools raises significantly the threshold both in human expertise and time for their

maintenance and further development.

4
 http://astus.usherbrooke.ca

5
 http://aspire.cosc.canterbury.ac.nz

6
 http://www.andestutor.org/

The use of ontologies and semantic web services in the field of ITSs is relatively new.

Ontological engineering is used to represent learning content, organize learning repositories,

enable sharable learning objects and learner models and facilitate the reuse of content and tools

(Dicheva, Mizoguchi, & Greer, 2009). Examples of intelligent tutoring systems that use ontologies

are Activemath (Melis, Andrès, Büdenbender, Frischauf, Goguadze, Libbrecht et al. 2001), which

uses ontological representation of mathematical concepts, learning goals and acquired knowledge,

and SlideTutor
7
. However, these are intelligent tutoring systems and not knowledge engineering

systems.

An ontology-based knowledge engineering system for constraint-based tutors is ASPIRE

(Suraweera et al., 2009). It uses ontologies to define the concepts of the domain and then, based on

these definitions, it provides the constraints for possible solutions used by the authored constraint-

based tutors.

Another related line of research has to do with ontology authoring systems that support

Controlled Natural English (CNL), like ROO (Denaux, Dolbear, Hart, Dimitrova, & Cohn, 2011)

and AceView (Kaljurand, 2008). The purpose of these systems is to involve domain experts in the

development of ontologies using CNL to describe their conceptual knowledge. Although ROO

aims at lowering the expertise threshold for domain experts and improves knowledge reuse, there

are two main differences with the MATHESIS framework: a) ROO aims at the ontological

representation of the static part of the domain language, namely the concepts, their properties and

their relationships, while MATHESIS covers both static and procedural domain knowledge and b)

In ROO, domain experts are involved in the initial phase of the ontology development cycle while

knowledge engineers follow to validate and amend the developed ontology; in MATHESIS,

knowledge engineers build executable knowledge engineering models using a specialised

language, ONTOMATH (see Section 4), and these models guide domain experts in building a

complete knowledge based system (ITS).

The most relevant work to the MATHESIS framework is the OMNIBUS/SMARTIES project

(Mizoguchi, Hayasi, & Bourdeau, 2009). The OMNIBUS ontology is a heavy-weight ontology of

learning, instructional and instructional design theories. Based on the OMNIBUS ontology,

SMARTIES (SMART Instructional Engineering System) is a theory-aware system that provides a

modelling environment and guidelines for developing learning/instructional scenarios. While the

OMNIBUS/SMARTIES system provides support mainly for the design phase of ITS building, the

MATHESIS framework aims at the analysis and development phases. It provides a semantic

description of both domain and knowledge engineering expertise of any kind of tutor in the form

of composite processes and the way to combine them as building blocks of intelligent tutoring

systems. Thus, it provides the ground for achieving reusability, shareability and interoperability.

Although ASPIRE and OMNIBUS/SMARTIES are ontology-based knowledge engineering

systems, they differ from the MATHESIS framework which constitutes a meta-knowledge

engineering system. These systems provide specific knowledge engineering programs that use a

static ontological representation of tutoring and knowledge engineering expertise to build tutors of

a specific kind. The MATHESIS framework provides meta-knowledge engineering tools and a

knowledge engineering language for expert knowledge engineers to write knowledge engineering

programs in the form of executable OWL-S knowledge engineering processes. These knowledge

engineering programs can then be executed by the knowledge engineering tools to guide less

expert knowledge engineers (e.g., domain experts) in generating the ontological representation of

any kind of knowledge-based system (tutor). This ontological representation can then be translated

to program code.

Our approach combines the research in the field of authoring tools for ITSs with the field of

knowledge engineering tools for knowledge-based systems. This line of research starts with the

first attempts to define reusable problem-solving knowledge through the introduction of the

concepts of Generic Tasks (Chandrasekaran, 1986) and heuristic classification (Clancey, 1985). It

continues with the concepts of task ontologies (Mizoguchi, Vanwelkenhuesen, & Ikeda, 1995), the

development of knowledge modelling frameworks like the MULTIS project (Mizoguchi,

Vanwelkenhuesen, & Ikeda, 1995), the Protégé project (Puerta & Musen, 1992), the KADS

(Wielinga, Schreiber, & Breuker, 1992) and CommonKADS (Schreiber, et al., 1999) projects. The

7
 http://slidetutor.upmc.edu/

latter introduced the concept of Problem Solving Methods (PSMs). With the emergence of the

Web, the necessity for representing and deploying PSMs in a shareable and reusable way led to

their semantic (ontological) representation as Web Services. The ultimate goal is the development

of knowledge-based systems from reusable knowledge components found in the web, a task

known as automated web service composition. Various frameworks with web services description

languages have been developed, OWL-S being one of them. Although it is not our immediate

intention to view ITS knowledge engineering as a web service composition task, we set the

foundations, focusing on the shareability and reusability of knowledge engineering and tutoring

knowledge provided by OWL-S.

2.2. Ontological Engineering and the Knowledge Gap Problem

In an extensive survey of authoring tools, Murray (2003a) concluded that they suffered from a

number of problems such as isolation, fragmentation and lack of communication, interoperability

and re-usability of the tutors they build. The same problems had been identified three years earlier

in (Mizoguchi & Bourdeau, 2000). These problems are not specific to the domain of ITS

authoring, as they penetrate the whole area of knowledge-based systems development (Lenat &

Guha, 1990; Lenat, 1995). A highly promising solution to all of them is ontological engineering,

that is, the development of ontologies that represent declaratively the expertise that lies inside any

intelligent system (Mizoguchi, 2004). The main advantages of the use of ontologies are that:

1. they impose a systematic and structured development of knowledge, just like developing a

mathematical theory with definitions, properties, axioms and theories; and

2. the developed knowledge being in a declarative form is open for inspection and therefore

mostly reusable (Gómez-Pérez, Fernández-López, Corcho, 2004).

The main goal of the MATHESIS project, presented in this article, is to develop knowledge

engineering tools for model-tracing tutors in mathematics. Based on the success of the ontological

engineering approach in the domain of expert systems (Aitken & Sklavakis, 1999; Lenat, 1995;

Sklavakis, 1998), as well as in the domain of intelligent tutoring systems (Mizoguchi, Hayashi, &

Bourdeau, 2009), we set two research goals:

1. the complete ontological representation of a model-tracing tutor’s modules, that is, the

tutoring model, the domain expertise model, the student model, the user interface, as well

as of the knowledge engineering expertise that was used to build these models; and

2. the extensive use of standardized languages and publicly available modular tools.

For these reasons, we adopted a bottom-up approach: Initially, an Algebra Tutor was

developed to be used as a prototype target tutor (Sklavakis & Refanidis, 2008; Sklavakis &

Refanidis, 2013). This tutor has a domain model of considerable breadth, depth and granularity,

easily scalable. Then, based on the knowledge used to develop the Algebra Tutor, an initial version

of the MATHESIS ontology has been developed using the Ontology Web Language - OWL
8

(Sklavakis, & Refanidis, 2010). As this first version of the ontology was developed in a bottom-up

direction, it emphasized on the representation of the tutor’s models, namely the interface, tutoring

and domain expertise models. The ontology also contained a representation of the knowledge

engineering expertise at a rather conceptual level. At the final stage of the project, the generic

meta-knowledge engineering tools were developed. These tools include:

1. An executable knowledge engineering language, ONTOMATH, based on the process model

of OWL-S
9
;

8
http://www.w3.org/TR/owl-features/

9
 http://www.w3.org/Submission/OWL-S/

2. meta-knowledge engineering tools for the development of ONTOMATH executable

knowledge engineering expertise models, that is, an ontological representation of the

declarative and procedural knowledge engineering expertise; and

3. an interpreter for executing the ONTOMATH knowledge engineering models.

