MathFlow Named Characters
MathFlow named characters that are in the Private Use Areas (PUA) are listed on the page for that group.
Glyph
|
Unicode
|
MathML Name
|
Official Aliases
|
MathFlow Aliases
|

|
0x0026
|
amp
|
|
|

|
0x0028
|
lpar
|
|
lparen
|

|
0x0029
|
rpar
|
|
rparen
|

|
0x002A
|
ast
|
|
|

|
0x002B
|
plus
|
|
|

|
0x003A
|
colon
|
|
|

|
0x003C
|
lt
|
|
less
|

|
0x003D
|
equals
|
|
|

|
0x003E
|
gt
|
|
greater
|

|
0x005B
|
lsqb
|
lbrack
|
lbrak
|

|
0x005D
|
rsqb
|
rbrack
|
rbrak
|

|
0x005E
|
circ
|
|
hat
|

|
0x007B
|
lcub
|
lbrace,
|
{
|

|
0x007C
|
verbar
|
vert
|
LeftBracketingBar, RightBracketingBar, vrul
|

|
0x007D
|
rcub
|
rbrace
|
}
|

|
0x00A0
|
nbsp
|
NonBreakingSpace
|
Space
|

|
0x00A8
|
Dot
|
DoubleDot, die
|
ddot
|

|
0x00AC
|
not
|
|
Not, neg
|

|
0x00AF
|
macr
|
OverBar
|
OverLine, bar
|

|
0x00B1
|
plusmn
|
PlusMinus, pm
|
|

|
0x00B7
|
middot
|
CenterDot, centerdot
|
cdot
|

|
0x00D7
|
times
|
|
Times
|

|
0x00F7
|
divide
|
div
|
Divide
|

|
0x0131
|
imath (see also 1D6A4)
|
imath, inodot
|
imath
|

|
0x0237
|
jmath (see also 1D6A5)
|
|
jmath
|

|
0x025B
|
|
|
|

|
0x02D9
|
dot
|
|
|

|
0x02DC
|
tilde
|
DiacriticalTilde
|
|

|
0x0302
|
Hat
|
|
|

|
0x0332
|
UnderBar
|
|
|

|
0x0391
|
n/a
|
Agr
|
Alpha, CapitalAlpha
|

|
0x0392
|
n/a
|
Bgr
|
Beta, CapitalBeta
|

|
0x0393
|
Gamma
|
Ggr
|
CapitalGamma,
|

|
0x0394
|
Delta
|
Dgr
|
CapitalDelta,
|

|
0x0395
|
n/a
|
Egr
|
CapitalEpsilon, Epsi, Epsilon
|

|
0x0396
|
n/a
|
Zgr
|
CapitalZeta, Zeta
|

|
0x0397
|
n/a
|
EEgr
|
CapitalEta, Eta
|

|
0x0398
|
Theta
|
THgr
|
CapitalTheta
|

|
0x0399
|
n/a
|
Iota
|
CapitalIota
|

|
0x039A
|
n/a
|
Kgr
|
CapitalKappa, Kappa
|

|
0x039B
|
Lambda
|
Lgr
|
CapitalLambda
|

|
0x039C
|
n/a
|
Mgr
|
CapitalMu, Mu
|

|
0x039D
|
n/a
|
Ngr
|
CapitalNu, Nu
|

|
0x039E
|
Xi
|
Ygr
|
