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Abstract: The effect of the knowledge acquisition bottleneck is still limiting the widespread use of knowledge-based 

systems (KBS), especially in the area of model-tracing tutors, as they demand the development of deep domain 

expertise, tutoring and student models. The MATHESIS meta-knowledge engineering framework for model-tracing 

tutors, presented in this article, aims at maximizing knowledge reuse. This is achieved through ontological representation 

of both the declarative and procedural knowledge of a KBS (model-tracing tutor), as well as of the declarative and 

procedural authoring knowledge of the process to develop a KBS. Declarative knowledge is represented in Ontology 

Web Language (OWL). Procedural knowledge is represented using the concepts of atomic and composite processes of 

OWL-S web services description ontology. The framework provides knowledge engineering tools, integrated into the 

Protégé OWL ontology editor, for the development and management of the KBS’s ontological representation. It also 

provides meta-knowledge engineering tools for the ontological representation of the knowledge engineering expertise as 

a set of composite knowledge engineering processes and atomic knowledge engineering statements. The latter constitute 

a language, ONTOMATH, for building executable knowledge engineering models that, when executed by the tools, guide 

non-expert knowledge engineers like domain experts to the creation of new knowledge-based systems (model-tracing 

tutors). The framework, being in an experimental stage, was used for the development of a monomial multiplication and 

division tutor. However, the overall design and implementation aimed at constituting the framework as a proof-of-

concept system that can be used for the meta-knowledge engineering of more complex model-tracing tutors.  
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1. Introduction 

Intelligent tutoring systems (ITS), particularly model-tracing tutors (MTT), have been proven 

quite successful in the area of mathematics (Koedinger, Anderson, Hadley, & Mark, 1997; 

Koedinger & Corbett, 2006). Despite their effectiveness (Corbett 2001), these tutors are expensive 

to build both in time and human resources (Aleven, McLaren, Sewall, & Koedinger, 2006). 

Studies have shown that the development cost for one hour of teaching with a MTT is 200-300 

hours (Koedinger, Anderson, Hadley, & Mark, 1997; Murray, 2003).This is due to the well-known 

knowledge acquisition bottleneck (Hoffman 1987), comprising the extraction of knowledge from 

domain experts, the representation of this knowledge and its implementation in effective 

knowledge-based systems (KBS). 

Knowledge acquisition and, its counterpart, knowledge reuse have been proven to be the key 

problems for the development of expertise models, the models that represent and produce the 

problem-solving knowledge in knowledge-based systems. The main consequences are: 

 

 High development demands in human resources, time and money. 

 Demand for knowledge engineers possessing significant expertise. 

 Shallow, incomplete or even incorrect expertise models. 

 Difficulties in modifying and/or expanding the expertise models. 
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 Inability to reuse developed expertise models in similar or new knowledge-based systems 

(an effect described as “re-inventing the wheel”). 

 

In the case of MTTs, the knowledge acquisition bottleneck gets even more serious as these 

systems must contain two expertise models:  

 

1. The domain expertise model or problem solver, which represents the problem-solving 

knowledge of the tutored domain. This model is used to produce the valid solution steps of 

the tutored problem and allow the tutor to provide guidance and feedback to the student.  

2. The pedagogical or tutoring model, which represents the teaching knowledge of the 

system such as how to present the problem, what problem-solving tools to provide to the 

students for entering their solution steps, when and how to give help, what kind of 

help/guidance to give, etc. 
 

In turn, these models affect directly the design of the user interface model, which orchestrates 

the interactions between the aforementioned two models to produce the desired tutoring behaviour. 

In addition, some MTTs require the development of another model, the student model, which 

represents students’ mastery of the tutored domain. This model is used by the system to provide 

student-adapted tutoring either within problems (micro-adaptation) or between problems (macro-

adaptation). 

The most difficult model to build is the domain expertise model. At the same time, it is the 

most critical one since it defines:  

 

1. The tutor’s breadth, that is, how many domain skills it can teach.  

2. The tutor’s depth, that is, how complex skills, in terms of the sub-skills contained, it can 

teach.  

3. The tutor’s granularity, that is, how fine-grained are the solution steps that the tutor can 

produce and guide.  

4. The tutor’s scalability, that is, the ability to reuse the tutor’s domain expertise model for 

extending its breadth and depth.  

 

We were confronted with the knowledge acquisition bottleneck when we decided to develop a 

model-tracing tutor to teach algebraic operations. In the Greek educational system, algebraic 

expressions and their operations are taught in the 3
rd

 grade of Junior High School (ages 14-15). 

The curriculum covers the following mathematical operations: monomial multiplication, division 

and power; monomial-polynomial and polynomial-polynomial multiplication; parentheses 

elimination; collect like terms; identities (square of sum and difference, product of sum-difference, 

cube of sum and difference); factoring (common factor, identities, trinomial); combination of 

factoring methods; and operations of rational expressions.  

Furthermore, we wanted that the domain expertise model of our tutor would be extensible so 

that it could cover new math sub-domains like second degree and rational equations solving. The 

solution of these kinds of equations usually demands the transformation of the original equations 

using the algebraic operations listed above. In our search for an authoring framework and tools 

that could support this endeavour, we realized that despite the efforts, advancements and successes 

in the currently developed authoring frameworks and the corresponding tutors, these frameworks 

have worked around the knowledge acquisition problem rather than confronting it directly. As a 

consequence, most of the developed tutors suffer from limited depth and breadth, whereas those 

having broader and deeper domain expertise models suffer from scalability issues (see Section 2). 

This was our motivation to deal directly with the knowledge acquisition problem in order to 

produce tutors that cover broader and more complex domains in a scalable way. 

The rest of the article is structured as follows: First we present the background of our work 

consisting of an overview of the state-of-the-art in authoring (knowledge engineering) frameworks 

for Intelligent Tutoring Systems, the tutors produced and how they suffer from the knowledge 

acquisition bottleneck, coupled with a description of how the MATHESIS meta-knowledge 

engineering framework provides the means to deal with this problem by using the results of 

research in the ontological engineering field. Then, we present the prototypical MATHESIS 



Algebra Tutor. Next, we present an overview of the MATHESIS meta-knowledge engineering 

framework followed by its key characteristic, the representation of procedural knowledge 

engineering expertise within the MATHESIS ontology as an executable knowledge engineering 

model. Then, we describe how expert and non-expert knowledge engineers (domain experts) use 

the meta-knowledge engineering and knowledge engineering tools to build the tutor’s ontological 

representation. Finally, we discuss the results and identify potential directions of further work. 

2. Background  

In this Section we present an overview of the state-of-the-art in authoring (knowledge 

engineering) frameworks for Intelligent Tutoring Systems and the tutors produced, focusing on the 

knowledge acquisition bottleneck issue. Then we show how the MATHESIS meta-knowledge 

engineering framework provides the means to deal with this problem. 

2.1. Related work 

The most successful and widely used math model-tracing tutors are Cognitive Tutors 

developed by Carnegie Learning
1
, based on more than twenty years of cognitive science research 

at CMU (Koedinger & Corbett, 2006). Cognitive Tutors are now an integral part of complete 

curricula used in hundreds of middle and high schools throughout the United States. Cognitive 

Tutors have to adapt to very strict guidelines and educational goals of the US educational system. 

Thus, they follow the textbook by teaching specific exercises that train the students in specific, 

simple domain tasks that don’t contain other sub-tasks. Each problem has its own simple domain 

model and interface. Therefore, there is actually a set of independent tutors with narrow and 

shallow domain models, with different interfaces and not one tutor with a broad and deep domain 

model and a common interface. Concerning their scalability, for each problem the set of 

anticipated steps is precomputed by solving the problem in all acceptable ways by running a rule-

based problem-solver (Van Lehn, 2006). Therefore, only the knowledge engineers can add new 

problems and for each one they must pre-program its solution steps. In contrast, the MATHESIS 

Algebra Tutor has a domain (math) expertise module that parses and solves each exercise 

producing the correct solution steps in real time (see Section 3). Carnegie Learning uses a 

proprietary knowledge engineering tool, the Cognitive Tutor SDK (Blessing, Gilbert, Ourada & 

Ritter, 2009), which supports the development of domain models based on the ACT Theory of 

cognition (Anderson, 1993). Problem solving states are represented by a hierarchy of goalnode 

instances with their properties and values, while problem solving steps are represented by a 

hierarchy of predicates that operate on the goalnodes. No information is given on how broad and 

deep these domain models can be or if they can be reused between the various tutors developed. 

