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Abstract. Geometry students, while moving from junior high-school to Lyceum,
gradually cease to deal with practical topics and have to confront with other topics of
theoretical nature. Worldwide research has shown that Lyceum students have great
difficulty in writing formal proofs in geometry, particularly when traditional teaching
methods are employed in the teaching of geometry. In this paper, we focus on the find-
ings of a research project, which is part of a wider research that aims at investigating
the ability of 15 years-old novice geometry students to write formal proofs. In particu-
lar, we use data from a random sample of schools in Athens from students attending the
first year of Lyceum. Our research findings evidence that, while attempting to write
formal geometry proofs, students who had employed a tool, called “Reasoning Control
Matrix for the Proving Process” (RECOMPP) had significantly improved their ability
in writing formal geometry proofs than those who had not employed this tool.
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Introduction

Apart from being a core subject of secondary education, geometry has also
numerous applications in everyday life, holding a central role in many other sciences,
as well as in the arts (Mammana & Villiani, 1998). Proof is probably the most
important tool used in geometry (Hanna, 2000; Martin & Harel, 1989; Leron, 1985;
Recio & Godino, 2001; Senk, 1985; Usiskin, 1982). But after all, what is a proof? In
daily life the term proof is linked to confirmation, through situations of validation
and decision, to the products arising from the followed proving practices, and to
argumentation being accepted by a community or a person. The diverse meanings
of proof are identified by the terms explanation, argumentation, and demonstration.
However, in all circumstances, a common idea exists; that of justifying or validating
a proposition by providing justifications or arguments (Godino & Recio, 1997).

According to Martin & Harel (1989), “people think of proof in their everyday
life as what persuades them”, but Euclid in his Elements makes us believe that proof
represents something more powerful for geometry; a rational, deductive reasoning
based on inalterable axioms, definitions and theorems. Proofs are described as
arguments that consist of logically strict deductions of hypotheses results (NCTM,
2000).

However, if we pose the question: “What is a proof?” to either a student
or a teacher, it is almost certain that their answers will vary significantly, partly
because their interpretation of the question will also be considerably different. In
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what follows, we focus on three factors that justify this phenomenon. Firstly, we
elaborate on the fact that the term proof means many different things for students,
therefore their interpretation of the meaning of proof may be different from that
of teachers. At the same time, the interpretation of the meaning of proof may
vary from teacher to teacher (Tall, 1989). Secondly, we concentrate on the fact
that the term proof varies from context to context, for instance, when referring to
daily life issues, empirical sciences, or professional mathematics (Recio & Godino,
2001). Thirdly, we focus on the fact that, according to the van Hiele model, those
who are engaged in the learning-teaching process usually function at different levels
of thinking (Senk, 1985, 1989). This phenomenon will be hereinafter referred to
as “van Hiele gap”. As a result, although teaching students to write proofs has
been an important goal of the geometry curricula for the secondary schools on an
international level, contemporary students, in fact, rank doing proofs in geometry
among the least important, most disliked and most difficult of school mathematics
topics. In particular, students have difficulty not only when they reproduce the
proofs of theorems taken from their textbooks, but also, when they prove simple
propositions of Euclidean Geometry (Weber, 2003). Data collected by the research
project “Understanding the Proof”, held in UK by Healy and Hoyles (1998), and
also by the research project “Cognitive Development and Achievement in Secondary
School Geometry” (CDASSG), held in USA by Usiskin (1982) and Senk (1985),
confirm that writing proofs is difficult for most students.

However, research conducted by Senk (1985) bare evidence that students, even
after having participated in an introductory teaching of proof, could neither realize
the necessity of deductive proofs, nor distinguish the various kinds of mathematical
reasoning. Furthermore, many undergraduate students don’t know what a proof
constitutes (Recio & Godino, 2001), and they are even unable to confirm the validity
of a proof (Selden & Selden, 2003).

Furthermore, when a mathematical proposition, subject to proof, has a visually
evident character, or it is given ready-made without requiring from students to
discover it themselves, or when students are already aware of its validity, then they
feel there is no need to prove it (Hadas, Hershkowitz, & Schwarz, 2000). Last but
not least, according to van Hiele theory, students begin to realize the importance of
deductive proof methods only after they have attained the fourth level of geometric
thinking (van Hiele, 1986).

Difficulties in understanding geometry and Van Hiele’s levels
of geometric thinking

Based on the work of Piaget (1928), research related to the understanding
of geometry has stressed on the methodical nature of deductive thinking and on
the difficulties students have when they try to think in that way in the context of
geometry (Freudenthal, 1973; van Hiele, 1959).