CapitalXi
|

|
0x039F
|
n/a
|
Ogr
|
CapitalOmicron, Omicron
|

|
0x03A0
|
Pi
|
Pgr
|
CapitalPi
|

|
0x03A1
|
n/a
|
Rgr
|
CapitalRho, Rho
|

|
0x03A3
|
Sigma
|
Sgr
|
CapitalSigma
|

|
0x03A4
|
n/a
|
Tgr
|
CapitalTau, Tau
|

|
0x03A6
|
Phi
|
Fgr
|
CapitalPhi
|

|
0x03A7
|
n/a
|
KHgr
|
CapitalChi, Chi
|

|
0x03A8
|
Psi
|
PSgr
|
CapitalPsi
|

|
0x03A9
|
Omega
|
OHgr
|
CapitalOmega
|

|
0x03B1
|
alpha
|
agr
|
|

|
0x03B2
|
beta
|
bgr
|
|

|
0x03B3
|
gamma
|
ggr
|
|

|
0x03B4
|
delta
|
dgr
|
|

|
0x03B5
|
epsiv
|
egr
|
varepsilon
|

|
0x03B6
|
zeta
|
zgr
|
|

|
0x03B7
|
eta
|
eegr
|
|

|
0x03B8
|
theta
|
thgr
|
|

|
0x03B9
|
iota
|
igr
|
|

|
0x03BA
|
kappa
|
kgr
|
|

|
0x03BB
|
lambda
|
lgr
|
|

|
0x03BC
|
mu
|
mgr
|
|

|
0x03BD
|
nu
|
ngr
|
|

|
0x03BE
|
xi
|
xgr
|
|

|
0x03BF
|
n/a
|
ogr
|
omicron
|

|
0x03C0
|
pi
|
pgr
|
|

|
0x03C1
|
rho
|
rgr
|
|

|
0x03C2
|
sigmav
|
varsigma
|
|

|
0x03C3
|
sigma
|
sgr
|
|

|
0x03C4
|
tau
|
tgr
|
|

|
0x03C5
|
upsi
|
ugr, upsilon
|
|

|
0x03C6
|
phi
|
|
fgr, phgr, straightphi
|

|
0x03C7
|
chi
|
|
khgr
|

|
0x03C8
|
psi
|
|
psgr
|

|
0x03C9
|
omega
|
|
ohgr
|

|
0x03D1
|
thetav
|
|
vartheta
|

|
0x03D2
|
Upsi
|
|
CapitalUpsilon, Ugr, Upsilon
|

|
0x03D5
|
phiv
|
|
varphi
|

|
0x03D6
|
piv
|
|
varpi
|

|
0x03DC
|
Gammad
|
|
digamma, gammad
|

|
0x03F0
|
kappav
|
|
varkappa
|

|
0x03F1
|
rhov
|
|
varrho
|

|
0x03F5
|
epsi
|
|
straightepsilon, epsilon
|

|
0x2003
|
emsp
|
|
|

|
0x2009
|
thinsp
|
|
ThinSpace, ,
|

|
0x200A
|
hairsp
|
|
VeryThinSpace
|

|
0x200B
|
ZeroWidthSpace
|
|
AlignmentMarker, InvisibleComma, MissingTerm, ic
|

|
0x2016
|
Verbar
|
|
Vert, |
|

|
0x2022
|
bull
|
|
Bullet, bbull, bullet
|

|
0x2026
|
hellip
|
|
Ellipsis, dots, ellip, ldots
|

|
0x2032
|
prime
|
|
Prime
|
|
0x205F
|
medsp
|
|
MediumSpace, :
|
|
0x2060
|
NoBreak
|
|
NoBreak
|