Using these tools, we have built a knowledge engineering model that, when executed, builds

the ontological representation of a model-tracing monomial multiplication tutor identical to the

one contained in the original Algebra Tutor. In parallel, we developed knowledge engineering

tools for the development of model-tracing tutors. These tools are used to support the meta-

knowledge engineering tools in the development of the executable knowledge engineering model

by automating some top-level knowledge engineering processes of the model-tracing tutor under

development and providing visualisation and browsing facilities for the inspection of the tutor’s

developed models.

Fig. 1. The MATHESIS Algebra Tutor Interface: (a) The messages area,

(b) The algebraic expression area, (c) The student answering area and

(d) The performed operation area

3. The MATHESIS Algebra Tutor

The MATHESIS model-tracing Algebra Tutor
10

 (Sklavakis & Refanidis, 2013) was developed

as a prototype target tutor for the MATHESIS project, having knowledge reuse as its primary

design guidelines. Furthermore, the architecture of the system was based in open, standardized and

modular representations. The fulfilment of these requirements led us to implement the tutor using

HTML for the user interface and JavaScript for the domain expertise and tutoring models. The

user interface has four main parts: the messages area, the algebraic expression area, the student’s

answering area and the performed operation area (Figure 1). The primary interface element is

Design Science’s WebEq Input Control applet
11

, an editor for displaying and editing mathematical

expressions. There are three such input controls: the algebraic expression, the answering space and

the performed operation input controls. WebEq Input control is scriptable through JavaScript and

uses MathML
12

 to represent algebraic expressions. So, during the problem solving process, the

problem solving state as well as the student solution steps are represented via the open MathML

10

 http://users.sch.gr/dsklavakis/mathesis/en/MATHESIS_Main_Frameset.htm
11

 http://www.dessci.com/
12

 http://www.w3.org/Math/

(a)

(b)

(c)

(d)

standard and, therefore, they are interoperable, that is, inspectable, recordable and scriptable

(Murray 2003).

The development of the domain expertise model was based on deep cognitive task analysis

(Anderson, Corbett, Koedinger, & Pelletier 1995). The top-level math skills that the tutor covers

are monomial multiplication, division and power; monomial-polynomial and polynomial-

polynomial multiplication; parentheses elimination; collect like terms; identities (square of sum

and difference, product of sum-difference, cube of sum and difference); and factoring (common

factor, identities, trinomial). Each one of these 13 top-level math skills is further analysed in more

detailed sub-skills leading to a fine grained domain model of 104 primitive math skills. As an

example we consider the multiply-monomials skill. This is decomposed in two sub-skills, multiply-

coefficients and multiply-mainParts. The multiply-mainParts is further decomposed in primitive

math skills like finding common variables, adding their exponents, finding non common variables

and copying their exponents. This decomposition is implemented through JavaScript functions that

correspond to the production rules, and JavaScript data structures (simple variables, arrays, custom

objects) that correspond to the facts of a rule-based system. There are also relevant functions for

common error checking like omitting variables, or not adding the exponents of common variables.

Based on this broad, deep and granular domain model, the tutor’s tutoring model uses deep

model tracing with intelligent task recognition. The tutor uses intelligent parsing of the MathML

representation of the algebraic expression and records which tasks (algebraic operations) are

present, their order and their operands. Then, it asks from the student to select a part of the

expression and suggest the operation that must be performed. If the student is wrong, the tutor

provides feedback about the correct operation. Otherwise, the tutor guides the student in

performing the operation step-by-step. In each step, the tutor checks the student’s answers and

compares them with its domain model to provide feedback (model tracing). If a task contains

subtasks, e.g. a polynomial multiplication contains monomial multiplications, the tutor guides the

student to perform these subtasks in the same step-by-step manner (deep model tracing).

It is exactly these features, broad and deep domain model, intelligent task recognition and deep

model tracing, that deal directly with the scaling-up problem: the MATHESIS tutor can handle any

algebraic expression containing any combination of the math tasks described above. Thus, the

MATHESIS tutor can guide a student in expanding expressions like () ()(
) () or factor expressions like () () .

4. Overview of the MATHESIS meta-knowledge engineering framework

The MATHESIS framework is mainly a meta-knowledge engineering framework. It is well

known that knowledge engineering (KE) is knowledge of how to extract problem-solving

knowledge from domain experts, represent this knowledge in a suitable format and implement a

system that uses this knowledge to solve problems like a human expert (Aitken & Sklavakis, 1999;

Lenat, 1995; Sklavakis, 1998).

In the case of KE (authoring) systems for ITSs, a meta-KE framework should enable (meta-)

knowledge engineers to extract related knowledge from expert ITS knowledge engineers (authors),

that is, cognitive scientists and programmers (AI or general purpose); represent this knowledge in

a suitable format; and implement a system that uses this knowledge to guide “knowledge

engineers” of lower levels of expertise (domain experts) to build knowledge-based (ITS) systems.

To achieve these three objectives, the MATHESIS meta-KE framework adds a semantic level on

top of the knowledge level of each KE (authoring) framework (Figure 2). Its purpose is to

represent declaratively (ontologically) the KE expertise used to build knowledge-based systems

(ITS), now lying partially unexpressed into the minds of KE experts and partially expressed into

the KE tools, as well as the developed domain problem-solving (tutoring) knowledge hard-wired

into the knowledge-based systems (ITSs) themselves.

 MATHESIS Ontology

Knowledge Engineering

(Authoring) Framework

(Knowledge level)

Knowledge Engineering

Expertise Model

(ONTOMATH)

Executable ONTOMATH

(OWL-S) Knowledge

Engineering processes for:
- Domain Task Analysis

- Representation Languages

(Facts-Rules)

- Knowledge-Based System

Implementation (Interface

design, Program code)

Domain Expertise

Models

Declarative (OWL) and

Procedural (OWL-S)

representation of

Domain Problem-

solving expertise:
- Domain model

(algebraic operations)

- Teaching model

(model-tracing)

- Interface Model

(teaching actions)

Meta-Knowledge

Engineering Tools

Create, Edit, View, Trace

and Execute

Knowledge Engineering

processes.

Knowledge

Engineering Expert

Knowledge of:

- Extraction methods

(domain task analysis)

- Representation

languages

(facts & rules)

- System

implementation

 (interface design,

program code)

ITS

- Domain

model

- Tutoring

Model

- Interface

Model

Domain Expert

(e.g. Human Math

Tutor)

Knowledge of:

- Problem-solving

(algebraic operations)

- Teaching methods

(one-to-one tutoring)

- Teaching actions

(interface)

Knowledge

Engineering

of KE

Expertise

(Meta-KE)

Meta-Knowledge Engineering Expert (MATHESIS expert)

Framework-

specific

KE tools

Tools

Execute

Create

Edit

View

Trace

Create

Edit

View

Trace

Same or

Different

Experts

Translation to

Program

Code of KBS

The MATHESIS Meta-Knowledge Engineering Framework (Semantic level)

KBS specific (Model-Tracing

Tutor) KE Tools

- (Create), Edit, View, Trace,

 Mathematical Problem-solving &

Tutoring processes.

- View user interface.

- Generate program code.

