
An Individualized Web-based Algebra Tutor
Based on Dynamic Deep Model Tracing

Dimitrios Sklavakis1 and Ioannis Refanidis1

1University of Macedonia, Department of Applied Informatics,
Egnatia 156, P.O. Box 1591, 540 06 Thessaloniki, Greece

{dsklavakis, yrefanid}@uom.gr

Abstract. This paper describes the motivations and goals of the MATHESIS
project which concerns the development of an intelligent authoring environ-
ment for cognitive math tutors. It also describes the first implemented compo-
nent of the project, the MATHESIS algebra tutor, a cognitive web-based tutor
for algebraic expressions’ expanding and factoring. The tutor uses cognitive
model tracing by dynamically generating the plausible steps, checking them
against student’s solution steps and intervening when errors occur. Addition-
ally, the tutor monitors the student’s mastery of knowledge from problem to
problem, i.e. the various cognitive skills. The tutor will be used as a prototype
for the development of an ontology that will contain all of the tutor’s knowl-
edge. This ontology will eventually guide the creation of the authoring tools
that will make faster and easier the creation of other cognitive tutors.

Keywords: intelligent tutoring systems, model tracing, cognitive tutors, web
based, authoring systems, ontologies.

1 Introduction

One-to-one tutoring has proven to be the most effective way of teaching. Professor B.
S. Bloom and his colleagues [1] found that the average student under tutoring was
about two standard deviations above the average of the conventional class (30 stu-
dents to one teacher). The successful implementation of the one-to-one tutoring model
by Intelligent Tutoring Systems (ITS) today poses the problem of how to develop
ITS that provide the same tutoring quality with a human tutor. Cognitive Tutors, a
special kind of model-tracing tutors developed at Carnegie Mellon University based
on the ACT-R [2] theory of cognition and learning, have shown significant success in
domains like mathematics and computer programming. However, Cognitive Tutors
are hard to author. The development of the problem solving as well as the teaching
knowledge requires considerable amounts of time and the recruitment of Ph.D. level
scientists in education, cognitive science and artificial intelligence programming.

This paper presents the MATHESIS project which aims at developing authoring
tools for Cognitive Tutors in mathematics as well as an initial product of the project,
the MATHESIS Algebra Tutor, a cognitive tutor for mathematics in the domain of
expanding and factoring basic algebraic expressions.

mailto:@uom.gr

The rest of the paper is structured as follows: Section 2 describes the motivation
and goals of the MATHESIS project. Section 3 presents the MATHESIS algebra tu-
tor. Finally, Section 4 presents related work whereas Section 5 concludes the paper
and poses future directions of research.

2 The MATHESIS Project: Motivation and Goals

The motivation for the MATHESIS project is the principled design and successful
implementation of Cognitive Tutors in U.S. secondary education schools [3]. In order
to better understand the MATHESIS project goals and components, a brief descrip-
tion of the ACT-R theory and the design principles it entails is given below.

2.1 The MATHESIS Project Motivation: Cognitive Tutors

Central to the ACT-R theory is the concept of cognitive skill defined as a set of pro-
duction rules that describe the problem-solving steps. These production rules are IF-
THEN rules which match the problem’s goal(s) and current state and produce new
sub-goals. For example, a production rule for monomial multiplication could be: IF
the goal is to multiply-monomials THEN multiply-coefficients AND multiply-
mainParts. Production rules form the procedural knowledge of a Cognitive Tutor.
They operate (match) on facts which describe the problem’s states (initial, intermedi-
ate, goal). Facts are implemented as lists of property-value pairs and form the de-
clarative knowledge of a Cognitive Tutor. For example a fact could be: (current-
operation multiply-monomials).

The declarative and procedural knowledge form the cognitive model of a Cognitive
Tutor which implements the problem-solving knowledge of the domain to be taught.
The tutoring model of a Cognitive Tutor is based on model tracing and knowledge
tracing.

The model tracing algorithm matches the student’s problem-solving steps with the
ones produced by the cognitive model. As far as the student’s solution remains on a
correct path the tutor remains silent. Otherwise it provides feedback as soon as an er-
ror occurs. The tutor can also provide help for the correct step(s) upon student re-
quest. Therefore model tracing keeps track of the cognitive skills’ acquisition inside a
problem.

The knowledge tracing algorithm keeps track of cognitive skills’ acquisition from
problem to problem. The model tracing algorithm provides a percentage of skill ac-
quisition and the knowledge tracing algorithm adjusts the proposed problems accord-
ing to that percentage. In this way, Cognitive Tutors allow for self-pacing of the stu-
dent through the curriculum.

2.2 The MATHESIS Project Goals

Despite Cognitive Tutors’ efficiency, it is currently estimated that 1 hour of tutoring
takes 200-300 hours of development [4]. The main reason for this is the knowledge

acquisition bottleneck: extracting the knowledge from the domain experts and encod-
ing it into a program. Knowledge reuse appears as a necessity to overcome the knowl-
edge acquisition bottleneck. Since expert knowledge and especially tutoring knowl-
edge is so hard to create, re-using it is of paramount importance.