The MATHESIS framework provides free, open authoring tools (Protégé) and representational 

schemes (OWL, OWL-S). 

A publicly available set of authoring (knowledge engineering) tools for Cognitive Tutors are 

the Cognitive Tutors Authoring Tools (CTAT
2
) developed at the Human-Computer Interaction 

Institute of Carnegie Mellon University (Aleven, McLaren, Sewall, & Koedinger, 2006). After 8 

years of use, CTAT is the most mature and widely used authoring tool. It supports two types of 

tutors, cognitive tutors, which were described above, and example-tracing tutors (Aleven, 

McLaren, Sewall, & Koedinger, 2009). While cognitive tutors have a cognitive model, 

implemented as a set of production rules in Jess
3
, example-tracing tutors have a “generalized 

example” of the solution of a specific problem, implemented as a “behavior graph”, an acyclic 

graph where nodes represent problem-solving states and links represent problem-solving steps. 

Example-tracing tutors are authored using a programming-by-demonstration technique by creating 

initially a tutor interface for the targeted problem type through drag-and-drop techniques, then 

demonstrating through this interface the problem’s solution and finally editing, annotating and 
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generalizing the resulting behavior graph. In the case of cognitive tutors, the last step demands the 

development of the cognitive model implemented as production rules in Jess by AI programmers. 

ASTUS
4
 is a framework for domain independent model-tracing tutors development. It is 

designed to provide a knowledge representation language for the development of the domain 

model richer than that of CTAT (Paquette, Lebeau, & Mayers, 2010). The purpose is to model 

domains from a pedagogical perspective rather than a cognitive one, allowing experimentation 

with varied pedagogical strategies. The framework is relatively new and the knowledge 

engineering language is not yet fully developed, with only a few tutors implemented and no 

knowledge engineering tools developed. The MATHESIS framework provides both general, 

domain-independent knowledge engineering tools and a knowledge engineering language as well 

as special authoring tools for model-tracing tutors. 

ASPIRE
5
 is a knowledge engineering framework for the development of constrained-based 

tutors (Mitrovic, Martin, Suraweera, Zakharov, Milik, & Hooland, 2009). These tutors do not use a 

domain model to trace the student’s solution in a step-by-step basis, but they are equipped with a 

set of constraints that describe the forms of correct solution(s) for the tutored problem. In a 

comparative study between model-tracing and constraint-based tutors (Mitrovich, Koedinger, & 

Martin, 2003), the authors conclude that “Model-tracing is an excellent choice for domains where 

appropriate problem solving strategies are well-defined, and where comprehensive feedback on 

them is desirable. On the other hand, CBM offers a workable alternative when such strategies are 

not available or appropriate, or there is too little time or resources to build a model-tracing 

knowledge base”. Therefore, in addition to the breadth and depth issue, constraint-based tutors 

cannot provide the granularity necessary for, e.g., an algebra tutor. 

Whenever there is need for a broad and/or deep domain model, authors (knowledge engineers) 

usually start from scratch and fall back to customized solutions. Two such examples are the 

Andes
6
 physics tutor (VanLehn, Lynch, Schulze, Shapiro, Shelby, Taylor, Treacy, Weinstein, & 

Wintersgill, 2005) and the Visual Classification Tutoring Framework (VCT) (Crowley & 

Medvedeva, 2006). 

Andes contains 356 physics problems (mechanics, electricity and magnetism) solved by a 

knowledge base of 550 physics rules. These rules comprise “major principles”, like Newton’s 

second law (F = m∙a), as well as “minor principles”, like mathematical and common sense 

justifiers. The creation and maintenance of such a broad, deep and granular domain model raises 

drastically the demands in expertise and time resources (VanLehn et al., 2005). As far as it 

concerns the development time, Andes itself took five years to be built, while its development was 

based on the Cascade (VanLehn, 1999) and Olae (VanLehn, Johnes, & Chi, 1992) projects. 

Finally, there were significant scalability problems, since in order to add a new rule to the domain 

model knowledge engineers should re-inspect the whole model. (VanLehn et al., 2005)  

The same findings hold for the Visual Classification Tutoring (VCT) framework, which 

generally supports the development of tutors for visual classification, but specialises in medical 

domains like radiology, haematology and pathology. The framework makes the best provision for 

accommodating broad, deep, granular and scalable domain models by using ontologies to 

represent separately generic models for the domain model, the task model and the pedagogical 

model. This generic framework was used to develop SlideTutor
7
, a model-tracing tutor for a sub-

domain of inflammatory diseases of skin, covering 33 diseases with 50 different diagnostic 

features. Once again, the expertise and time costs are high: an expert pathologist in cooperation 

with a knowledge engineer must annotate each diagnostic case with the contained disease and its 

diagnostic features. Based on this information, the task model produces dynamic solution graphs 

that guide the student in his/her diagnosis. 

From the description of these two systems, Andes and VCT, it becomes clear that the 

development of model-tracing tutors with broad and deep domain expertise models without the use 

of authoring tools raises significantly the threshold both in human expertise and time for their 

maintenance and further development. 
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The use of ontologies and semantic web services in the field of ITSs is relatively new. 

Ontological engineering is used to represent learning content, organize learning repositories, 

enable sharable learning objects and learner models and facilitate the reuse of content and tools 

(Dicheva, Mizoguchi, & Greer, 2009). Examples of intelligent tutoring systems that use ontologies 

are Activemath (Melis, Andrès, Büdenbender, Frischauf, Goguadze, Libbrecht et al. 2001), which 

uses ontological representation of mathematical concepts, learning goals and acquired knowledge, 

and SlideTutor
7
. However, these are intelligent tutoring systems and not knowledge engineering 

systems. 

An ontology-based knowledge engineering system for constraint-based tutors is ASPIRE 

(Suraweera et al., 2009). It uses ontologies to define the concepts of the domain and then, based on 

these definitions, it provides the constraints for possible solutions used by the authored constraint-

based tutors.  

Another related line of research has to do with ontology authoring systems that support 

Controlled Natural English (CNL), like ROO (Denaux, Dolbear, Hart, Dimitrova, & Cohn, 2011) 

and AceView (Kaljurand, 2008). The purpose of these systems is to involve domain experts in the 

development of ontologies using CNL to describe their conceptual knowledge.  Although ROO 

aims at lowering the expertise threshold for domain experts and improves knowledge reuse, there 

are two main differences with the MATHESIS framework: a) ROO aims at the ontological 

representation of the static part of the domain language, namely the concepts, their properties and 

their relationships, while MATHESIS covers both static and procedural domain knowledge and b) 

In ROO, domain experts are involved in the initial phase of the ontology development cycle while 

knowledge engineers follow to validate and amend the developed ontology; in MATHESIS, 

knowledge engineers build executable knowledge engineering models using a specialised 

language, ONTOMATH  (see Section 4), and these models guide domain experts in building a 

complete knowledge based system (ITS). 

The most relevant work to the MATHESIS framework is the OMNIBUS/SMARTIES project 

(Mizoguchi, Hayasi, & Bourdeau, 2009). The OMNIBUS ontology is a heavy-weight ontology of 

learning, instructional and instructional design theories. Based on the OMNIBUS ontology, 

SMARTIES (SMART Instructional Engineering System) is a theory-aware system that provides a 

modelling environment and guidelines for developing learning/instructional scenarios. While the 

OMNIBUS/SMARTIES system provides support mainly for the design phase of ITS building, the 

MATHESIS framework aims at the analysis and development phases. It provides a semantic 

description of both domain and knowledge engineering expertise of any kind of tutor in the form 

of composite processes and the way to combine them as building blocks of intelligent tutoring 

systems. Thus, it provides the ground for achieving reusability, shareability and interoperability. 