Moreover, research related to the understanding of geometric concepts by stu-
dents has evidenced that students have difficulties in the definition and recognition
of geometric shapes and in the use of deductive thinking in geometry (Pyshkalo
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1968; Burger, 1982; APU, 1982; Hart, 1981). For instance, research findings from
the UK revealed that 85% of 11-years old students recognized successfully a regular
hexagon. However, when the same 11-years old students were shown non-regular
pentagons or non-regular hexagons, then their success rate decreased dramatically,
ranging from 25% to 43% depending on the complexity of the question asked (APU,
1982).

Naturally, the problem of difficulties in the understanding of geometry is not an
unprecedented phenomenon. On the contrary, it has already been mentioned from
the ancient times. This is at least evident by the answer of Euclid to the king of
Egypt, Ptolemeus I, when the king asked Euclid to explain to him in an easier way
his Elements. According to Proclus, Euclid gave Ptolemeus the following answer:
“There is no king road for geometry” (Heath, 1921). However, we consider the di-
dactic method one follows when teaching geometry as a crucial factor towards the
progress and achievement of a student in geometry. Clements and Battista (1992)
state that one of the main reasons responsible for the difficulties students have in
geometry may well be the methods employed by the teachers when teaching geome-
try topics. Besides, Cemen (1987) underlines that difficulties in mathematics—and
in geometry as part of mathematics—appear not only due to the accumulative and
chain nature of knowledge, but also due to the way these topics are taught.

In 1969, the Dutch researchers Pierre Marie van Hiele and his wife, Dina
van Hiele-Geldof noticed the difficulties students had in geometry and postulated
a model of learning geometry that has attracted considerable interest among re-
searchers (Hoffer, 1983; Burgher & Shaughnessy, 1986). As a descriptor, the van
Hiele model posits the existence of five discrete levels of thinking, called “van Hiele
levels”, along which students progress while learning Euclidean geometry. Hoffer
(1981) named these levels: recognition, analysis, ordering, deduction, and rigor.

According to this theory, students move sequentially along these levels of think-
ing without skipping a certain level, i.e. if a student is at the third level, he/she
must first have attained the first two levels. However, not all students pass through
the five levels in the same way. Furthermore, according to Senk (1985), the van
Hiele model states that two persons reasoning at different levels may not under-
stand each other. In particular, a student who has attained only level n will not
understand the thinking of level n+1 or higher, which means that a “van Hiele gap”
exists. Moreover, in her research that refers to the relationship between van Hiele
levels and the achievement of students in writing proofs, Senk (1989) notes that
the predictive validity of the van Hiele model is supported, while the hypothesis,
that only those students who think in levels 4 can write formal geometry proofs, is
not supported. However, Senk (1989) notices that,

“ . . . a student, who starts a high school geometry course unable to
recognize common plane geometric figures, has little chance of learning
to write geometry proofs later in the year. Another one student, who
starts the year able to recognize common geometric figures, but unable to
describe properties of those figures, is likely to be able to do some simple
standard geometry proofs by the end of the school year; but such a student
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has less than one chance in three of mastering proof writing. In contrast, a
student who is able to recognize geometric figures by sight and to describe
their properties has at least a 50-50 chance of mastering proof writing by
the end of the year. The same study demonstrated that, although there is
no individual van Hiele level that ensures future success in proof writing,
Level 2 appears to be the critical level. By measuring the students’ level
of geometric thought, we ascertained, in our research, that the majority
of the students, who comprised our sample, were performing at Level 2
according to the van Hiele levels.”

Approach to proof for novice first-year Lyceum geometry students

The inefficiency to teach the notion of “proof” is almost global (Hadas et al.,
2000). As a subject, Euclidean geometry is taught under a theoretical framework,
during the first two years of Lyceum in Greece. High-school students usually count
and calculate, based on specific situations, whilst seldom make use of abstract pro-
cedures. Thus, first-year Lyceum students, who move from specific procedures to
more abstract ones, are not familiar with the role of axioms, definitions, and theo-
rems. Instead, they have to cope with the concept of proof in a purely theoretical
context. Mason’s (1997) research findings corroborate the same assumption. In
Masons research, participants were talented students of 6th and 12th grade. Fur-
thermore, the researcher mentioned that those talented students did not know how
to write an acceptable formal proof. Therefore, we believe that students first con-
tact with the concept of “proof” should be realized in an appropriate way. In other
words, we should give students some help, guiding them to complete the proving
procedure. After having taken into account that our students had no experience
in writing proofs, we decided to study only direct proofs in our research, because
it was very possible for them to get confused. In what follows, when using the
term “proof”, we refer only to a “direct proof”. It is because students make now
their first steps towards writing a geometric proof that we consider them “novices”.
Also, they are not yet familiarized with the proving procedure, and they cannot
successfully write a proof.