Domain

Task

Analysis

MATHESIS Tools

Fig. 2. The MATHESIS Meta-Knowledge Engineering Framework

(1)

(2)

(3)

(4)

(5)

The key point of the proposed framework is the ontological declarative representation of

these two kinds of knowledge. At the same time, and this was the most challenging problem, these

declarative representations should also be executable. More specifically, the deployment of the

framework is done in the following stages (Figure 2, bottom to top):

1. A knowledge engineer specialized in the MATHESIS framework (meta-knowledge

engineer), extracts the expertise from the domain KE experts (ITS authors), cognitive

scientists and AI programmers in the case of ITSs. The KE expertise must cover all stages

of knowledge-based system (ITS) development, that is, analysis, design and

implementation (see Section 6). This constitutes a crucial difference between the

framework-specific KE tools and the objectives of the MATHESIS framework: the former

support parts of the KBS (ITS) development stages, usually leaving out the most difficult

ones like the domain analysis stage, while the latter allows meta-knowledge engineers to

encode KE expertise of any stage. It must be noted that this phase requires the

development of knowledge about knowledge engineering (meta-knowledge). The

MATHESIS framework does not provide any specific methodology for this kind of meta-

knowledge engineering. In principle, any of the existing KE methodologies could be used

such as the KADS and CommonKADS ones (Kingston, 1995).

2. Using the meta-KE tools (Figure 3b), the meta-knowledge engineer creates an executable

ontological model of the extracted KE expertise, the knowledge engineering expertise

model. This model contains KE processes described in ONTOMATH, a special purpose

language developed within the framework (Section 5.2). ONTOMATH defines two kinds of

KE processes: (a) composite KE processes, which correspond to the functions/procedures

of a programming language and are represented using the process model of OWL-S, and

(b) atomic KE processes, which correspond to the statements of a programming language.

3. When the KE processes are executed by a non-expert knowledge engineer (e.g., domain

expert), the ONTOMATH interpreter executes them by calling corresponding Java methods

which in turn use the Protégé API to guide the domain expert in building the ontological

representation of the KBS models – conceptual (Section 6.1), problem-solving (Section

6.2), tutoring (Section 6.3), in the case of ITS - into the MATHESIS ontology (Figure 3c).

It also builds the models of the KBS program code (Section 6.4) and interface (Section

6.5). Therefore, the KE processes are the semantic representation of the domain-specific

knowledge engineering tools. The ontological representation of the KBS’s (ITS’s) various

models (cognitive, teaching, interface) contain both declarative and procedural domain

knowledge. An example of declarative domain knowledge would be the interface structure

(interface model) or the problem-solving concepts and stages of the domain problem-

solving model. An example of procedural knowledge would be the model-tracing

algorithm (tutoring model) or the problem-solving steps of the domain model. In the

MATHESIS framework these knowledge elements are defined by the meta-knowledge

engineer as generic elements. Declarative domain knowledge elements are defined using

the common OWL structures: classes, instances, properties and values. Procedural domain

knowledge elements are defined using the process model of OWL-S, just like the

composite KE processes described in stage 2. It is these generic knowledge elements that

the executed KE processes act on, guiding the domain expert to create specific-ones for

the KBS (ITS) under development.

4. The meta-knowledge engineer may develop KBS-specific (e.g., Model-tracing Tutor)

tools to help himself develop the KE model and the domain experts in developing the KBS

(ITS). These are mainly visualisation tools, although they can also provide manual

creation and editing of KBS-specific knowledge elements based on generic ones. This last

facility aims at accommodating more knowledge engineers that can develop parts of the

KBS (ITS) directly, without executing the corresponding KE processes. We have

developed a suite of such KBS-specific tools for model-tracing tutors (Figure 3a).

5. Having created the ontological representation of the tutor, the domain expert can create its

implementation by translating the ontological model to specific programming languages.

For example, in the case of the MATHESIS Algebra Tutor, the interface model is

translated to HTML and the domain and teaching models to JavaScript. These translations

are performed automatically by special translation tools. In case of other target

programming languages, we need to develop their corresponding ontological

representation as well as the translation tool.

All of the aforementioned stages are performed using the MATHESIS tools (Figure 3).

5. Procedural knowledge representation

The main component of the MATHESIS framework is the Ontology. It contains three kinds of

knowledge:

1. The declarative knowledge of the tutor, such as the interface structure and the problem-

solving concepts and stages of the domain model,

2. the procedural knowledge of the KBS, such as the teaching and math domain expertise

models of a model-tracing tutor and, finally,

3. the knowledge engineering expertise, that is, the declarative and procedural knowledge

that is needed to develop the tutor.

Fig. 3. The MATHESIS Tools as a tab widget in Protégé:

(a) KBS-specific (Model-tracing Tutor) Knowledge Engineering Tools, (b) Knowledge Engineering

Processes (Meta-Knowledge Engineering) Tools, (c) The MATHESIS Ontology Tab

While the declarative knowledge is represented with the basic OWL components, the

procedural knowledge, both domain and knowledge engineering, is represented via the process

model of the OWL-S web services description ontology. Through OWL-S, every knowledge

engineering or domain task is represented as a knowledge engineering or domain task process,

composite or atomic.

Using the OWL-S process model to represent ontologically procedural knowledge, like

teaching, math problem-solving or KE expertise is the key advantage of the MATHESIS

framework that gives a new perspective in the development of reusable KE expertise for

(a)

(b)

(c)

Knowledge Based Systems. In the following, we start by briefly presenting the OWL-S process

model, before delving into the details of its application to our case.

5.1. The OWL-S process model

OWL-S is a web service description ontology designed to enable the following tasks:

 Automated discovery of Web services that can provide a particular class of service

capabilities, while adhering to some client-specified constraints.

 Automated Web service invocation by a computer program or agent, given only a

declarative description of the service.

 Automated Web service selection, composition and interoperation to perform some

complex task, given a high-level description of an objective.

The last task is of interest for the MATHESIS framework and therefore we focus on it. To

support this task, OWL-S provides, among other things, a language for describing service

compositions as seen in Figure 4 (Martin et al., 2005)

Fig. 4. Top level of the OWL-S process ontology (from Martin et al., 2005)

Every service is viewed as a process. OWL-S defines Process as a subclass of ServiceModel.

There are three subclasses of Process, namely the AtomicProcess, CompositeProcess and

SimpleProcess. Atomic processes correspond to the actions a service can perform by engaging it in

a single interaction. In the MATHESIS ontology they represent simple statements that perform

either domain or KE elementary tasks. Composite processes correspond to tasks that require multi-

step actions. In the MATHESIS ontology they represent functions, either domain or knowledge

engineering, that call other functions (composite processes). Finally, simple processes provide an

abstraction mechanism to provide multiple views of the same process. Currently, they are not used

in the MATHESIS framework. Composite processes are decomposable into other composite or

atomic processes. Their decomposition is achieved by using control constructs such as Sequence or

If-Then-Else. Table 1 shows the most common control constructs supported by OWL-S.

Any composite process can be considered as a tree whose non-terminal nodes are labelled with

control constructs. The leaves of the tree are invocations of other processes, composite or atomic.

These invocations are indicated as instances of the Perform control construct. This special control

construct takes as a parameter a process, either composite or atomic. In the MATHESIS framework

a Perform with an atomic process corresponds to the execution of a statement, whereas a Perform

with a composite process corresponds to calling a function. This tree-like representation of

composite processes is the key characteristic of the OWL-S process model and has been used in

the MATHESIS Ontology to represent both knowledge engineering and domain task procedural

knowledge

Table 1. Common control constructs supported by the OWL-S process model

Control Construct Description

Sequence A list of control constructs to be performed in order

Choice

Calls for the execution of a single construct from a given bag

of control constructs (given by the components property).

Any of the given constructs may be chosen for execution

If-Then-Else

It has properties ifCondition, then and else holding different

aspects of the If-Then-Else construct

Repeat-While & Repeat-Until

The initiation, termination or maintenance condition is

specified with a whileCondition or an untilCondition

respectively. The operation of the constructs follows the

familiar programming language conventions.

5.2. Procedural knowledge engineering expertise representation

The MATHESIS framework allows expert meta-Knowledge Engineers to capture the whole KE

effort by providing an executable KE model building language, namely OntoMath. In OntoMath,

each KE task is represented as a KE process, either composite or atomic (Figure 5).