Although ASPIRE and OMNIBUS/SMARTIES are ontology-based knowledge engineering 

systems, they differ from the MATHESIS framework which constitutes a meta-knowledge 

engineering system. These systems provide specific knowledge engineering programs that use a 

static ontological representation of tutoring and knowledge engineering expertise to build tutors of 

a specific kind. The MATHESIS framework provides meta-knowledge engineering tools and a 

knowledge engineering language for expert knowledge engineers to write knowledge engineering 

programs in the form of executable OWL-S knowledge engineering processes. These knowledge 

engineering programs can then be executed by the knowledge engineering tools to guide less 

expert knowledge engineers (e.g., domain experts) in generating the ontological representation of 

any kind of knowledge-based system (tutor). This ontological representation can then be translated 

to program code. 

Our approach combines the research in the field of authoring tools for ITSs with the field of 

knowledge engineering tools for knowledge-based systems. This line of research starts with the 

first attempts to define reusable problem-solving knowledge through the introduction of the 

concepts of Generic Tasks (Chandrasekaran, 1986) and heuristic classification (Clancey, 1985). It 

continues with the concepts of task ontologies (Mizoguchi, Vanwelkenhuesen, & Ikeda, 1995), the 

development of knowledge modelling frameworks like the MULTIS project (Mizoguchi, 

Vanwelkenhuesen, & Ikeda, 1995), the Protégé project (Puerta & Musen, 1992), the KADS 

(Wielinga, Schreiber, & Breuker, 1992) and CommonKADS (Schreiber, et al., 1999) projects. The 
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latter introduced the concept of Problem Solving Methods (PSMs). With the emergence of the 

Web, the necessity for representing and deploying PSMs in a shareable and reusable way led to 

their semantic (ontological) representation as Web Services. The ultimate goal is the development 

of knowledge-based systems from reusable knowledge components found in the web, a task 

known as automated web service composition. Various frameworks with web services description 

languages have been developed, OWL-S being one of them. Although it is not our immediate 

intention to view ITS knowledge engineering as a web service composition task, we set the 

foundations, focusing on the shareability and reusability of knowledge engineering and tutoring 

knowledge provided by OWL-S. 

 

2.2. Ontological Engineering and the Knowledge Gap Problem 

In an extensive survey of authoring tools, Murray (2003a) concluded that they suffered from a 

number of problems such as isolation, fragmentation and lack of communication, interoperability 

and re-usability of the tutors they build. The same problems had been identified three years earlier 

in (Mizoguchi & Bourdeau, 2000). These problems are not specific to the domain of ITS 

authoring, as they penetrate the whole area of knowledge-based systems development (Lenat & 

Guha, 1990; Lenat, 1995). A highly promising solution to all of them is ontological engineering, 

that is, the development of ontologies that represent declaratively the expertise that lies inside any 

intelligent system (Mizoguchi, 2004). The main advantages of the use of ontologies are that: 

 

1. they impose a systematic and structured development of knowledge, just like developing a 

mathematical theory with definitions, properties, axioms and theories; and  

2. the developed knowledge being in a declarative form is open for inspection and therefore 

mostly reusable (Gómez-Pérez, Fernández-López, Corcho, 2004).  

 

The main goal of the MATHESIS project, presented in this article, is to develop knowledge 

engineering tools for model-tracing tutors in mathematics. Based on the success of the ontological 

engineering approach in the domain of expert systems (Aitken & Sklavakis, 1999; Lenat, 1995; 

Sklavakis, 1998), as well as in the domain of intelligent tutoring systems ( Mizoguchi, Hayashi, & 

Bourdeau, 2009), we set two research goals:  

 

1. the complete ontological representation of a model-tracing tutor’s modules, that is, the 

tutoring model, the domain expertise model, the student model, the user interface, as well 

as of the knowledge engineering expertise that was used to build these models; and  

2. the extensive use of standardized languages and publicly available modular tools.  

 

For these reasons, we adopted a bottom-up approach: Initially, an Algebra Tutor was 

developed to be used as a prototype target tutor (Sklavakis & Refanidis, 2008; Sklavakis & 

Refanidis, 2013). This tutor has a domain model of considerable breadth, depth and granularity, 

easily scalable. Then, based on the knowledge used to develop the Algebra Tutor, an initial version 

of the MATHESIS ontology has been developed using the Ontology Web Language - OWL
8
 

(Sklavakis, & Refanidis, 2010). As this first version of the ontology was developed in a bottom-up 

direction, it emphasized on the representation of the tutor’s models, namely the interface, tutoring 

and domain expertise models. The ontology also contained a representation of the knowledge 

engineering expertise at a rather conceptual level. At the final stage of the project, the generic 

meta-knowledge engineering tools were developed. These tools include: 

 

1. An executable knowledge engineering language, ONTOMATH, based on the process model 

of OWL-S
9
;  
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2. meta-knowledge engineering tools for the development of ONTOMATH executable 

knowledge engineering expertise models, that is, an ontological representation of the 

declarative and procedural knowledge engineering expertise; and  

3. an interpreter for executing the ONTOMATH knowledge engineering models.  

 

Using these tools, we have built a knowledge engineering model that, when executed, builds 

the ontological representation of a model-tracing monomial multiplication tutor identical to the 

one contained in the original Algebra Tutor. In parallel, we developed knowledge engineering 

tools for the development of model-tracing tutors. These tools are used to support the meta-

knowledge engineering tools in the development of the executable knowledge engineering model 

by automating some top-level knowledge engineering processes of the model-tracing tutor under 

development and providing visualisation and browsing facilities for the inspection of the tutor’s 

developed models.  

 

Fig. 1. The MATHESIS Algebra Tutor Interface: (a) The messages area,  

(b) The algebraic expression area, (c) The student answering area and  

(d) The performed operation area 

3. The MATHESIS Algebra Tutor 

The MATHESIS model-tracing Algebra Tutor
10

 (Sklavakis & Refanidis, 2013) was developed 

as a prototype target tutor for the MATHESIS project, having knowledge reuse as its primary 

design guidelines. Furthermore, the architecture of the system was based in open, standardized and 

modular representations. The fulfilment of these requirements led us to implement the tutor using 

HTML for the user interface and JavaScript for the domain expertise and tutoring models. The 

user interface has four main parts: the messages area, the algebraic expression area, the student’s 

answering area and the performed operation area (Figure 1). The primary interface element is 

Design Science’s WebEq Input Control applet
11

, an editor for displaying and editing mathematical 

expressions. There are three such input controls: the algebraic expression, the answering space and 

the performed operation input controls. WebEq Input control is scriptable through JavaScript and 

uses MathML
12

 to represent algebraic expressions. So, during the problem solving process, the 

problem solving state as well as the student solution steps are represented via the open MathML 
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standard and, therefore, they are interoperable, that is, inspectable, recordable and scriptable 

(Murray 2003).  

The development of the domain expertise model was based on deep cognitive task analysis 

(Anderson, Corbett, Koedinger, & Pelletier 1995). The top-level math skills that the tutor covers 

are monomial multiplication, division and power; monomial-polynomial and polynomial-

polynomial multiplication; parentheses elimination; collect like terms; identities (square of sum 

and difference, product of sum-difference, cube of sum and difference); and factoring (common 

factor, identities, trinomial). Each one of these 13 top-level math skills is further analysed in more 

detailed sub-skills leading to a fine grained domain model of 104 primitive math skills. As an 

example we consider the multiply-monomials skill. This is decomposed in two sub-skills, multiply-

coefficients and multiply-mainParts. The multiply-mainParts is further decomposed in primitive 

math skills like finding common variables, adding their exponents, finding non common variables 

and copying their exponents. This decomposition is implemented through JavaScript functions that 

correspond to the production rules, and JavaScript data structures (simple variables, arrays, custom 

objects) that correspond to the facts of a rule-based system. There are also relevant functions for 

common error checking like omitting variables, or not adding the exponents of common variables.  