One widely used and quite promising technology for knowledge reuse is ontologi-
cal engineering [5]. In the case of cognitive tutors, ontology engineering is the task
of defining the cognitive model (facts, production rules) and tutoring model (user
interface, model tracing and knowledge tracing) of the tutor and encode them in an
ontology using specially designed environments for ontology management. This is the
first research goal of the MATHESIS project. We believe that an efficient
representation of a cognitive tutor’s models in an ontology will provide a search
space for the problem of cognitive tutor’s authoring.

The second research goal is to develop the authoring tools that will help human
authors search through this ontology space and therefore make their authoring faster
and easier.

For the development and implementation of our research goals a bottom-up
approach seems more appropriate. First, we need to implement a working prototype
of a cognitive tutor. Then, the knowledge embedded in this tutor will be used to
develop an ontology. Finally, based on the ontology we will develop the authoring
tools whose purpose will be to guide the search through the ontology and help human
authors.

3 The MATHESIS Algebra Tutor

The MATHESIS Algebra Tutor is a mathematics cognitive tutor for algebraic expres-
sions’ expanding and factoring. The domain of mathematics was chosen because it
lends itself to bottom-up acquisition of cognitive skills and demands heavy reuse of
them as well. In addition, adequate teaching expertise for developing the cognitive
model of the tutor is available on behalf of one of the authors.

 Three were the main issues that defined the overall architecture: a) the tutor in-
terface should be web-based; we believe that the future of learning belongs to the
world wide web and the tutor must be there, b) the model-tracing algorithm requires
constant interaction between the cognitive model with the interface; therefore they
should lie at the same side, that is the client side and c) the tutor should be able to be
broken into pieces to produce the ontology and be reassembled back by the authoring
tools.

The achievement of these requirements led us to implement the tutor using HTML
for the interface and JavaScript for the cognitive and tutoring models. The primary in-
terface element is Design Science’s WebEq [6] Input Control applet, an editor for
displaying and editing mathematical expressions. It provides the same functionality as
Equation Editor for Microsoft Word. There are three such input controls, the algebraic
expression, answering space and rough space input controls (Figure 1).

Fig. 1. The Algebraic Expression, Answering and Rough Space Input Controls

3.1 The Tutor’s Cognitive Model

The top-level cognitive skills that the tutor teaches are the following: monomial mul-
tiplication, division and power, monomial-polynomial and polynomial-polynomial
multiplication, parentheses elimination, collect like terms, identities (square of sum
and difference, product of sum-difference, cube of sum and difference), factoring
(common factor, term grouping, identities, trinomial).

These cognitive skills are further decomposed in more simple ones. As an example
we will consider the multiply-monomials skill. This is decomposed in two others, mul-
tiply-coefficients and multiply-mainParts. The multiply-mainParts is further decom-
posed in finding common variables and adding their exponents and finding non com-
mon variables and copying their exponents. This decomposition is implemented
through JavaScript functions that correspond to the production rules and JavaScript
data structures (simple variables, arrays, custom objects) that correspond to the facts.
There are also relevant functions for common error checking like omitting variables,
or not adding the exponents of common variables.

3.2 The Tutoring Model: Deep Cognitive Model Tracing

Equipped with such a detailed cognitive model, the MATHESIS tutor is able to ex-
hibit expert human-like performance. The tutor makes all the cognitive tasks explicit
to the student through the structure of the interface. First, the tutor parses the alge-
braic expression and creates all the relevant facts (kind of operations and priorities of
them). The student must select a part of the algebraic expression and then select the
operation he/she thinks corresponds to that part. Then the tutor, based on the parsed
knowledge described above, checks the proposed operation against the selected ex-
pression. For example, the tutor checks if the student has selected only one operation
or more, if the operation selected has the right priority to be performed, if the pro-
posed operation matches with the part of the expression selected by the student. Only
then the tutor proceeds to perform the operation.

In this stage, the tutor guides step by step the student with appropriate messages.
Of course, in every step the tutor calculates the result, gets the student’s answer and
checks it for correctness. If any partial result is incorrect then the tutor displays the
appropriate messages and asks again for that result in order to proceed. In the poly-

nomial multiplication (4 3) * (5 2)x x− − , the tutor prompts the student for each one of
the four monomial multiplications that must be performed, i.e. 4 * 5 , 4 * (2)x− , 3 * 5x−
and 3 * (2)x x− − . For each one of the monomial multiplications the tutor behaves as if
it was teaching the monomial multiplications as separate exercises, performing all the
necessary cognitive tasks and checks. That’s what we call deep cognitive model trac-
ing. It must be pointed out that this deep cognitive model tracing is what makes one-
to-one tutoring so effective and it is not an easily implemented feature even for a cog-
nitive tutor. It is possible only with detailed cognitive task analysis which has knowl-
edge reuse as a primary design parameter.