|
0x2061
|
ApplyFunction
|
|
af
|

|
0x2062
|
InvisibleTimes
|
|
it
|

|
0x2102
|
Copf
|
|
Bbb_C
|

|
0x210B
|
hamilt
|
|
Hscr, cal_H
|

|
0x210C
|
Hfr
|
|
frak_H
|

|
0x210D
|
quaternions
|
|
Bbb_H, Hopf
|

|
0x210F
|
plankv
|
|
hslash
|

|
0x2110
|
Iscr
|
|
cal_I
|

|
0x2111
|
image, Ifr
|
|
Im ,frak_I
|

|
0x2112
|
Lscr
|
|
cal_L
|

|
0x2113
|
ell
|
|
|

|
0x2115
|
Nopf
|
|
Bbb_N
|

|
0x2118
|
weierp
|
|
wp
|

|
0x2119
|
Popf
|
|
Bbb_P
|

|
0x211A
|
rationals
|
|
Bbb_Q, Qopf
|

|
0x211B
|
Rscr
|
|
cal_R
|

|
0x211C
|
real, Rfr
|
|
Re, frak_R
|

|
0x211D
|
reals
|
|
Bbb_R, Ropf
|

|
0x2124
|
integers
|
|
Bbb_Z, Zopf
|

|
0x2128
|
Zfr
|
|
frak_Z
|

|
0x212C
|
bernou
|
|
Bscr, cal_B
|

|
0x212D
|
Cfr
|
|
frak_C
|

|
0x2130
|
Escr
|
|
cal_E
|

|
0x2131
|
Fscr
|
|
cal_F
|

|
0x2133
|
phmmat
|
|
Mscr, cal_M
|

|
0x2135
|
aleph
|
|
|

|
0x2145
|
CapitalDifferentialD
|
|
DD
|

|
0x2146
|
DifferentialD
|
|
dd
|

|
0x2147
|
ExponentialE
|
|
ee
|

|
0x2148
|
ImaginaryI
|
|
ii
|

|
0x2190
|
larr
|
|
LeftArrow, leftarrow
|

|
0x2191
|
uarr
|
|
UpArrow, uparrow
|

|
0x2192
|
rarr
|
|
RightArrow, rightarrow, to
|

|
0x2193
|
darr
|
|
DownArrow, downarrow
|

|
0x2194
|
harr
|
|
LeftRightArrow, leftrightarrow
|

|
0x2195
|
varr
|
|
UpDownArrow, updownarrow
|

|
0x2196
|
nwarr
|
|
UpperLeftArrow, nwarrow
|

|
0x2197
|
nearr
|
|
UpperRightArrow, nearrow
|

|
0x2198
|
searr
|
|
LowerRightArrow, drarr, rarrd, searrow
|

|
0x2199
|
swarr
|
|
LowerLeftArrow, dlarr, swarrow
|

|
0x219A
|
nlarr
|
|
nleftarrow
|

|
0x219B
|
nrarr
|
|
nrightarrow
|

|
0x21A6
|
map
|
|
RightTeeArrow, mapr, mapsto
|

|
0x21A9
|
larrhk
|
|
hookleftarrow
|

|
0x21AA
|
rarrhk
|
|
hkarrow, hookrightarrow
|

|
0x21AD
|
harrw
|
|
leftrightsquigarrow
|

|
0x21AE
|
nharr
|
|
nleftrightarrow
|

|
0x21BC
|
lharu
|
|
LeftVector, leftharpoonup
|

|
0x21C0
|
rharu
|
|
RightVector, rightharpoonup
|

|
0x21C4
|
rlarr
|
|
|

|
0x21C6
|
lrarr
|
|
|

|
0x21CD
|
nlArr
|
|
nLeftarrow
|

|
0x21CE
|
nhArr
|
|
nLeftrightarrow
|

|
0x21CF
|
nrArr
|
|
nRightarrow
|

|
0x21D0
|
lArr
|
|
DoubleLeftArrow, Leftarrow
|

|
0x21D1
|
uArr
|
|
DoubleUpArrow, Uparrow
|

|
0x21D2
|
rArr
|
|
DoubleRightArrow, Rightarrow, implies
|

|
0x21D3
|
dArr
|
|
DoubleDownArrow, Downarrow
|

|
0x21D4
|
hArr
|
|
DoubleLeftRightArrow, Leftrightarrow, iff
|

|
0x21D5
|
vArr
|
|
DoubleUpDownArrow, Updownarrow
|

|
0x21DD
|
zigrarr
|
|
dzigrarr, rarrw, rightsquigarrow
|

|
0x2200
|
forall
|
|
ForAll
|

|
0x2201
|
comp
|
|
complement, complement
|

|
0x2202
|
part
|
|
PartialD, partial
|

|
0x2203
|
exist
|
|
Exists, exists
|

|
0x2204
|
nexist
|
|
NotExists, nexists
|

|
0x2205
|
empty
|
|
Empty, EmptySet, emptyset, nullset, varnothing
|

|
0x2207
|
nabla
|
|
Del
|

|
0x2208
|
isin
|
|
Element, in, isinv
|

|
0x2209
|
notin
|
|
NotElement, nonit
|

|
0x220B
|
niv
|
|
ReverseElement, SuchThat, ni
|

|
0x220C
|
notni
|
|
NotReverseElement
|

|
0x220F
|
prod
|
|
Product
|

|