Based on this broad, deep and granular domain model, the tutor’s tutoring model uses deep 

model tracing with intelligent task recognition. The tutor uses intelligent parsing of the MathML 

representation of the algebraic expression and records which tasks (algebraic operations) are 

present, their order and their operands. Then, it asks from the student to select a part of the 

expression and suggest the operation that must be performed. If the student is wrong, the tutor 

provides feedback about the correct operation. Otherwise, the tutor guides the student in 

performing the operation step-by-step. In each step, the tutor checks the student’s answers and 

compares them with its domain model to provide feedback (model tracing). If a task contains 

subtasks, e.g. a polynomial multiplication contains monomial multiplications, the tutor guides the 

student to perform these subtasks in the same step-by-step manner (deep model tracing).  

It is exactly these features, broad and deep domain model, intelligent task recognition and deep 

model tracing, that deal directly with the scaling-up problem: the MATHESIS tutor can handle any 

algebraic expression containing any combination of the math tasks described above. Thus, the 

MATHESIS tutor can guide a student in expanding expressions like (    )   (    )(   
 )  (    )  or factor expressions like  (   )   (   ) . 

4. Overview of the MATHESIS meta-knowledge engineering framework 

The MATHESIS framework is mainly a meta-knowledge engineering framework. It is well 

known that knowledge engineering (KE) is knowledge of how to extract problem-solving 

knowledge from domain experts, represent this knowledge in a suitable format and implement a 

system that uses this knowledge to solve problems like a human expert (Aitken & Sklavakis, 1999; 

Lenat, 1995; Sklavakis, 1998). 

In the case of KE (authoring) systems for ITSs, a meta-KE framework should enable (meta-) 

knowledge engineers to extract related knowledge from expert ITS knowledge engineers (authors), 

that is, cognitive scientists and programmers (AI or general purpose); represent this knowledge in 

a suitable format; and implement a system that uses this knowledge to guide “knowledge 

engineers” of lower levels of expertise (domain experts) to build knowledge-based (ITS) systems. 

To achieve these three objectives, the MATHESIS meta-KE framework adds a semantic level on 

top of the knowledge level of each KE (authoring) framework (Figure 2). Its purpose is to 

represent declaratively (ontologically) the KE expertise used to build knowledge-based systems 

(ITS), now lying partially unexpressed into the minds of KE experts and partially expressed into 

the KE tools, as well as the developed domain problem-solving (tutoring) knowledge hard-wired 

into the knowledge-based systems (ITSs) themselves.  
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Fig. 2. The MATHESIS Meta-Knowledge Engineering Framework 
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The key point of the proposed framework is the ontological declarative representation of 

these two kinds of knowledge. At the same time, and this was the most challenging problem, these 

declarative representations should also be executable. More specifically, the deployment of the 

framework is done in the following stages (Figure 2, bottom to top): 

 

1. A knowledge engineer specialized in the MATHESIS framework (meta-knowledge 

engineer), extracts the expertise from the domain KE experts (ITS authors), cognitive 

scientists and AI programmers in the case of ITSs. The KE expertise must cover all stages 

of knowledge-based system (ITS) development, that is, analysis, design and 

implementation (see Section 6). This constitutes a crucial difference between the 

framework-specific KE tools and the objectives of the MATHESIS framework: the former 

support parts of the KBS (ITS) development stages, usually leaving out the most difficult 

ones like the domain analysis stage, while the latter allows meta-knowledge engineers to 

encode KE expertise of any stage. It must be noted that this phase requires the 

development of knowledge about knowledge engineering (meta-knowledge). The 

MATHESIS framework does not provide any specific methodology for this kind of meta-

knowledge engineering. In principle, any of the existing KE methodologies could be used 

such as the KADS and CommonKADS ones (Kingston, 1995).  

2. Using the meta-KE tools (Figure 3b), the meta-knowledge engineer creates an executable 

ontological model of the extracted KE expertise, the knowledge engineering expertise 

model. This model contains KE processes described in ONTOMATH, a special purpose 

language developed within the framework (Section 5.2). ONTOMATH defines two kinds of 

KE processes: (a) composite KE processes, which correspond to the functions/procedures 

of a programming language and are represented using the process model of OWL-S, and 

(b) atomic KE processes, which correspond to the statements of a programming language.  

3. When the KE processes are executed by a non-expert knowledge engineer (e.g., domain 

expert), the ONTOMATH interpreter executes them by calling corresponding Java methods 

which in turn use the Protégé API to guide the domain expert in building the ontological 

representation of the KBS models – conceptual (Section 6.1), problem-solving (Section 

6.2), tutoring (Section 6.3), in the case of ITS - into the MATHESIS ontology (Figure 3c). 

It also builds the models of the KBS program code (Section 6.4) and interface (Section 

6.5). Therefore, the KE processes are the semantic representation of the domain-specific 

knowledge engineering tools. The ontological representation of the KBS’s (ITS’s) various 

models (cognitive, teaching, interface) contain both declarative and procedural domain 

knowledge. An example of declarative domain knowledge would be the interface structure 

(interface model) or the problem-solving concepts and stages of the domain problem-

solving model. An example of procedural knowledge would be the model-tracing 

algorithm (tutoring model) or the problem-solving steps of the domain model. In the 

MATHESIS framework these knowledge elements are defined by the meta-knowledge 

engineer as generic elements. Declarative domain knowledge elements are defined using 

the common OWL structures: classes, instances, properties and values. Procedural domain 

knowledge elements are defined using the process model of OWL-S, just like the 

composite KE processes described in stage 2. It is these generic knowledge elements that 

the executed KE processes act on, guiding the domain expert to create specific-ones for 

the KBS (ITS) under development. 

4.  The meta-knowledge engineer may develop KBS-specific (e.g., Model-tracing Tutor) 

tools to help himself develop the KE model and the domain experts in developing the KBS 

(ITS). These are mainly visualisation tools, although they can also provide manual 

creation and editing of KBS-specific knowledge elements based on generic ones. This last 

facility aims at accommodating more knowledge engineers that can develop parts of the 

KBS (ITS) directly, without executing the corresponding KE processes. We have 

developed a suite of such KBS-specific tools for model-tracing tutors (Figure 3a). 

5. Having created the ontological representation of the tutor, the domain expert can create its 

implementation by translating the ontological model to specific programming languages. 

For example, in the case of the MATHESIS Algebra Tutor, the interface model is 

translated to HTML and the domain and teaching models to JavaScript. These translations 



are performed automatically by special translation tools. In case of other target 

programming languages, we need to develop their corresponding ontological 

representation as well as the translation tool.  

 

All of the aforementioned stages are performed using the MATHESIS tools (Figure 3).  

5. Procedural knowledge representation  

The main component of the MATHESIS framework is the Ontology. It contains three kinds of 

knowledge:  

1. The declarative knowledge of the tutor, such as the interface structure and the problem-

solving concepts and stages of the domain model,  

2. the procedural knowledge of the KBS, such as the teaching and math domain expertise 

models of a model-tracing tutor and, finally,  

3. the knowledge engineering expertise, that is, the declarative and procedural knowledge 

that is needed to develop the tutor.  

 

 

Fig. 3. The MATHESIS Tools as a tab widget in Protégé:  

(a) KBS-specific (Model-tracing Tutor) Knowledge Engineering Tools, (b) Knowledge Engineering 

Processes (Meta-Knowledge Engineering) Tools, (c) The MATHESIS Ontology Tab  

 

While the declarative knowledge is represented with the basic OWL components, the 

procedural knowledge, both domain and knowledge engineering, is represented via the process 

model of the OWL-S web services description ontology. Through OWL-S, every knowledge 

engineering or domain task is represented as a knowledge engineering or domain task process, 

composite or atomic.  