A proof consists of simple justifications and partial proofs. By integrating these
justifications and partial proofs into a set, we take a completed proof. For the sake
of clarity let consider the following example comprising of two propositions:

Proposition (P-1). If the line segments AB and AC are equal then the
triangle ABC is an isosceles triangle (see Fig. 1).

Proposition (P-2). The exterior base angles of an isosceles triangle ABC
are equal (see Fig. 1).

Since AB = AC, by saying, for P-1, that the triangle ABC is isosceles then we
have fully reasoned why the triangle ABC is isosceles. On the contrary, by saying
that the exterior base angles of an isosceles triangle ABC are equal, because they
are supplementary to the angles B and C, respectively, we have not fully reasoned
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Fig. 1

our claim. We must also prove why the angles B and C are equal. To discriminate
the proof of equality of the angles B and C from the complete proof of proposition
P-2, we shall call “partial proof” the proof of equality of the angles B and C. As a
result, a proof consists in justifications and partial proofs. In the following tables,
we summarize the justifications and the partial proofs of P-1 and P-2 during the
proving procedure:

Let, ABC be an isosceles triangle, where AB = AC, and M , N are the mid-
points of the sides AB, AC, respectively. We
extend the base BC of the triangle from both
sides by equal segments BD, CE and we ask
students to prove that DM = EN (see Fig. 2).

During the process of proving this proposi-
tion, we must prove that the triangles MBD
and NCE are equal. Therefore, we need to
prove that the angles ∠MBD and ∠NCE are
equal, i.e. ∠MBD = ∠NCE.

Fig. 2

In fact, this represents a partial proof. According to Criterion of Equal Tri-
angles, we must also prove that the line segments BD and CE are equal, i.e.
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BD = CE, which is part of the hypotheses of the proposition and therefore consti-
tutes a simple reasoning. Furthermore, partial proofs require simple justifications
and other partial proofs and so on. In general, proofs are analyzed into simple
justifications and partial proofs. In their turn, partial proofs are also analyzed
into simple justifications. Thereby, if we want the proving procedure to continue
smoothly, in a step-by-step mode, the above mentioned justifications demand from
the students to produce some reasoning.

Novice students do not know how to begin to write a proof. What they usually
do is only drawing a sketch of the problem. They find it quite difficult to discrim-
inate the hypotheses of the problem from the conclusion. Even if they succeed in
discriminating the hypotheses from the conclusion of the problem, they cannot sus-
pect to collect them all somewhere so as to have them constantly available for use,
when needed. In many problems students are asked to draw a line or a circle etc.
so as to facilitate the proving procedure. Students have to invent this line or circle
by themselves, because it does not exist in the sketch. Admittedly, such problems
are too difficult for novice students to solve.

In our research, we tried to make students achieve something like this. Thus,
we coined a matrix, dubbed “Reasoning Control Matrix for the Proving Process”
(RECOMPP). The advantage RECOMPP offers, when employed by novice lyceum
geometry students in their proving of a proposition is that it can help them produce
and control their reasoning in a more effective way so as to successfully write the
given proof. We should mention here that although the layout of RECOMPP is
predefined, and must be filled in a specific way, each time a different content is re-
quired to be written, that is, each time students have to produce different reasoning
to fill RECOMPP. Practically, this requires a substantial amount of reasoning by
students’ side. Therefore, we see that RECOMPP is not a compass for students.
Instead, it serves as a reasoning production tool.