Composite KE processes correspond to functions of a programming language that can be

called, get and return values. This is achieved by two means: a) Εach composite process has a

property, hasFormalParameters, which keeps a list of the process formal parameters, and b) each

Perform has a property, hasRealParameters, which keeps the list of the parameters at call time.

During execution of a Perform construct by the meta-KE tools (Figure 3b), the interpreter matches

the values of the real parameters to those of formal parameters. The values of the two properties,

hasFormalParameters and hasRealParameters, are defined by the meta-knowledge engineer in the

ontology with the help of the meta-KE tools (Figure 3b). The recursive analysis of composite KE

processes ends to atomic KE processes, which are instances of the OntoMathStatement, a subclass

of AtomicProcess. Each OntoMathStatement instance corresponds to an operation that must be

performed to the MATHESIS Ontology (see Table A1, Appendix).

ONTOMATH KE processes, composite and atomic, are classified in classes and subclasses

according to the kind of ΚΕ expertise they represent and the part of the ΚΕ endeavour they

implement. For example, in Figure 5, there are ONTOMATH processes (identify-input-knowledge-

components, define-interface-elements-for-input-knowledge-components, define-variables-for-interface-

elements, define-code-to-initialise-interface-elements) for implementing the task of defining how the

math problem will be presented to the student, which is a tutoring (domain) task (class Authoring-

Task-Present-Domain-Task). Other ONTOMATH processes, like get-HTML-Element-Property, serve the

task of HTML programming (class Programming-Task-HTML). Others, like get-interface-element-

reference, serve the task of JavaScript programming (class Programming-Task-JavaScript). As a

consequence, the ONTOMATH language is not only capturing ΚΕ expertise but, at the same time, is

classifying this expertise. This way it enables reasoning on that knowledge, that is, discovery,

retrieval, reuse and modification, by knowledge engineers of different expertise levels.

ONTOMATH statements are grounded to actual Java program code. When the MATHESIS

meta-ΚΕ tools interpret a Perform construct that calls an ONTOMATH statement, they execute its

corresponding Java code, which performs the statement’s operations on the ontology that

represents the KBS (tutor) under development. It must be noted that the set of ONTOMATH

statements is not fixed. Expert meta-knowledge engineers can define their own atomic ΚΕ

(ONTOMATH) statements by: a) using the meta-ΚΕ tools to define in the MATHESIS Οntology the

values of property hasFormalParameters for the new statement and b) write the Java code that,

during execution, gets the values of property hasRealParameters of the calling Perform construct and

performs the statement’s intended operation(s). The interpretation and execution of the ONTOMATH

code by the MATHESIS meta-ΚΕ tools leads to the creation of the KBS’s (tutor’s) ontological

representation and, consequently, to the implementation of the KBS (tutor).Therefore, the

ONTOMATH ΚΕ processes form an ontological representation of a meta-program that handles the

ontological representation of the tutor as its data.

.

Fig. 5. Part of the ONTOMATH Knowledge Engineering Processes Ontology

6. Using the MATHESIS framework

In this Section we describe how meta-knowledge engineers create a ΚΕ expertise model using as

an example a model-tracing tutor for monomial multiplication, as well as how domain experts can

create the monomial multiplication tutor by executing the ΚΕ model. The meta-ΚΕ model for the

monomial multiplication tutor was based on the expertise used to create the monomial

multiplication part of the MATHESIS Algebra Tutor. Provision has been taken so that both the ΚΕ

model and the tutor’s model can be extended for meta-knowledge engineering all the math skills

tutored by the MATHESIS Algebra Tutor.

Fig. 6. The top-level ontological representation of the tutor created by the domain expert

6.1 Tutor Initialization
13

The first ΚΕ task is to define an instance of the tutor (KBS) in the Οntology. At the top level

of the MATHESIS Οntology, every tutor is represented as an instance of class ITS-Implemented. In

Figure 6 this instance is monomial_multiplication_tutor. The domain expert creates this instance once

in the first ΚΕ session; in subsequent sessions the domain expert selects the tutor to edit. In both

cases, the tutor Initialization ΚΕ tools (Figure 7a) automatically select the ITS_Implemented class in

the MATHESIS ontology tab (Figure 3c). Class ITS-Implemented is a top class created by the meta-

knowledge engineer and can have subclasses like ITS-Implemented_Algebra, which are used for

classifying the various tutors. This classification can use various criteria defined by the meta

knowledge engineer, such as the tutors’ domain (math, physics, programming), thus making easier

for domain experts to locate a specific tutor in the ontology.

6.2. Domain Problem-Solving Expertise model

The next KE task is to define a mathematical domain task that the tutor teaches, e.g., monomial

multiplication. The domain expert can add in the ontology new tasks or select from existing ones.

This KE task is also performed using the Tutor Initialization Tools (Figure 7a). The created or

selected instance of the mathematical domain task is added to property hasDomainTask that keeps a

list of the tasks (here execute-monomial-multiplication) that the tutor teaches (Domain-Task instances).

Figure 6 shows the domain task instance execute-monomial-multiplication as a value of the

hasDomainTask object property. The domain expert fleshes out the domain tasks by executing the

KE processes developed by the meta-knowledge engineer according to each domain task. As with

the tutor instances, domain task instances are classified in a hierarchy with Domain-Task being the

root (Figure 6). Notice that task execute-monomial-multiplication is actually an instance of the

Algebraic-Operation-Task subclass

13

 http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/01-Authorring_Tools.mp4

monomial-multiplication-

tutor

monomial-1

monomial-2

monomial-3
execute-monomial-

multiplication-Model-Tracing-

Algorithm

hasInputKnowledgeComponents

hasOutputKnowledgeComponents

hasTutoringModel

ITS-Model-Tracing-Process

ITS-Teaching-Model

is a

genls
is a

ITS-Implemented

execute-monomial-multiplication

document-49

is a

Domain-Knowledge-

Component

hasTopInterfaceElement

is a

hasDomainTask

Domain-Task

is a

HTMLObject
Algebraic- Operation-

Task

genls

Algebraic-Expression-

Monomial

genls

.
Fig. 7. The KBS domain-specific (Model-Tracing Tutor) Knowledge Engineering Tools:

 (a) The Tutor Initialization Tools, (b) The Advanced Knowledge Engineering Tools for Tutoring

Domain Processes , (c) Tree representation of the tutoring domain task process Model-Tracing-Algorithm

adapted for the execute-monomial-multiplication domain task.

For each math domain task, the domain expert must define in the ontology the domain

concepts given for the task and the domain concepts asked for the task (knowledge components).

For the execute-monomial-multiplication task the input knowledge components are two monomials

and the output knowledge component is their product, a monomial too. Domain concepts’

instances are classified in a hierarchy with class Domain-Knowledge-Component on top (Figure 6,

middle left). In the Ontology, the given and asked domain concepts of the domain task are kept by

properties hasInputKnowledgeComponents and hasOutputKnowledgeComponents respectively (Figure

6, bottom left). In Figure 6 there are three instances: monomial-1, monomial-2 and monomial-3. When

a domain expert needs to define in a tutor the domain concept of monomial, he/she has to clone the

generic instance monomial created by the meta-knowledge engineer. The domain expert creates

these clones by executing the appropriate KE processes created by the meta-knowledge engineer.

Process identify_input_knowledge_components (Figure A1, Appendix) guides the domain expert in

creating new instances of domain concepts that form the input for a domain task. In the case of the

monomial multiplication tutor the domain task is execute-monomial-multiplication and the input

domain concepts that must be created are two monomials, namely monomial-1 and monomial-2.