Using the OWL-S process model to represent ontologically procedural knowledge, like 

teaching, math problem-solving or KE expertise is the key advantage of the MATHESIS 

framework that gives a new perspective in the development of reusable KE expertise for 

(a) 

(b) 

(c) 



Knowledge Based Systems. In the following, we start by briefly presenting the OWL-S process 

model, before delving into the details of its application to our case. 

5.1. The OWL-S process model 

OWL-S is a web service description ontology designed to enable the following tasks: 

 

 Automated discovery of Web services that can provide a particular class of service 

capabilities, while adhering to some client-specified constraints. 

 Automated Web service invocation by a computer program or agent, given only a 

declarative description of the service. 

 Automated Web service selection, composition and interoperation to perform some 

complex task, given a high-level description of an objective. 

 

The last task is of interest for the MATHESIS framework and therefore we focus on it. To 

support this task, OWL-S provides, among other things, a language for describing service 

compositions as seen in Figure 4 (Martin et al., 2005)  

 

 
 

Fig. 4. Top level of the OWL-S process ontology (from Martin et al., 2005) 

 

Every service is viewed as a process. OWL-S defines Process as a subclass of ServiceModel. 

There are three subclasses of Process, namely the AtomicProcess, CompositeProcess and 

SimpleProcess. Atomic processes correspond to the actions a service can perform by engaging it in 

a single interaction. In the MATHESIS ontology they represent simple statements that perform 

either domain or KE elementary tasks. Composite processes correspond to tasks that require multi-

step actions. In the MATHESIS ontology they represent functions, either domain or knowledge 

engineering, that call other functions (composite processes). Finally, simple processes provide an 

abstraction mechanism to provide multiple views of the same process. Currently, they are not used 

in the MATHESIS framework. Composite processes are decomposable into other composite or 

atomic processes. Their decomposition is achieved by using control constructs such as Sequence or 

If-Then-Else. Table 1 shows the most common control constructs supported by OWL-S. 

Any composite process can be considered as a tree whose non-terminal nodes are labelled with 

control constructs. The leaves of the tree are invocations of other processes, composite or atomic. 



These invocations are indicated as instances of the Perform control construct. This special control 

construct takes as a parameter a process, either composite or atomic. In the MATHESIS framework 

a Perform with an atomic process corresponds to the execution of a statement, whereas a Perform 

with a composite process corresponds to calling a function. This tree-like representation of 

composite processes is the key characteristic of the OWL-S process model and has been used in 

the MATHESIS Ontology to represent both knowledge engineering and domain task procedural 

knowledge 

 

Table 1. Common control constructs supported by the OWL-S process model 

 
Control Construct Description 

Sequence A list of control constructs to be performed in order 

Choice 

Calls for the execution of a single construct from a given bag 

of control constructs (given by the components property). 

Any of the given constructs may be chosen for execution 

If-Then-Else 

It has properties ifCondition, then and else holding different 

aspects of the If-Then-Else construct 

 

Repeat-While & Repeat-Until 

The initiation, termination or maintenance condition is 

specified with a whileCondition or an untilCondition 

respectively. The operation of the constructs follows the 

familiar programming language conventions. 

 

5.2. Procedural knowledge engineering expertise representation 

The MATHESIS framework allows expert meta-Knowledge Engineers to capture the whole KE 

effort by providing an executable KE model building language, namely OntoMath. In OntoMath, 

each KE task is represented as a KE process, either composite or atomic (Figure 5).  

Composite KE processes correspond to functions of a programming language that can be 

called, get and return values. This is achieved by two means: a) Εach composite process has a 

property, hasFormalParameters, which keeps a list of the process formal parameters, and b) each 

Perform has a property, hasRealParameters, which keeps the list of the parameters at call time. 

During execution of a Perform construct by the meta-KE tools (Figure 3b), the interpreter matches 

the values of the real parameters to those of formal parameters. The values of the two properties, 

hasFormalParameters and hasRealParameters, are defined by the meta-knowledge engineer in the 

ontology with the help of the meta-KE tools (Figure 3b). The recursive analysis of composite KE 

processes ends to atomic KE processes, which are instances of the OntoMathStatement, a subclass 

of AtomicProcess. Each OntoMathStatement instance corresponds to an operation that must be 

performed to the MATHESIS Ontology (see Table A1, Appendix). 

ONTOMATH KE processes, composite and atomic, are classified in classes and subclasses 

according to the kind of ΚΕ expertise they represent and the part of the ΚΕ endeavour they 

implement. For example, in Figure 5, there are ONTOMATH processes (identify-input-knowledge-

components, define-interface-elements-for-input-knowledge-components, define-variables-for-interface-

elements, define-code-to-initialise-interface-elements ) for implementing the task of defining how the 

math problem will be presented to the student, which is a tutoring (domain) task (class Authoring-

Task-Present-Domain-Task). Other ONTOMATH processes, like get-HTML-Element-Property, serve the 

task of HTML programming (class Programming-Task-HTML). Others, like get-interface-element-

reference, serve the task of JavaScript programming (class Programming-Task-JavaScript). As a 

consequence, the ONTOMATH language is not only capturing ΚΕ expertise but, at the same time, is 

classifying this expertise. This way it enables reasoning on that knowledge, that is, discovery, 

retrieval, reuse and modification, by knowledge engineers of different expertise levels. 

ONTOMATH statements are grounded to actual Java program code. When the MATHESIS 

meta-ΚΕ tools interpret a Perform construct that calls an ONTOMATH statement, they execute its 



corresponding Java code, which performs the statement’s operations on the ontology that 

represents the KBS (tutor) under development. It must be noted that the set of ONTOMATH 

statements is not fixed. Expert meta-knowledge engineers can define their own atomic ΚΕ 

(ONTOMATH) statements by: a) using the meta-ΚΕ tools to define in the MATHESIS Οntology the 

values of property hasFormalParameters for the new statement and b) write the Java code that, 

during execution, gets the values of property hasRealParameters of the calling Perform construct and 

performs the statement’s intended operation(s). The interpretation and execution of the ONTOMATH 

code by the MATHESIS meta-ΚΕ tools leads to the creation of the KBS’s (tutor’s) ontological 

representation and, consequently, to the implementation of the KBS (tutor).Therefore, the 

ONTOMATH ΚΕ processes form an ontological representation of a meta-program that handles the 

ontological representation of the tutor as its data. 

. 

 
Fig. 5. Part of the ONTOMATH Knowledge Engineering Processes Ontology 

 

6. Using the MATHESIS framework 

In this Section we describe how meta-knowledge engineers create a ΚΕ expertise model using as 

an example a model-tracing tutor for monomial multiplication, as well as how domain experts can 

create the monomial multiplication tutor by executing the ΚΕ model. The meta-ΚΕ model for the 

monomial multiplication tutor was based on the expertise used to create the monomial 

multiplication part of the MATHESIS Algebra Tutor. Provision has been taken so that both the ΚΕ 

model and the tutor’s model can be extended for meta-knowledge engineering all the math skills 

tutored by the MATHESIS Algebra Tutor. 

 

 

 

 

 

 



 

Fig. 6. The top-level ontological representation of the tutor created by the domain expert 

 

6.1 Tutor Initialization
13

  

The first ΚΕ task is to define an instance of the tutor (KBS) in the Οntology. At the top level 

of the MATHESIS Οntology, every tutor is represented as an instance of class ITS-Implemented. In 

Figure 6 this instance is monomial_multiplication_tutor. The domain expert creates this instance once 

in the first ΚΕ session; in subsequent sessions the domain expert selects the tutor to edit. In both 

cases, the tutor Initialization ΚΕ tools (Figure 7a) automatically select the ITS_Implemented class in 

the MATHESIS ontology tab (Figure 3c). Class ITS-Implemented is a top class created by the meta-

knowledge engineer and can have subclasses like ITS-Implemented_Algebra, which are used for 

classifying the various tutors. This classification can use various criteria defined by the meta 

knowledge engineer, such as the tutors’ domain (math, physics, programming), thus making easier 

for domain experts to locate a specific tutor in the ontology. 