During our instruction of the proof, we employed the cognitive apprenticeship
instructional model, in which we incorporated the van Hiele phases of instruction,
since Van Hiele proposes that: “ . . . the ideas that have been used here have a
place in every method of teaching” (Van Hiele, 1986; p. 177). We intentionally
used that method because the class participants were novice solvers, and cognitive
apprenticeship is an instructional design model whose goal is to make students’
thinking processes visible to both the students and the teacher (Collins, Brown,
& Holum, 1991). Moreover, by observing an expert’s thinking processes and the
way that person practices his/her skills, students can learn how to become them-
selves experts in proofs (Collins, Brown, & Newman, 1989). Besides the established
teaching methods the model provides i.e. modelling, scaffolding, articulation, reflec-
tion etc., while employing the cognitive apprenticeship instructional design model,
we also had the opportunity to encourage our students and to help them develop
their self-efficacy in order to successfully write proofs. This is the reason why we
intentionally informed our students, that we also had difficulties in writing some
proofs. In this way, we convinced our students that also experts are susceptible to
stumble, to fail or to postpone a problems solution for a later time. In other words,
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we helped novice students realize that neither themselves are the only students who
find proofs difficult, nor their difficulty in proofs is a sign of inefficiency.

Reasoning control matrix for the proving process (RECOMPP)

RECOMPP is a reusable matrix pattern that helps students produce reasoning
production. Its layout and its filling technique are predefined. More analytically, it
consists of six discrete sections and its layout consists of rows, columns, and cells
that may contain figures, hypotheses or conclusions, proofs, and partial proofs.
Furthermore, a student, when filling RECOMPP, follows two basic rules: that of
horizontal transit, and that of transfer. We will describe these rules in more details
later in this article. RECOMPP can be used in every chapter of geometry content
because it is a reusable pattern of reasoning production.

The layout of RECOMPP

As shown in Figure 3, RECOMPP is a modular, reusable matrix consisting of
six discrete sections. In what follows, there is a detailed description of each one of
the sections:
• Section 1 is where the formulation of the problem is given. Here, in a textbox,

the student can read the full description of the problem, before he/she moves
on to the proving procedure.

• Section 2 is where the hypotheses, and the conclusions of the problem must
be written. Here, the student is given a table (consisted of two rows and two
columns), where he/she must write down, in two separate lines, the hypotheses,
and the conclusions of the problem, respectively. Of course, students must first
have read the description of the problem, that can be found in Section 1, very
carefully, before he/she is able to find, discriminate, and record the hypotheses.

• Section 3 is where the sketch of the problem must be prepared by the student.
Here, based on the description of the problem he/she read in Section 1, and
according to the hypotheses, and the conclusions that he/she wrote down in
Section 2, the student progresses to draw the sketch of the problem in a blank
field. Students will use this as a visual aid to formulate the proof.

• Section 4 is where the teacher may offer scaffolding to student. Here, in order
to offer students contextual, and just-in-time help, the teacher can provide a
list of hints to them.

• Section 5 is where the student is motivated to reason, collect, and write
those statements and relationships among the elements of the sketch prepared
before that will lead him/her to the successful writing of the proof. Here, the
student is given a table (consisting of just two columns and several rows). The
student must write a statement e.g. “Statement A”, that needs to be proved,
in this table, in the first column, labelled “To prove that . . . ”. The student
must write a statement e.g. “Statement B”, that is necessary in order to prove
“Statement A”, in the second column, labelled “It is required to prove that”.
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Fig. 3

Student must set some goals, in order to move horizontally and proceed from the
left column to the right one. Thus, the left column represents the earliest stage of
a student’s reasoning and the right column represents the latest stage of a students
reasoning.
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• Section 6 is where the proof must be written by the student. Here, in a
textfield, the student must write the proof.

Significance of RECOMPP section 5

Section 5 of RECOMPP must be filled according to the following three rules
(see Fig. 4):

(a) The rule of horizontal move from left to right, i.e. the student first fills
the left column, labelled “to prove that”, and then continues to fill the right one,
labelled “it is required to prove that”. The significant contribution of this rule of
horizontal move from left to right is that it demands from the student to produce
reasoning. This process is repeated in every row of the RECOMPP.

(b) The rule of how to fill the first cell of the left column, labelled “to prove
that” According to this rule, the student must always fill the first cell of the left
column with the conclusion from Section 2. This is especially important for the
student, as it indicates to him/her where to start from in the proving procedure.

(c) The rule of reassignment of produced reasoning. According to this rule,
the content of the right column in each row (produced reasoning), is reassigned to
the left column of the below row.

As shown in Fig. 4, each move from the left to right represents a new step
in student’s reasoning, and each reassignment becomes a new creative causation
for the student to think. The right column is not one-way defined, but it usually
contains more than one propositions Pi, i = 1, 2, . . . , among which the student must
select the most appropriate to reassign to the below row. The difficulty students
have when it comes to selecting among the most appropriate proposition, provides
them with the opportunity to try and therefore become more experienced.
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Fig. 4

We mention that the following are required in every step of the proving pro-
cedure:
• The conclusion should never be written in the right column.
• To check Pi that are in the right column, labelled “It is required to prove that”,

e.g., if Pi exists in the given of the exercise, then the proving procedure ends.
• To connect Pi with hypotheses, in order to select the most appropriate Pi.
• To reassign the most appropriate selection from the right column of a row to

the left column of the below row.
In this way, a sequence comprised of the steps of reasoning is being created. As

shown in Fig. 5, the sequence of reasoning steps ends either to a simple reasoning,
or to a partial proof.