Programming-savvy readers can follow the ONTOMATH code using the definitions of the

ONTOMATH statements given in Table A1 (Appendix). Therefore, the state of the ontology shown

in Figure 6 is after the domain expert has executed the appropriate KE processes that guided him

to create the three specific instances, monomial-1, monomial-2 and monomial-3, by cloning monomial.

6.3.Tutoring model

The top level representation of the tutor’s procedural knowledge in the ontology is the model-

tracing algorithm represented as a generic composite tutoring (domain task) process, named

ModelTracingAlgorithm. This algorithm is an implementation of the two-loop structure of intelligent

(a)

(b)

(c)

tutoring systems described in (VanLehn, 2006) and was developed by the meta- knowledge

engineer using the Advanced KE Tools for Tutoring (Domain) Processes (Figure 7b). The tools

allow meta-knowledge engineers and advanced domain experts to create parts of the tutor’s

procedural domain knowledge (tutoring processes) directly, without executing KE processes. This

ability is necessary for complicated tutoring (domain task) processes, like the

ModelTracingAlgorithm, which demand high expertise and must be provided to domain experts as

libraries, that is, generic tutoring (domain task) processes in the MATHESIS framework

terminology. When the domain expert selects the ModelTracingAlgorithm as the tutoring model, the

Tutor Initialization KE Tools (Figure 7a) copy its structure and create a new instance, execute-

monomial-multiplication-Model-Tracing-Algorithm (Figure 7c), for the execute_monomial_multiplication

domain task. Consequently, the meta-knowledge engineer can define any number of generic

tutoring (domain task) models (e.g., model-tracing, example-tracing, constrained-based, other)

ready to be selected by the domain expert and adapted by the execution of KE processes for the

specific domain task.

The tree structure of the process, adapted and displayed by the Tutor Initialization Authoring

tools for the execute-monomial-multiplication task, is shown in Figure 7c. Each step of the algorithm

is a top level tutorial (domain task) action. Each of these steps is also a composite tutoring (domain

task) process that analyses the tutorial steps further down to more simple ones like giving a hint,

showing an example, recalling math formulas or rules and so on. The domain expert develops

these tutoring (domain) sub-tasks by executing corresponding KE processes created by the meta-

knowledge engineer. Each tutoring (domain task) process is associated with a KE process by the

meta-knowledge engineer via its hasAuthoringProcess property. The code for tutoring process

execute-monomial-multiplication-Presentation (Figure 7c, Perform 6) is created by the execution of the

KE process authoring-task-present-domain-task displayed by the meta-KE tools (Figure 8). The

domain expert is guided to perform the following KE sub-tasks:

Fig. 8. The Meta-Knowledge Engineering (ONTOMATH) Tools displaying the Knowledge Engineering

(ONTOMATH) process authoring-task-present-domain-task. This process creates the Tutoring (Domain) Process

execute-monomial-multiplication-Presentation which presents the initial problem state of a (monomial

multiplication) tutor.

1. Identify the input domain concepts (monomials) of the domain task.

2. Define the interface elements (WebEq_Input_Control applets) for the input domain

concepts (monomials).

3. Repeat the aforementioned steps for the task’s output concepts, that is, a monomial

holding the product.

4. Define the JavaScript variables that hold the references of the WebEq_Input_Control

applets.

5. Define the JavaScript code that initializes the variables referencing the

WebEq_Input_Control applets

6.4. Program code model

In programming terms, the ModelTracingAlgorithm composite tutoring process, when translated

to code, constitutes the main function that controls the whole tutoring process by calling other

functions. This recursive analysis of the tutoring steps ends when a composite tutoring process

contains only atomic processes corresponding to simple statements.

Fig. 9. Representation of the math domain task multiplyMainParts as a JavaScript function

For example, in the case of the execute-monomial-multiplication task, the execute-monomial-

multiplication-Execution process (Figure 7c, Perform_13) is analysed in two other composite

processes: multiplyCoefficients and multiplyMainParts. These two processes form the tutor’s

mathematical domain expertise model, which calculates the correct answer(s) in each step in order

to be compared against the student’s answer. Figure 9 shows part of the structure of process

multiplyMainParts. Once again, there are two options for the meta-knowledge engineer on how to

guide a domain expert in creating these processes:

1. The meta-knowledge engineer must develop the ΚΕ processes that, when executed, guide

the domain expert in a step-by-step manner to implement them, or

2. the meta-knowledge engineer creates these tutoring (domain task) processes directly, using

the Advanced ΚΕ Tools for Tutoring (Domain) Processes (Figure 7b), and then develops

simpler ΚΕ processes that just guide the domain expert in selecting the former from the

MATHESIS ontology.

The first option entails considerable workload for the meta-knowledge engineer but it is closer

to the principles and objectives of the MATHESIS framework,. The second option is easier for the

meta-knowledge engineer but hides and obscures the KE expertise that was actually used to

develop these domain task processes. To implement the first option, each JavaScript statement is

represented by an instance of the JavaScriptStatement class, a subclass of AtomicProcess (Figure A2,

Appendix). Following the OWL-S representational scheme, these instances are parameters to

Perform constructs (Figure 9). The JavaScriptStatement class has subclasses which classify the

JavaScript statements in various classes such as DefineVariable, InitializeVariable,

AssignValueToVariable, InvokeFunction, InvokeMethod, SetProperty. Each subclass has properties that

represent the various parts of the corresponding JavaScript statements. For example, statement pos

= getVariablePosition (vars1[i], vars2) (Figure 9, Perform_74) is an instance of class

JavaScript_Assignment having three properties: hasAssignedVariable (value=pos), hasInvokedFunction

(value= getVariablePosition) and hasArgumentsList (value = (vars1[i], vars2)) .
Such a detailed model of the JavaScript language allows the KE processes to guide the domain

expert in building the tutor’s (KBS) code by selecting the appropriate JavaScriptStatement subclass

and the values of the related properties. For example, the assign_js_method process (Figure 10)

creates JavaScript statements of the form variable = object.method(arguments).

Fig. 10. The assign_js_method knowledge engineering process. This process creates JavaScript assignment
statements of the form variable = object.method(arguments).

In the same time, from the values of these properties, the ΚΕ tools create and display the

actual JavaScript code as shown in Figure 9 (the small disks under the Perform constructs).
Therefore, a domain expert does not need to know the JavaScript syntax, but only needs to have

some general programming knowledge. As far as it concerns the semantic validation of the

produced JavaScript code, the tools do not provide any special assistance to the domain expert.

That is, the produced JavaScript code is syntactically correct, however whether this code exhibits

the intended behaviour is a matter of correct design and analysis of the ΚΕ processes.

6.5 Interface model

The domain expert must also create within the MATHESIS ontology the user interface model.

For web applications this can be a representation of the HTML Document Object Model (DOM).

The tutor’s placeholder for the interface model is kept by property hasTopInterfaceElement that

holds the root element of the user interface, a Document instance (Figure 6, top right). We have

developed an ontological representation of the HTML elements with their properties and values.

When the domain expert creates the tutor’s instance for the first time, the Tutor Initialization KE

Tools automatically create the ontological representation of an empty HTML page. The

representation of the HTML code and the corresponding DOM of the user interface for the

monomial multiplication tutor are shown in Figure 11.

Each object defined in the HTML code is represented as an instance of the corresponding

HTMLObject subclass (Document, Html, Head, Body, Applet, Web_Eq_Input_Control). Each HTMLObject

instance has the corresponding HTML properties, like the id property, represented by

HTMLProperty instances. In Figure 11, HTMLObject instances Web_Eq_Input_Control-1 and Web-Eq-

Input-Control-2 have their id HTML properties represented by HTMLProperty instances Web-Eq-Input-

Control-1-id and Web-Eq-Input-Control-2-id correspondingly, pointed by object property

hasHTMLProperty (Figure 11, bottom). The HTML values of these properties are represented by

their corresponding ontological properties (html-property-value = “expressionInputControl”).