6.2. Domain Problem-Solving Expertise model  

The next KE task is to define a mathematical domain task that the tutor teaches, e.g., monomial 

multiplication. The domain expert can add in the ontology new tasks or select from existing ones. 

This KE task is also performed using the Tutor Initialization Tools (Figure 7a). The created or 

selected instance of the mathematical domain task is added to property hasDomainTask that keeps a 

list of the tasks (here execute-monomial-multiplication) that the tutor teaches (Domain-Task instances). 

Figure 6 shows the domain task instance execute-monomial-multiplication as a value of the 

hasDomainTask object property. The domain expert fleshes out the domain tasks by executing the 

KE processes developed by the meta-knowledge engineer according to each domain task. As with 

the tutor instances, domain task instances are classified in a hierarchy with Domain-Task being the 

root (Figure 6). Notice that task execute-monomial-multiplication is actually an instance of the 

Algebraic-Operation-Task subclass 
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. 
Fig. 7. The KBS domain-specific (Model-Tracing Tutor) Knowledge Engineering Tools: 

 (a) The Tutor Initialization Tools, (b) The Advanced Knowledge Engineering Tools for Tutoring 

Domain Processes , (c) Tree representation of the tutoring domain task process Model-Tracing-Algorithm 

adapted for the execute-monomial-multiplication domain task. 

For each math domain task, the domain expert must define in the ontology the domain 

concepts given for the task and the domain concepts asked for the task (knowledge components). 

For the execute-monomial-multiplication task the input knowledge components are two monomials 

and the output knowledge component is their product, a monomial too. Domain concepts’ 

instances are classified in a hierarchy with class Domain-Knowledge-Component on top (Figure 6, 

middle left). In the Ontology, the given and asked domain concepts of the domain task are kept by 

properties hasInputKnowledgeComponents and hasOutputKnowledgeComponents respectively (Figure 

6, bottom left). In Figure 6 there are three instances: monomial-1, monomial-2 and monomial-3. When 

a domain expert needs to define in a tutor the domain concept of monomial, he/she has to clone the 

generic instance monomial created by the meta-knowledge engineer. The domain expert creates 

these clones by executing the appropriate KE processes created by the meta-knowledge engineer. 

Process identify_input_knowledge_components (Figure A1, Appendix) guides the domain expert in 

creating new instances of domain concepts that form the input for a domain task. In the case of the 

monomial multiplication tutor the domain task is execute-monomial-multiplication and the input 

domain concepts that must be created are two monomials, namely monomial-1 and monomial-2. 

Programming-savvy readers can follow the ONTOMATH code using the definitions of the 

ONTOMATH statements given in Table A1 (Appendix). Therefore, the state of the ontology shown 

in Figure 6 is after the domain expert has executed the appropriate KE processes that guided him 

to create the three specific instances, monomial-1, monomial-2 and monomial-3, by cloning monomial. 

6.3.Tutoring model 

The top level representation of the tutor’s procedural knowledge in the ontology is the model-

tracing algorithm represented as a generic composite tutoring (domain task) process, named 

ModelTracingAlgorithm. This algorithm is an implementation of the two-loop structure of intelligent 

(a) 

(b) 

(c) 



tutoring systems described in (VanLehn, 2006) and was developed by the meta- knowledge 

engineer using the Advanced KE Tools for Tutoring (Domain) Processes (Figure 7b). The tools 

allow meta-knowledge engineers and advanced domain experts to create parts of the tutor’s 

procedural domain knowledge (tutoring processes) directly, without executing KE processes. This 

ability is necessary for complicated tutoring (domain task) processes, like the 

ModelTracingAlgorithm, which demand high expertise and must be provided to domain experts as 

libraries, that is, generic tutoring (domain task) processes in the MATHESIS framework 

terminology. When the domain expert selects the ModelTracingAlgorithm as the tutoring model, the 

Tutor Initialization KE Tools (Figure 7a) copy its structure and create a new instance, execute-

monomial-multiplication-Model-Tracing-Algorithm (Figure 7c), for the execute_monomial_multiplication 

domain task. Consequently, the meta-knowledge engineer can define any number of generic 

tutoring (domain task) models (e.g., model-tracing, example-tracing, constrained-based, other) 

ready to be selected by the domain expert and adapted by the execution of KE processes for the 

specific domain task. 

The tree structure of the process, adapted and displayed by the Tutor Initialization Authoring 

tools for the execute-monomial-multiplication task, is shown in Figure 7c. Each step of the algorithm 

is a top level tutorial (domain task) action. Each of these steps is also a composite tutoring (domain 

task) process that analyses the tutorial steps further down to more simple ones like giving a hint, 

showing an example, recalling math formulas or rules and so on. The domain expert develops 

these tutoring (domain) sub-tasks by executing corresponding KE processes created by the meta-

knowledge engineer. Each tutoring (domain task) process is associated with a KE process by the 

meta-knowledge engineer via its hasAuthoringProcess property. The code for tutoring process 

execute-monomial-multiplication-Presentation (Figure 7c, Perform 6) is created by the execution of the 

KE process authoring-task-present-domain-task displayed by the meta-KE tools (Figure 8). The 

domain expert is guided to perform the following KE sub-tasks: 

 

 
 
Fig. 8. The Meta-Knowledge Engineering (ONTOMATH) Tools displaying the Knowledge Engineering 

(ONTOMATH) process authoring-task-present-domain-task. This process creates the Tutoring (Domain) Process 

execute-monomial-multiplication-Presentation which presents the initial problem state of a (monomial 

multiplication) tutor. 

 

 

 



1. Identify the input domain concepts (monomials) of the domain task. 

2. Define the interface elements (WebEq_Input_Control applets) for the input domain 

concepts (monomials). 

3. Repeat the aforementioned steps for the task’s output concepts, that is, a monomial 

holding the product. 

4. Define the JavaScript variables that hold the references of the WebEq_Input_Control 

applets. 

5. Define the JavaScript code that initializes the variables referencing the 

WebEq_Input_Control applets 

 

6.4. Program code model 

In programming terms, the ModelTracingAlgorithm composite tutoring process, when translated 

to code, constitutes the main function that controls the whole tutoring process by calling other 

functions. This recursive analysis of the tutoring steps ends when a composite tutoring process 

contains only atomic processes corresponding to simple statements. 

 

 

Fig. 9. Representation of the math domain task multiplyMainParts as a JavaScript function  

 

For example, in the case of the execute-monomial-multiplication task, the execute-monomial-

multiplication-Execution process (Figure 7c, Perform_13) is analysed in two other composite 

processes: multiplyCoefficients and multiplyMainParts. These two processes form the tutor’s 

mathematical domain expertise model, which calculates the correct answer(s) in each step in order 

to be compared against the student’s answer. Figure 9 shows part of the structure of process 

multiplyMainParts. Once again, there are two options for the meta-knowledge engineer on how to 

guide a domain expert in creating these processes:  

 

1. The meta-knowledge engineer must develop the ΚΕ processes that, when executed, guide 

the domain expert in a step-by-step manner to implement them, or  

2. the meta-knowledge engineer creates these tutoring (domain task) processes directly, using 

the Advanced ΚΕ Tools for Tutoring (Domain) Processes (Figure 7b), and then develops 

simpler ΚΕ processes that just guide the domain expert in selecting the former from the 

MATHESIS ontology.  