0x2210
|
coprod
|
|
Coproduct
|

|
0x2211
|
sum
|
|
Sum
|

|
0x2212
|
minus
|
|
Dash, endash, ndash
|

|
0x2213
|
mnplus
|
|
MinusPlus
|

|
0x2214
|
plusdo
|
|
|

|
0x2216
|
setmn
|
|
Backslash, backslash, setminus
|

|
0x2218
|
compfn
|
|
SmallCircle, bulop, convolu
|

|
0x221A
|
radic
|
|
Sqrt, sqrt, surd
|

|
0x221D
|
prop
|
|
Proportional, propto
|

|
0x221E
|
infin
|
|
Infinity, infty
|

|
0x2220
|
ang
|
|
Angle, angle, angupr
|

|
0x2221
|
angmsd
|
|
measuredangle
|

|
0x2222
|
angsph
|
|
sphericalangle
|

|
0x2223
|
mid
|
|
VerticalBar
|

|
0x2224
|
nmid
|
|
NotVerticalBar
|

|
0x2225
|
par
|
|
DoubleVerticalBar, parallel
|

|
0x2226
|
npar
|
|
NotDoubleVerticalBar, nparallel
|

|
0x2227
|
and
|
|
And, wedge
|

|
0x2228
|
or
|
|
Or, vee
|

|
0x2229
|
cap
|
|
|

|
0x222A
|
cup
|
|
|

|
0x222B
|
int
|
|
Integral
|

|
0x222C
|
Int
|
|
iint
|

|
0x222D
|
tint
|
|
iiint
|

|
0x222E
|
conint
|
|
ContourIntegral, oint
|

|
0x2234
|
there4
|
|
Therefore, therefore
|

|
0x2235
|
becaus
|
|
because
|

|
0x223C
|
sim
|
|
Tilde
|

|
0x2240
|
wreath
|
|
VerticalTilde, wr
|

|
0x2241
|
nsim
|
|
NotTilde
|

|
0x2243
|
sime
|
|
TildeEqual, simeq
|

|
0x2244
|
nsime
|
|
NotTildeEqual, nsimeq
|

|
0x2245
|
cong
|
|
TildeFullEqual
|

|
0x2246
|
simne
|
|
|

|
0x2247
|
ncong
|
|
NotTildeFullEqual
|

|
0x2248
|
ap
|
|
TildeTilde, approx
|

|
0x2249
|
nap
|
|
NotTildeTilde, napprox
|

|
0x224D
|
asymp
|
|
CupCap
|

|
0x2257
|
cire
|
|
circeq
|

|
0x2259
|
wedgeq
|
|
|

|
0x225A
|
veeeq
|
|
|

|
0x225B
|
easter
|
|
|

|
0x225C
|
trie
|
|
triangleq
|

|
0x225F
|
equest
|
|
|

|
0x2260
|
ne
|
|
NotEqual, neq
|

|
0x2261
|
equiv
|
|
Congruent
|

|
0x2262
|
nequiv
|
|
NotCongruent
|

|
0x2264
|
le
|
|
LessEqual, leq
|

|
0x2265
|
ge
|
|
GreaterEqual, geq
|

|
0x2268
|
lnE
|
|
lnE, lneqq
|

|
0x2269
|
gnE
|
|
gnE, gneqq
|

|
0x226A
|
Lt
|
|
LessLess, ll
|

|
0x226B
|
Gt
|
|
GreaterGreater, gg
|

|
0x226D
|
NotCupCap
|
|
nasymp
|

|
0x226E
|
nlt
|
|
NotLess, nless
|

|
0x226F
|
ngt
|
|
NotGreater, ngtr
|

|
0x2270
|
nlE
|
|
NotLessSlantEqual, nleqslant, nles
|

|
0x2271
|
ngE
|
|
NotGreaterSlantEqual, ngeqslant, nges
|

|
0x227A
|
pr
|
|
prec
|

|
0x227B
|
sc
|
|
succ
|

|
0x227D
|
sccue
|
|
sce, succeq
|

|
0x2280
|
npr
|
|
nprec
|

|
0x2281
|
nsc
|
|
nsucc
|

|
0x2282
|
sub
|
|
Subset, subset
|

|
0x2283
|
sup
|
|
Superset, supset
|

|
0x2284
|
nsub
|
|
NotSubset, vnsub, nsubset, sublineh
|

|
0x2285
|
nsup
|
|
NotSuperset, vnsup, nsupset, suplineh
|

|
0x2286
|
sube
|
|
SubsetEqual, sube, subseteq, subuline
|

|
0x2287
|
supe
|
|
SupersetEqual, supe, supseteq, supuline
|

|
0x2288
|
nsubE
|
|
NotSubsetEqual, nsube, nsubseteq
|

|
0x2289
|
nsupE
|
|
NotSupersetEqual, nsupe, nsupseteq
|

|
0x228A
|
subne
|
|
subne, subsetneq
|

|
0x228B
|
supne
|
|
supne, supsetneq
|

|
0x2295
|
oplus
|
|
CirclePlus
|

|
0x2296
|
ominus
|
|
CircleMinus
|

|
0x2297
|
otimes
|
|
CircleTimes
|

|
0x2298
|
osol
|
|