The DOM tree structure is represented via two properties, hasFirstChild and hasNextSibling. This

representation allows for bi-directional creation of the HTML part of the user interface:

1. The domain expert, either guided by the KE processes or using the Tutor Tools, creates

within the MATHESIS ontology the representation of the DOM tree and then, by

traversing the ontology, the translation tools generate the corresponding HTML code (top-

down), or

2. the user interface is created using any Web-page authoring program and then the HTML

file is parsed by Java’s XML parser creating a DOM structure, which in turn is

transformed into its corresponding ontological representation for further editing by the KE

tools (bottom-up).

Fig. 11. The HTML User Interface DOM Ontological (left) and Visual (right, top) Representation

For different interface implementations like Java or Flash, appropriate ontological representations

and translation programs must be developed.

The instances surrounded by the dotted line (Document_49, Html_51, Head_53 and Body_54)

were created automatically by the Tutor Initialization Tools, while the rest were created by the

execution of KE processes. Instances WebEq-Input-Control-1 and WebEq-Input-Control-2 were created

by the domain expert. The first one is the interface element that is used to present the two

monomials to be multiplied and represents the algebraic expression area of the MATHESIS

Algebra Tutor (Figure 1b). The second one is used for the student answering area of the

MATHESIS Algebra Tutor (Figure 1c). The meta-knowledge engineer associated monomial

instances with the WebEq Input Control interface elements by setting object property has-Interface-

monomial-multiplication-tutor

Document-49

WebEq-Input-Control-1_id

hasTopInterfaceElement

Html-51

hasFirstChild

Head-53

hasFirstChild

body-54

hasNextSibling

WebEq-Input-Control-1

hasFirstChild

WebEq-Input-Control-2

hasNextSibling

hasHTMLProperty

WebEq-Input-Control-2_id

html-property-name: “id”

html-property-value: “answerInputControl”

hasHTMLProperty

html-property-name: “id”

html-property-value: “expressionInputControl”

Elements of the generic monomial instance to WebEQ-Input-Control. Then, the meta-knowledge

engineer created two KE process called define-interface-elements-for-input-knowledge-components and

define-interface-elements-for-output-knowledge-components correspondingly that guide the domain

expert in creating the two WebEq instances and naming them “expressionInputControl” and

“answerInputControl” correspondingly (Figure 11, bottom right).

7. Knowledge reuse and scalability

Building from scratch any kind of knowledge-based system, like a model-tracing tutor,

requires a tremendous effort, even with the use of authoring tools (Murray, 2003b). The main

reason for this problem is the knowledge acquisition bottleneck. Domain experts are not trained in

articulating their (teaching) expertise in a more abstract way. Highly trained knowledge engineers

are needed to perform the following knowledge engineering tasks: Develop ontologies, represent

the curriculum, represent teaching strategies and diagnostic procedures and create student models.

Existing authoring tools for knowledge engineering fall in either side of the breadth vs. depth

trade-off: a) Tools that build tutors for very specific domains but with a deep domain model, or b)

all-purpose authoring shells that build tutors for various domains but with shallow domain

knowledge models. In addition to this trade-off, the problem of knowledge reuse - both for the

developed tutoring (domain) knowledge as well as for the knowledge engineering (authoring)

expertise – is severely restraining the widespread use of model-tracing tutors in particular and

knowledge based systems in general in the real world.

As a solution to these problems, a three tiered meta-authoring framework was proposed by

Murray (2003b). At its base there is a generic ITS authoring tool that requires the top level of

authoring expertise like knowledge/ontological engineering, cognitive task analysis, instructional

design, learning theories. This system is used to develop the middle tier, that is, reusable libraries

of domain ontologies, student modelling rules, interface templates and generic teaching strategies.

At the top level there are fairly simple tools for trained teachers that make use of the reusable

libraries to develop powerful tutors for real world use. It is this meta-authoring model that the

MATHESIS framework implements:

a) The base level is the ONTOMATH language and the Meta-Knowledge Engineering tools

used by meta-knowledge engineers to represent knowledge engineering expertise as an

ontology of executable knowledge engineering processes. These processes can guide

domain experts in performing any kind of knowledge engineering tasks.

b) The middle tier corresponds to the MATHESIS Ontology, consisting of reusable parts of

the tutors’ cognitive, teaching and interface models. In the case of the monomial

multiplication tutor development presented in section 6, these reusable parts where generic

instances like monomial (domain concept), the ModelTracingAlgorithm (tutoring model),

WebEq-Input-Control (HTML element) as well as reusable KE processes like the

assign_js_method (JavaScript programming process). These generic instances are used by

either the KE tools or the KE processes to create specific instances that represent the

various parts of the monomial multiplication tutor.

c) The top level comprises the domain-specific knowledge engineering (authoring) tools,

model-tracing in our case. The key characteristic of these tools is that they facilitate

trained teachers (domain experts) to browse, locate and (re-)use the components of the

middle tier. In the case of the MATHESIS model-tracing tutor authoring tools (Figure 7),

this facilitation depends on the depth of the knowledge engineering ONTOMATH model, as

it is the knowledge engineering processes that guide domain experts in locating and

reusing existing or creating new tutors’ parts. In that sense, each knowledge engineering

process is a KE tool at a different level. This multi-level classification of knowledge

engineering processes as knowledge engineering tools is illustrated even better by the fact

that each one of the tools for tutor creation/selection, domain task creation/selection and

teaching strategy model selection are shortcuts to common, top level knowledge

engineering actions. They could be easily removed from the interface and replaced by

knowledge engineering processes that would perform the same knowledge engineering

actions. The same holds for middle or low level knowledge engineering processes (tools).

The more fine-grained they become the more knowledge engineering expertise they give

to the system and the less expertise they demand from the domain expert.

We were faced with this problem of the KE model’s granularity in an evaluation of the system.

We asked a trained teacher of mathematics and expert computer user to use our tools to re-

implement the monomial multiplication task of the MATHESIS Algebra Tutor. After 35 hours of

training with the tools, he was capable of executing the knowledge engineering model and re-

implement the monomial multiplication tutor. Then he tried to implement a monomial division

tutor by executing the same model. We selected monomial division as it has minor differences

from the multiplication task, mainly in the domain expertise model. When the author tried to

implement tutoring process DivideMainParts that would perform the monomial division, the

counterpart of tutoring process MultiplyMainParts (Figure 9), we realized that he had to modify the

MultiplyMainParts process so that it would subtract the exponents of common variables (
) rather than adding them (). In the MATHESIS framework there are two

ways to solve this problem:

i. The non-expert author must use the Advanced Knowledge Engineering Tools for Tutoring

Domain Processes (Figure 7b) to change the representation of the JavaScript statement

that adds the exponents, so as to perform a subtraction instead of an addition. However,

this elementary change entails a considerable raise at the expertise level required by the

author; he must identify that statement (knowledge of JavaScript and programming) and

change directly its ontological representation (knowledge of the MATHESIS ontology).

ii. The meta-knowledge engineer develops authoring processes that guide the domain expert

in defining mathematical operations between mathematical objects. Then, the domain

expert is guided by these processes to define whether the exponents (integers) of common

variables are added (monomial multiplication), subtracted (monomial division) or even

multiplied (monomial powers), like in () .

Therefore, the MATHESIS framework deepens Murray’s three tier structure of the tools to an

arbitrary depth. Any time that the MATHESIS framework must cover the creation of tutors in a

new domain, meta-knowledge engineers must create both the generic instances that represent

declarative and procedural knowledge of the new domain as well as the KE processes that use

them. Of course, parts of the new tutor(s) that are common with already developed tutors are

readily reusable. In the case of the monomial division tutor monomial, ModelTracingAlgorithm and

WebEq-Input-Control can be reused along with the KE processes that use them. This is possible due

to the representation of the KE processes via the ONTOMATH language ontologically, that is in a

declarative form, which makes them open for inspection and therefore mostly reusable (Gómez-

Pérez, Fernández-López, Corcho, 2004). In existing knowledge engineering (authoring) systems,

adding new KE knowledge would entail modifying the authoring program and adding new tools

with their corresponding interfaces. This modification can be done only by the creators of the

authoring program.