 

The first option entails considerable workload for the meta-knowledge engineer but it is closer 

to the principles and objectives of the MATHESIS framework,. The second option is easier for the 



meta-knowledge engineer but hides and obscures the KE expertise that was actually used to 

develop these domain task processes. To implement the first option, each JavaScript statement is 

represented by an instance of the JavaScriptStatement class, a subclass of AtomicProcess (Figure A2, 

Appendix). Following the OWL-S representational scheme, these instances are parameters to 

Perform constructs (Figure 9). The JavaScriptStatement class has subclasses which classify the 

JavaScript statements in various classes such as DefineVariable, InitializeVariable, 

AssignValueToVariable, InvokeFunction, InvokeMethod, SetProperty. Each subclass has properties that 

represent the various parts of the corresponding JavaScript statements. For example, statement pos 

= getVariablePosition (vars1[i], vars2) (Figure 9, Perform_74) is an instance of class 

JavaScript_Assignment having three properties: hasAssignedVariable (value=pos), hasInvokedFunction 

(value= getVariablePosition) and hasArgumentsList ( value = (vars1[i], vars2) ) .  
Such a detailed model of the JavaScript language allows the KE processes to guide the domain 

expert in building the tutor’s (KBS) code by selecting the appropriate JavaScriptStatement subclass 

and the values of the related properties. For example, the assign_js_method process (Figure 10) 

creates JavaScript statements of the form variable = object.method(arguments). 

 

 
 

Fig. 10. The assign_js_method knowledge engineering process. This process creates JavaScript assignment 
statements of the form variable = object.method(arguments). 

In the same time, from the values of these properties, the ΚΕ tools create and display the 

actual JavaScript code as shown in Figure 9 (the small disks under the Perform constructs). 
Therefore, a domain expert does not need to know the JavaScript syntax, but only needs to have 

some general programming knowledge. As far as it concerns the semantic validation of the 

produced JavaScript code, the tools do not provide any special assistance to the domain expert. 

That is, the produced JavaScript code is syntactically correct, however whether this code exhibits 

the intended behaviour is a matter of correct design and analysis of the ΚΕ processes. 

6.5 Interface model 

The domain expert must also create within the MATHESIS ontology the user interface model. 

For web applications this can be a representation of the HTML Document Object Model (DOM). 

The tutor’s placeholder for the interface model is kept by property hasTopInterfaceElement that 

holds the root element of the user interface, a Document instance (Figure 6, top right). We have 

developed an ontological representation of the HTML elements with their properties and values. 

When the domain expert creates the tutor’s instance for the first time, the Tutor Initialization KE 

Tools automatically create the ontological representation of an empty HTML page. The 

representation of the HTML code and the corresponding DOM of the user interface for the 

monomial multiplication tutor are shown in Figure 11.  

Each object defined in the HTML code is represented as an instance of the corresponding 

HTMLObject subclass (Document, Html, Head, Body, Applet, Web_Eq_Input_Control). Each HTMLObject 

instance has the corresponding HTML properties, like the id property, represented by 

HTMLProperty instances. In Figure 11, HTMLObject instances Web_Eq_Input_Control-1 and Web-Eq-



Input-Control-2 have their id HTML properties represented by HTMLProperty instances Web-Eq-Input-

Control-1-id and Web-Eq-Input-Control-2-id correspondingly, pointed by object property 

hasHTMLProperty (Figure 11, bottom). The HTML values of these properties are represented by 

their corresponding ontological properties (html-property-value = “expressionInputControl”). 

The DOM tree structure is represented via two properties, hasFirstChild and hasNextSibling. This 

representation allows for bi-directional creation of the HTML part of the user interface: 

 

1. The domain expert, either guided by the KE processes or using the Tutor Tools, creates 

within the MATHESIS ontology the representation of the DOM tree and then, by 

traversing the ontology, the translation tools generate the corresponding HTML code (top-

down), or  

2. the user interface is created using any Web-page authoring program and then the HTML 

file is parsed by Java’s XML parser creating a DOM structure, which in turn is 

transformed into its corresponding ontological representation for further editing by the KE 

tools (bottom-up).  

 

 

Fig. 11. The HTML User Interface DOM Ontological (left) and Visual (right, top) Representation 

 

For different interface implementations like Java or Flash, appropriate ontological representations 

and translation programs must be developed. 

The instances surrounded by the dotted line (Document_49, Html_51, Head_53 and Body_54) 

were created automatically by the Tutor Initialization Tools, while the rest were created by the 

execution of KE processes. Instances WebEq-Input-Control-1 and WebEq-Input-Control-2 were created 

by the domain expert. The first one is the interface element that is used to present the two 

monomials to be multiplied and represents the algebraic expression area of the MATHESIS 

Algebra Tutor (Figure 1b). The second one is used for the student answering area of the 

MATHESIS Algebra Tutor (Figure 1c). The meta-knowledge engineer associated monomial 

instances with the WebEq Input Control interface elements by setting object property has-Interface-
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Elements of the generic monomial instance to WebEQ-Input-Control. Then, the meta-knowledge 

engineer created two KE process called define-interface-elements-for-input-knowledge-components and 

define-interface-elements-for-output-knowledge-components correspondingly that guide the domain 

expert in creating the two WebEq instances and naming them “expressionInputControl” and 

“answerInputControl” correspondingly (Figure 11, bottom right). 

7. Knowledge reuse and scalability 

Building from scratch any kind of knowledge-based system, like a model-tracing tutor, 

requires a tremendous effort, even with the use of authoring tools (Murray, 2003b). The main 

reason for this problem is the knowledge acquisition bottleneck. Domain experts are not trained in 

articulating their (teaching) expertise in a more abstract way. Highly trained knowledge engineers 

are needed to perform the following knowledge engineering tasks: Develop ontologies, represent 

the curriculum, represent teaching strategies and diagnostic procedures and create student models. 

Existing authoring tools for knowledge engineering fall in either side of the breadth vs. depth 

trade-off: a) Tools that build tutors for very specific domains but with a deep domain model, or b) 

all-purpose authoring shells that build tutors for various domains but with shallow domain 

knowledge models. In addition to this trade-off, the problem of knowledge reuse - both for the 

developed tutoring (domain) knowledge as well as for the knowledge engineering (authoring) 

expertise – is severely restraining the widespread use of model-tracing tutors in particular and 

knowledge based systems in general in the real world. 

As a solution to these problems, a three tiered meta-authoring framework was proposed by 

Murray (2003b). At its base there is a generic ITS authoring tool that requires the top level of 

authoring expertise like knowledge/ontological engineering, cognitive task analysis, instructional 

design, learning theories. This system is used to develop the middle tier, that is, reusable libraries 

of domain ontologies, student modelling rules, interface templates and generic teaching strategies. 

At the top level there are fairly simple tools for trained teachers that make use of the reusable 

libraries to develop powerful tutors for real world use. It is this meta-authoring model that the 

MATHESIS framework implements: 

 

a) The base level is the ONTOMATH language and the Meta-Knowledge Engineering tools 

used by meta-knowledge engineers to represent knowledge engineering expertise as an 

ontology of executable knowledge engineering processes. These processes can guide 

domain experts in performing any kind of knowledge engineering tasks.  

b) The middle tier corresponds to the MATHESIS Ontology, consisting of reusable parts of 

the tutors’ cognitive, teaching and interface models. In the case of the monomial 

multiplication tutor development presented in section 6, these reusable parts where generic 

instances like monomial (domain concept), the ModelTracingAlgorithm (tutoring model), 

WebEq-Input-Control (HTML element) as well as reusable KE processes like the 

assign_js_method (JavaScript programming process). These generic instances are used by 

either the KE tools or the KE processes to create specific instances that represent the 

various parts of the monomial multiplication tutor.  

c) The top level comprises the domain-specific knowledge engineering (authoring) tools, 

model-tracing in our case. The key characteristic of these tools is that they facilitate 

trained teachers (domain experts) to browse, locate and (re-)use the components of the 

middle tier. In the case of the MATHESIS model-tracing tutor authoring tools (Figure 7), 

this facilitation depends on the depth of the knowledge engineering ONTOMATH model, as 

it is the knowledge engineering processes that guide domain experts in locating and 

reusing existing or creating new tutors’ parts. In that sense, each knowledge engineering 

process is a KE tool at a different level. This multi-level classification of knowledge 

engineering processes as knowledge engineering tools is illustrated even better by the fact 

that each one of the tools for tutor creation/selection, domain task creation/selection and 

teaching strategy model selection are shortcuts to common, top level knowledge 

engineering actions. They could be easily removed from the interface and replaced by 

knowledge engineering processes that would perform the same knowledge engineering 



actions. The same holds for middle or low level knowledge engineering processes (tools). 