oslash
|

|
0x2299
|
odot
|
|
CircleDot
|

|
0x229E
|
plusb
|
|
boxplus
|

|
0x229F
|
minusb
|
|
boxminus
|

|
0x22A0
|
timesb
|
|
boxtimes
|

|
0x22A1
|
sdotb
|
|
dotsquare
|

|
0x22A2
|
vdash
|
|
RightTee
|

|
0x22A3
|
dashv
|
|
LeftTee
|

|
0x22A4
|
top
|
|
DownTee
|

|
0x22A5
|
bottom
|
|
UpTee, bot, bot, perp, upTee
|

|
0x22A8
|
vDash
|
|
DoubleRightTee
|

|
0x22A9
|
Vdash
|
|
|

|
0x22AC
|
nvdash
|
|
|

|
0x22AD
|
nvDash
|
|
|

|
0x22AE
|
nVdash
|
|
|

|
0x22AF
|
nVDash
|
|
|

|
0x22B4
|
ltrie
|
|
LeftTriangleEqual, trianglelefteq
|

|
0x22B5
|
rtrie
|
|
RightTriangleEqual, trianglerighteq
|

|
0x22B8
|
mumap
|
|
multimap
|

|
0x22C0
|
xwedge
|
|
bigwedge
|

|
0x22C1
|
xvee
|
|
Vee, bigvee
|

|
0x22C2
|
xcap
|
|
bigcap
|

|
0x22C3
|
xcup
|
|
bigcup
|

|
0x22C9
|
ltimes
|
|
|

|
0x22CA
|
rtimes
|
|
|

|
0x22CB
|
lthree
|
|
leftthreetimes
|

|
0x22CC
|
rthree
|
|
rightfthreetimes
|

|
0x22D4
|
fork
|
|
pitchfork
|

|
0x22D6
|
ltdot
|
|
lessdot
|

|
0x22D7
|
gtdot
|
|
|

|
0x22D8
|
Ll
|
|
lll
|

|
0x22D9
|
Gg
|
|
ggg
|

|
0x22EA
|
nltri
|
|
NotLeftTriangle, ntriangleleft
|

|
0x22EB
|
nrtri
|
|
NotRightTriangle, ntriangleright
|

|
0x22EC
|
nltrie
|
|
NotLeftTriangleEqual, ntrianglelefteq
|

|
0x22ED
|
nrtrie
|
|
NotRightTriangleEqual, ntrianglerighteq
|

|
0x22EE
|
vellip
|
|
VerticalEllipsis, elipd, vdots
|

|
0x22EF
|
ctdot
|
|
CenterEllipsis, cdots, cellip
|

|
0x22F1
|
dtdot
|
|
Continuation, ddots, soldotr
|

|
0x2308
|
lceil
|
|
LeftCeiling, ceill
|

|
0x2309
|
rceil
|
|
RightCeiling, ceilr
|

|
0x230A
|
lfloor
|
|
LeftFloor, floorl
|

|
0x230B
|
rfloor
|
|
RightFloor, floorr
|

|
0x231C
|
ulcorn
|
|
ulcorner
|

|
0x231D
|
urcorn
|
|
urcorner
|

|
0x231E
|
dlcorn
|
|
llcorner
|

|
0x231F
|
drcorn
|
|
lrcorner
|

|
0x2329
|
lang
|
|
LeftAngleBracket, langle
|

|
0x232A
|
rang
|
|
RightAngleBracket, rangle
|

|
0x25A1
|
squ
|
|
Box, square
|

|
0x25AA
|
squf
|
|
FilledRectangle, blacksquare, qed, squarf
|

|
0x25B4
|
utrif
|
|
blacktriangle
|

|
0x25B5
|
utri
|
|
EmptyUpTriangle, bigtriangleup, xutri
|

|
0x25B8
|
rtrif
|
|
blacktriangleright
|

|
0x25B9
|
rtri
|
|
triangleright
|

|
0x25BE
|
dtrif
|
|
blacktriangledown
|

|
0x25BF
|
dtri
|
|
EmptyDownTriangle, bigtriangledown, xdtri
|

|
0x25C2
|
ltrif
|
|
blacktriangleleft
|

|
0x25C3
|
ltri
|
|
triangleleft
|

|
0x266D
|
flat
|
|
|

|
0x266E
|
natur
|
|
natural
|

|
0x266F
|
sharp
|
|
|

|
0x2713
|
check
|
|
Hacek, hacek
|

|
0x27F5
|
xlarr
|
|
llarrow, longleftarrow
|

|
0x27F6
|
xrarr
|
|
longrightarrow, lrarrow
|

|
0x27F7
|
xharr
|
|
|

|
0x2A00
|
bigodot
|
|
xodot
|

|
0x2A01
|
bigoplus
|
|
xoplus
|

|
0x2A02
|
bigotimes
|
|
xotimes
|

|
0x2A3F
|
amalg
|
|
|

|
0x2A87
|
lne
|
|
lne, lneq
|

|
0x2A88
|
gne
|
|
gne, gneq
|

|
0x2AAF
|
prE
|
|
pre, preceq
|

|
0x2AC5
|
subE
|
|
subE, subseteqq
|

|
0x2AC6
|
supE
|
|
supE, supseteqq
|

|
0x2ACB
|
subnE
|
|
subnE, subsetneqq
|

|
0x2ACC
|
supnE
|
|
supnE, supsetneqq
|
|