8. Discussion and further work

The MATHESIS meta-knowledge engineering framework primary goal is to spread the load of

knowledge engineering over various levels of reusable knowledge engineering processes and over

various knowledge engineers that can reuse them by browsing, locating and modifying them. For

example, the ontological representation of any programming language like HTML or JavaScript

and the knowledge engineering processes that create these representations can be standardized by

authorised organizations and then used by any meta-knowledge engineer. Experts from any

domain can develop libraries of ontological representations for their KBS and the knowledge

engineering processes that create them. They could even develop their customized meta-

knowledge engineering and domain-specific knowledge engineering tools and distribute them as

Java applets. The implementation of the MATHESIS framework as an all-in-one package inside

the Protégé OWL editor was done for easing the implementation of the system. The framework

could have been implemented with its parts distributed: The MATHESIS ontology being still an

OWL ontology and the knowledge engineering tools being Java applications. Even Protégé’s API

used for grounding the ONTOMATH statements is a Java library. This distributed and collaborative

knowledge engineering scheme can be supported by modern tools such as the WebProtégé

collaborative ontology editor and knowledge acquisition tool (Tudorache, Nyulas, Noy, & Musen,

2013).

Of course, this multi-layered meta-knowledge engineering framework doesn’t force the

knowledge acquisition bottleneck and the efforts of knowledge engineering to disappear. The

ontological representation of the tutor’s (KBS) models, the structure of the knowledge engineering

processes and the execution details that have to be taken into consideration for their development,

suggest that there is no royal road to knowledge engineering. For the moment, the MATHESIS

ontology contains the KE knowledge just for the development of two model tracing tutors, one for

multiplication and one for division of monomials. Therefore, we do not claim that we have solved

the problem of knowledge acquisition and reuse. Being in an experimental stage, we consider the

MATHESIS framework as a proof-of-concept system. To investigate the issues of knowledge

reuse and scalability, we plan to develop KE models for monomial by polynomial multiplication

and polynomial multiplication. In the long term, we would like to develop a KE model that could

create the entire MATHESIS Algebra Tutor. To facilitate this procedure, new knowledge

engineering tools are needed, such as parsers for transforming between HTML and MATHESIS

DOM representation; parsers for transforming between JavaScript and MATHESIS tutoring

processes; extension of the ONTOMATH language and elaboration of its interpreter. These tools

constitute our current research line.

Acknowledgments

We thank the reviewers for their valuable comments. We also thank Mr. Sotiris Sakellaris,

BSc and MSc in Mathematics, an expert mathematician and a power computer user, who offered

to use our tools in the wild, by re-implementing the monomial multiplication and division tutors

using the MATHESIS framework tools.

References

Aitken, J. S., & Sklavakis, D. (1999). Integrating problem solving methods into CYC. In T. Dean (Ed.) Proceedings of

the International Joint Conference on Artificial Intelligence (pp. 627-633). San Francisco: Morgan Kaufman

Publishers.

Aleven, V., McLaren, B., Sewall, J., & Koedinger, K. R. (2006). The Cognitive Tutor Authoring Tools (CTAT):

Preliminary Evaluation of Efficiency Gains. Proceedings of the 8th International Conference on Intelligent Tutoring

Systems (ITS 2006), (pp 61-70). Berlin: Springer.

Aleven, V., McLaren, B., Sewall, J., & Koedinger, K. R. (2009). A New Paradigm for Intelligent Tutoring Systems:

Example-Tracing Tutors. International Journal of Artificial Intelligence in Education, Vol. 19 (pp.105-154).

Anderson, J.R. (1993). Rules of the Mind. Hillsdale, NJ: Erlbaum.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive Tutors: Lessons Learned. The

Journal of the Learning Sciences, Vol. 4 (2) (pp. 167-207).

Blessing., B.S., Gilbert, B. S., Ourada, S. & Ritter S. (2009). Authoring Model-Tracing Cognitive Tutors. International

Journal of Artificial Intelligence in Education, Vol. 19 (pp.189-210)

Chandrasekaran, B. (1986). Generic Tasks for knowledge-based reasoning: the right level of abstraction for knowledge

acquisition, IEEE Expert, Vol. 1 (pp. 23-30).

Clancey, W. J. (1985). Heuristic classification, Artificial Intelligence Vol. 27 (pp. 289-350).

Corbett, A. T. (2001). Cognitive Computer Tutors: Solving the Two-Sigma Problem. Proceedings of the 8th

International Conference on User Modeling 2001 (pp. 137-147). London: Springer.

Crowley, R.S., & Medvedeva, O. (2006). An intelligent tutoring system for visual classification problem solving.

Artificial Intelligence in Medicine, Vol. 36 (pp. 85-117).

Denau, R., Dolbear, C., Hart, G., Dimitrova, V., & Cohn, A. (2011). Supporting Domain Experts to Construct

Conceptual Ontologies: A Holistic Approach. Web Semantics: Science, Services and Agents on the World Wide

Web,Vol. 9 (2) (pp. 113-127). Elsevier.

Dicheva, D., Mizoguchi, R., & Greer, J. (Eds.) (2009). Semantic Web Technologies for e-learning, The Future of

Learning, Vol. 4. Amsterdam: IOS Press.

Gómez-Pérez, A., Fernández-López, M.,, & Corcho, O. (2004). Ontological Engineering: With Examples from the Areas

of Knowledge Management, E-commerce and the Semantic Web. Berlin: Springer,

Hoffman, R. (1987). The Problem of Extracting the Knowledge of Experts From the Perspective of Experimental

Psychology. AI Magazine (pp. 53-67).

Kaljurand, K. ACE View --- an ontology and rule editor based on Attempto Controlled English. OWLED 2008.

Kingston, J. (1995). Applying KADS to KADS: knowledge-based guidance for knowledge engineering. Expert Systems.

Vol. 12(1), 15-26.

Koedinger, K. R., Anderson, J.R., Hadley, W.H., & Mark, M. A. (1997). Intelligent Tutoring Goes to School in the Big

City, International Journal of Artificial Intelligence in Education, Vol. 8 (pp. 30-43).

Koedinger, K. R., & Corbett, A. (2006). Cognitive Tutors: Technology bringing learning science to the classroom. In K.

Sawyer (Ed.) The Cambridge Handbook of the Learning Sciences (pp. 61-78), Cambridge University Press.

Lenat, D. B., & Guha, R. V. (1990). Building large Knowledge-based systems. Representation and inference in the Cyc

project. Reading, Massachusetts: Addison-Wesley.

Lenat, D. B. (1995). CYC: A Large-Scale Investment in Knowledge Infrastructure. Communications of the ACM, 38

(11).

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B., Payne, T., Sabou, M.,

Solanki, M., Srinivasan, N., & Sycara, K. (2005). Bringing Semantics to Web Services: The OWL-S Approach,

LNCS Vol. 3387 (pp. 26-42). Berlin: Springer.

Mellis, E., Andrès, J., Büdenbender, J., Frischauf, A., Goguadze, G., Libbrecht, P., Pollet, M. & Ullrich, C. (2001). A

Generic and Adaptive Web-Based Learning Environment. International Journal of Artificial Intelligence in

Education, 12, 385-407.