3.3 The Student Model: Knowledge Tracing

Based on such a detailed cognitive model and the deep model tracing feature, the
MATHESIS algebra tutor keeps a detailed student model, that is which skills the stu-
dent has mastered and to what extent from problem to problem. For each supported
cognitive skill, e.g. monomial multiplication, the tutor keeps counters for the correct
and incorrect answers of the student. With this simple mechanism, the tutor keeps
track of the mastery level of each cognitive skill as a percentage calculated by the
formula

*100%
correct answers

mastery level
correct incorrect answers

=
+

(1)

This percentage is time-stamped, i.e. the tutor keeps the date when a percentage
changes, creating an accurate image of the mastery level change over time for every
cognitive skill. It is important to stress out that the tutor updates the student model for
all the cognitive skills that are present in a specific exercise. For example, when the
student has to perform a multiply-monomials task, he/she must perform many multi-
ply-monomials tasks. The tutor will update and time-stamp the mastery levels for this
skill too. This behaviour is what we call broad knowledge monitoring and is a direct
consequence of the deep cognitive model tracing feature of the tutor.

Although such a detailed, broad and dynamic student model gives the ability to the
tutor to be highly adaptive as to what must be taught to every individual student, for
the moment, the student model is just presented to the student and to the human tu-
tor(s) that are responsible for assessing the students’ knowledge. It is in our plans to
design and implement a module that would use the student model to automate the se-
lection of exercises to present to the student according to his/her mastery level of the
various skills and the skills covered by each exercise.

4 Related Work

Despite their performance, Cognitive Tutors are proprietary, stand-alone applications
that provide tutoring for a pre-programmed set of problems and of course they have
the same high-cost demand in time and human resources [7].

To overcome these limitations, Carnegie Mellon University researchers have been
developing the Cognitive Tutor Authoring Tools (CTAT) [8], a set of software tools
that intend to make cognitive tutors’ development easier and faster. The tools mainly
support the authoring of example-tracing tutors. In these tutors, instead of writing
production rules the author records the correct (or incorrect) answer for every step in
the solution and the tools match these answers with the student’s answers. Based on
these tutors the tools provide debugging of the production rules that the author has to
find and write by himself. In addition, the rules are stored in files from where they
must manually be loaded and executed. Therefore the authoring knowledge remains
isolated and en-coded. It is the ultimate goal of the MATHESIS project to re-code and
open that knowledge through an ontology.

5 Discussion and Further Work

The MATHESIS algebra tutor has not been evaluated in a real school environment
since it is still under development and testing. However, we got positive feedback
when it was demonstrated to a few teachers of mathematics in Greek secondary edu-
cation. Of course, being a research prototype, it needs more development and testing.
Significant tutoring issues, like the granulation of the tutoring steps and pedagogical
issues, like how to use the student model, are open.

What is important is the fact that the tutor’s overall architecture and design will al-
low us to proceed to the second step of the MATHESIS project and develop an ontol-
ogy that will contain all the knowledge now embedded to the HTML and JavaScript
code. The ontology will make this authoring knowledge open and therefore reusable.

References

1. Bloom, B.S.: The 2 Sigma Problem: The Search of Methods for Group Instruction as Effec-

tive as One-to-One Tutoring, Educational Researcher, Vol. 13, No. 6, 4--16 (1984)
2. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive Tutors: Lessons

Learned, The Journal of the Learning Sciences, 4(2), 167—207 (1995)
3. Carnegie Learning, http://www.carnegielearning.com/products.cfm
4. Murray, T.: An overview of intelligent tutoring system authoring tools: Updated Analysis of

the State of the Art, In: Murray, Ainsworth, and Blessing (eds.), Authoring Tools for Ad-
vanced Technology Learning Environments, pp 491--544, Kluwer Academic Publishers,
Netherlands (2003)

5. Aitken, S.J., Sklavakis, D., Integrating problem solving methods into CYC, In: Dean, T.
(ed.), Proceedings of the International Joint Conference on Artificial Intelligence 1999, pp
627--633, Morgan Kaufman Publishers, San Francisco (1999)

6. Design Science, http://www.dessci.com/en/products/webeq/
7. Aleven, V., McLaren, B., Sewall, J., Koedinger, K.R.: The Cognitive Tutor Authoring Tools

(CTAT): Preliminary Evaluation of Efficiency Gains, In: Intelligent Tutoring Systems 2006,
LNCS, vol. 4053, pp 61--70, Spinger, Berlin, (2006)

8. Cognitive Tutors Authoring Tools (CTAT), http://ctat.pact.cs.cmu.edu/

http://www.carnegielearning.com/products.cfm
http://www.dessci.com/en/products/webeq/
http://ctat.pact.cs.cmu.edu/