The more fine-grained they become the more knowledge engineering expertise they give 

to the system and the less expertise they demand from the domain expert.  

 

We were faced with this problem of the KE model’s granularity in an evaluation of the system. 

We asked a trained teacher of mathematics and expert computer user to use our tools to re-

implement the monomial multiplication task of the MATHESIS Algebra Tutor. After 35 hours of 

training with the tools, he was capable of executing the knowledge engineering model and re-

implement the monomial multiplication tutor.  Then he tried to implement a monomial division 

tutor by executing the same model. We selected monomial division as it has minor differences 

from the multiplication task, mainly in the domain expertise model. When the author tried to 

implement tutoring process DivideMainParts that would perform the monomial division, the 

counterpart of tutoring process MultiplyMainParts (Figure 9), we realized that he had to modify the 

MultiplyMainParts process so that it would subtract the exponents of common variables (      
    ) rather than adding them (          ). In the MATHESIS framework there are two 

ways to solve this problem:  

i. The non-expert author must use the Advanced Knowledge Engineering Tools for Tutoring 

Domain Processes (Figure 7b) to change the representation of the JavaScript statement 

that adds the exponents, so as to perform a subtraction instead of an addition. However, 

this elementary change entails a considerable raise at the expertise level required by the 

author; he must identify that statement (knowledge of JavaScript and programming) and 

change directly its ontological representation (knowledge of the MATHESIS ontology).  

ii. The meta-knowledge engineer develops authoring processes that guide the domain expert 

in defining mathematical operations between mathematical objects. Then, the domain 

expert is guided by these processes to define whether the exponents (integers) of common 

variables are added (monomial multiplication), subtracted (monomial division) or even 

multiplied (monomial powers), like in (  )      . 

 

Therefore, the MATHESIS framework deepens Murray’s three tier structure of the tools to an 

arbitrary depth. Any time that the MATHESIS framework must cover the creation of tutors in a 

new domain, meta-knowledge engineers must create both the generic instances that represent 

declarative and procedural knowledge of the new domain as well as the KE processes that use 

them. Of course, parts of the new tutor(s) that are common with already developed tutors are 

readily reusable. In the case of the monomial division tutor monomial, ModelTracingAlgorithm and 

WebEq-Input-Control can be reused along with the KE processes that use them. This is possible due 

to the representation of the KE processes via the ONTOMATH language ontologically, that is in a 

declarative form, which makes them open for inspection and therefore mostly reusable (Gómez-

Pérez, Fernández-López, Corcho, 2004). In existing knowledge engineering (authoring) systems, 

adding new KE knowledge would entail modifying the authoring program and adding new tools 

with their corresponding interfaces. This modification can be done only by the creators of the 

authoring program. 

8. Discussion and further work 

The MATHESIS meta-knowledge engineering framework primary goal is to spread the load of 

knowledge engineering over various levels of reusable knowledge engineering processes and over 

various knowledge engineers that can reuse them by browsing, locating and modifying them. For 

example, the ontological representation of any programming language like HTML or JavaScript 

and the knowledge engineering processes that create these representations can be standardized by 

authorised organizations and then used by any meta-knowledge engineer. Experts from any 

domain can develop libraries of ontological representations for their KBS and the knowledge 

engineering processes that create them. They could even develop their customized meta-

knowledge engineering and domain-specific knowledge engineering tools and distribute them as 

Java applets. The implementation of the MATHESIS framework as an all-in-one package inside 

the Protégé OWL editor was done for easing the implementation of the system. The framework 



could have been implemented with its parts distributed: The MATHESIS ontology being still an 

OWL ontology and the knowledge engineering tools being Java applications. Even Protégé’s API 

used for grounding the ONTOMATH statements is a Java library. This distributed and collaborative 

knowledge engineering scheme can be supported by modern tools such as the WebProtégé 

collaborative ontology editor and knowledge acquisition tool (Tudorache, Nyulas, Noy, & Musen, 

2013). 

Of course, this multi-layered meta-knowledge engineering framework doesn’t force the 

knowledge acquisition bottleneck and the efforts of knowledge engineering to disappear. The 

ontological representation of the tutor’s (KBS) models, the structure of the knowledge engineering 

processes and the execution details that have to be taken into consideration for their development, 

suggest that there is no royal road to knowledge engineering. For the moment, the MATHESIS 

ontology contains the KE knowledge just for the development of two model tracing tutors, one for 

multiplication and one for division of monomials. Therefore, we do not claim that we have solved 

the problem of knowledge acquisition and reuse. Being in an experimental stage, we consider the 

MATHESIS framework as a  proof-of-concept system. To investigate the issues of knowledge 

reuse and scalability, we plan to develop KE models for monomial by polynomial multiplication 

and polynomial multiplication. In the long term, we would like to develop a KE model that could 

create the entire MATHESIS Algebra Tutor. To facilitate this procedure, new knowledge 

engineering tools are needed, such as parsers for transforming between HTML and MATHESIS 

DOM representation; parsers for transforming between JavaScript and MATHESIS tutoring 

processes; extension of the ONTOMATH language and elaboration of its interpreter. These tools 

constitute our current research line. 
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Appendix 

Table A1. The ONTOMATH Statements and their Operations 

Browse Statements Purpose 

setSelectedClass(className) 
Sets the Class named by className as selected in the 

Classes Panel 

getSelectedClass(className) 
Sets className to the name of the Class selected in 

the Classes Panel 

setSelectedInstance(instanceName) 
Sets the Instance named by instanceName as selected 

in the Instances Panel 

getSelectedInstance(instanceName) 
Sets instanceName to the name of the Instance 

selected in the Instances Panel 

Collection Statements Purpose 

iteratorNext (iterator, element) 
Sets element to the next element of iterator 

String Statements Purpose 

strConcat(newString,string1,string2) 

Concatenates string1 and string2 and returns the 

concatenated string to newString 

Dialog Statements Purpose 

showMessageDialog(message) Displays a Message Dialog with message 

showInputDialog(userInput, message, 

defaultValue) 

Displays an Input Dialog with message and 

defaultValue. Returns user input to userInput 

Ontology_Editing Statements Purpose 

createInstance(instanceName,className) 
Creates a new instance of class className named 

instanceName 

copySelectedInstance(newInstanceName) 

Creates a new copy of the instance that is currently 

selected in the Instances Panel with name 

newInstanceName. 

createSubclass(subclassName,superclassName) 
Creates a new subclass named subclassName of class 

superclassName 

getObjectProperty(instance,property,propertyV

alues) 

Gets the values of object property property of 

instance instance and stores them to variable 

propertyValues. 

setObjectProperty(instance,property,value) 

If object property of instance is functional (takes 

only one value), its value is set to value. Otherwise, 

value is added to the list of the property’s values. 

getDataProperty(instance,property,propertyVal

ues) 

Gets the values of data property property of 

instance instance and stores them to variable 

propertyValues. 



setDataProperty(instance,property,value) 

If data property of instance is functional (takes only 

one value), its value is set to value. Otherwise, value 

is added to the list of the property’s values. 

removePropertyValue(instance,property,value) 
Removes instance value from the value(s) of property 

property of instance instance.  

getLocalName(instance, instanceName) 
Gets the local name of instance instance and stores it 

in variable instanceName. 

setVariable(variable,value) 
Sets the value of variable variable to value. 

 

 
 

Fig. A1. The identify_input_knowledge_components knowledge engineering (ONTOMATH) process. By 

executing it a domain expert can create new instances of either an existing or a newly created monomial class 

 
Fig.A2. Part of the JavaScript_Statement ontology 

 