Mitrovic, A., Koedinger, K., & Martin, B. (2003). A Comparative Analysis of Cognitive Tutoring and Constraint-Based

Modelling. In P. Brusilovsky, A. Corbett & F. de Rosis (Eds.) Proceedings of the 9th International Conference on

User Modeling UM 2003 (pp. 313-322). LNAI 2702. Berlin: Springer-Verlag.

Mitrovich, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., & Holland, J. (2009). ASPIRE: An Authoring System

and Deployment Environment for Constraint-Based Tutors. International Journal of Artificial Intelligence in

Education, Vol. 19 (pp. 155-188)

Mizoguchi, R., Vankwelkenheusen, J., & Ikeda, M. (1995). Task Ontology for Reuse of Problem Solving Knowledge.

Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing (pp.46-59). Netherlands: IOS

Press.

Mizoguchi, R., & Bourdeau, J. (2000). Using ontological engineering to overcome common AI-ED problems.

International Journal of Artificial Intelligence in Education,Vol. 11 (pp. 107-121).

Mizoguchi, R. (2004). Tutorial on ontological engineering: part 3: Advanced course of ontological engineering. New

Generation Computing. Vol. 22 (2) (pp. 198-220). Berlin: Springer.

Mizoguchi, R., Hayasi, Y., & Bourdeau, J. (2009). Inside a Theory-Aware Authoring System. In D. Dicheva, R.

Mizoguchi & J. Greer (Eds.) Semantic Web Technologies for e-learning: The Future of learning, Vol. 4 (pp. 59-76).

Amsterdam: IOS Press.

Murray, T. (2003a). An overview of intelligent tutoring system authoring tools: Updated Analysis of the State of the Art.

In T. Murray, S. Ainsworth, & S. Blessing (Eds.) Authoring Tools for Advanced Technology Learning Environments

(pp 491-544). Netherlands: Kluwer Academic Publishers.

Murray, T. (2003b). Principles for Pedagogy-Oriented Knowledge Based Tutor Authoring Systems. In T. Murray, S.

Ainsworth, & S. Blessing (Eds.) Authoring Tools for Advanced Technology Learning Environments (pp 439-466).

Netherlands: Kluwer Academic Publishers.

Paquette, L., Lebeau, J.-F., & Mayers, A. (2010). Authoring Problem-Solving Tutors: A Comparison Between CTAT

and ASTUS. In Nkambou, R., Bourdeau, J., & Mizoguchi, R. (Eds.) Advances in Intelligent Tutoring Systems (pp

377-405). Heidelberg: Springer.

Puerta, A. R., & Musen, M. (1992). A multiple-method knowledge-acquisition shell for the automatic generation of

knowledge-acquisition tasks. Knowledge Acquisition, Vol. 4 (pp. 171-196).

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde, W., & Wielinga, B. (1999).

Knowledge Engineering and Manegement: The CommonKADS Methodology. Cambridge MA: MIT Press.

Sklavakis, D. (1998). Implementing Problem Solving Methods in CYC. MSc Dissertation, Department of Artificial

Intelligence, University of Edinburgh.

Sklavakis, D., & Refanidis, I. (2008). An Individualized Web-Based Algebra Tutor Based on Dynamic Deep Model-

Tracing. Proceedings of the Fifth Hellenic Conference on Artificial Intelligence (SETN ’08), (pp. 389-394).

Heidelberg: Springer.

Sklavakis, D., & Refanidis, I. (2010). Ontology-Based Authoring of Intelligent Model-Tracing Math Tutors.

Proceedings of the Fourteenth International Conference on Artificial Intelligence (AIMSA 2010), (pp. 201-210).

Heidelberg: Springer.

Sklavakis, D., & Refanidis, I. (2013). MATHESIS: An Intelligent Web-Based Algebra Tutoring School. International

Journal of Artificial Intelligence in Education Vol. 22 (2) (pp. 191-218). Amsterdam: IOS Press.

Suraweera, P., Mitrovic, A., Martin, B., Holland, J., Milik, N., Zakharov, K., & McGuigan, N. (2009). Using Ontologies

to Author Constraint-Based Intelligent Tutoring Systems. In D. Dicheva, R. Mizoguchi & J. Greer (Eds.) Semantic

Web Technologies for e-learning: The Future of learning, Vol. 4 (pp. 59-76). Amsterdam: IOS Press.

http://www.ei.sanken.osaka-u.ac.jp/pub/miz/Part3V3.pdf

Tudorache, T., Nyulas, C., Noy, N.F., & Musen, M.A. (2013). WebProtégé: A Distributed Ontology Editor and

Knowledge Acquisition Tool for the Web. Semantic Web Vol. 4 (1) (pp. 89-99). Amsterdam: IOS Press.

VanLehn, K., Jones, R. M., & Chi, M. T. H. (1992). A model of the self-explanation effect. Journal of the Learning

Sciences, 2(1), 1-59.

VanLehn, K. (1999). Rule learning events in the acquisition of a complex skill: An evaluation of Cascade. Journal of the

Learning Sciences, 8(2), 179-221.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D., Weinstein, A., & Wintersgill, M.

(2005). The Andes physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in

Education Vol. 15(pp. 147-204). Amsterdam: IOS Press.

VanLehn, K. (2006). The Behavior of Tutoring Systems. International Journal of Artificial Intelligence in Education

Vol. 16 (3) (pp. 227-265). Amsterdam: IOS Press.

Wielinga, B.J., Schreiber, A.Th., & Breuker, J.A. (1992). KADS: A modeling approach to knowledge engineering.

Knowledge Acquisition Vol. 4 (1) (pp. 5-53). Elsevier

Appendix

Table A1. The ONTOMATH Statements and their Operations

Browse Statements Purpose

setSelectedClass(className)
Sets the Class named by className as selected in the

Classes Panel

getSelectedClass(className)
Sets className to the name of the Class selected in

the Classes Panel

setSelectedInstance(instanceName)
Sets the Instance named by instanceName as selected

in the Instances Panel

getSelectedInstance(instanceName)
Sets instanceName to the name of the Instance

selected in the Instances Panel

Collection Statements Purpose

iteratorNext (iterator, element)
Sets element to the next element of iterator

String Statements Purpose

strConcat(newString,string1,string2)

Concatenates string1 and string2 and returns the

concatenated string to newString

Dialog Statements Purpose

showMessageDialog(message) Displays a Message Dialog with message

showInputDialog(userInput, message,

defaultValue)

Displays an Input Dialog with message and

defaultValue. Returns user input to userInput

Ontology_Editing Statements Purpose

createInstance(instanceName,className)
Creates a new instance of class className named

instanceName

copySelectedInstance(newInstanceName)

Creates a new copy of the instance that is currently

selected in the Instances Panel with name

newInstanceName.

createSubclass(subclassName,superclassName)
Creates a new subclass named subclassName of class

superclassName

getObjectProperty(instance,property,propertyV

alues)

Gets the values of object property property of

instance instance and stores them to variable

propertyValues.

setObjectProperty(instance,property,value)

If object property of instance is functional (takes

only one value), its value is set to value. Otherwise,

value is added to the list of the property’s values.

getDataProperty(instance,property,propertyVal

ues)

Gets the values of data property property of

instance instance and stores them to variable

propertyValues.

setDataProperty(instance,property,value)

If data property of instance is functional (takes only

one value), its value is set to value. Otherwise, value

is added to the list of the property’s values.

removePropertyValue(instance,property,value)
Removes instance value from the value(s) of property

property of instance instance.

getLocalName(instance, instanceName)
Gets the local name of instance instance and stores it

in variable instanceName.

setVariable(variable,value)
Sets the value of variable variable to value.

Fig. A1. The identify_input_knowledge_components knowledge engineering (ONTOMATH) process. By

executing it a domain expert can create new instances of either an existing or a newly created monomial class

Fig.A2. Part of the JavaScript_Statement ontology