Taking into account students’ van Hiele gap, and also that the majority of
students were assigned to van Hiele level 2, we would like our students to be able
to clearly distinguish the hypotheses of the problem from the conclusion. Thereby,
by asking each time students to fill Section 2 (see Fig. 3), we discussed several
problems. In other words, they should write down thoroughly the hypotheses and
the conclusions of the problem. Based on Hoffers work (1981), we stressed the
importance of drawing correctly the geometric sketch.

Therefore, before students make use of RECOMPP, we recommended them to
follow some guidelines. These guidelines are listed below:

1. Draw the geometric sketch. Check, whether you drew the sketch correctly.
2. Try if you can tell the problem, with the aid only of the figure, i.e. without

reading it from Section 1.



Developing a proof-writing tool 97

Fig. 5

3. Translate the hypotheses and the conclusions of the problem in Section 2 into
relationships.

4. Fill Section 2 with the hypotheses and the conclusion.

5. Recognize the role of each point and each segment in the geometric sketch.

A research was conducted to test the following hypothesis: “If students are
taught geometry, utilizing the RECOMPP in their learning process, then signifi-
cantly better results can be achieved in their ability to write successfully proofs, if
compared with the results of traditional instructional methods”.

Method

Participants and procedure

We used a random sample of schools to participate in our research. Then,
2 schools (6th Lyceum of Peristeri and 8th Lyceum of Peristeri) were randomly
selected from the initial sample, qualifying in the criterion of not having a sta-
tistically significant difference in their grades in the first semester in geometry
score (t87 = 1.44, p > .05) between the experimental group (t87 = 1.44, p > .05)
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(1 first-year class from each one of the 2 high schools—mean score of class in geom-
etry = 15.98) and the control group (1 first-year class from each one of the 2 high
schools—mean score of class in geometry = 15.22). The final sample consisted of
89 students. The control group consisted of 44 persons (1 class from each one of
the 2 schools), of which 18 (40.9%) were males, and 26 (59.1%) were females. The
experimental group (1 class from each one of the 2 schools), consisted of 45 persons,
of which 16 (35.6%) were males, and 29 (64.4%) were females. The van Hiele level
of geometric thinking of the classes participated in the research was also assessed,
and we discovered that all of the students were assigned to level 2. Thereby, no
van Hiele gap existed between the students.

Those students, who initially belonged to both groups, took a diagnostic pre-
test, consisting of proof-writing evaluation exercises. After this, students, who
belonged to the experimental group, participated in geometry classes in which we
employed the RECOMPP for the following 3 months. Meanwhile, using this time
a more traditional instructional method, we taught students, who belonged to the
control group, the same geometry content. Next, we gave to students, who belonged
to all of the classes, a post-test that consisted of proof-writing evaluation exercises.
Each correct answer was awarded with 5 points, giving a total sum of 20 points for
the whole test.

Instruments
Van Hiele test. Based on students’ performance on the van Hiele geometry test,

we assessed their van Hiele level of geometric thought. This 35-minutes duration
test, consisted of 5 subtests, each containing 5 multiple-choice questions. These
questions referred to each level separately. If a student answered correctly 4 out of
5 items in a subtest, then he/she was considered to have attained the specific level.
According to the test results, all of the students were assigned to the second van
Hiele level of geometric thought.

Proof-writing evaluation exercises. Two pairs of exercises, similar to those
in a textbook used in classroom, were given successively during the pre-test and
the post-test. (Totally, 4 exercises per test). The first exercise from each pair
corresponded to a simple proof and the second one corresponded to a complex
proof, that was either an extension or a slight modification of the first exercise. We
asked students to prove one other result, whose proof was based on the result of
the first exercise.

The pre-test comprised of the following exercises:
Exercise 1. In an isosceles triangle ABC, with AB = AC, the points M , N

lie on the line segments AB, and AC, respectively, such that M is the mid-point of
AB, and N is the mid-point of AC. We equally extend the base BC of the triangle
by the line segments BD, CE, such that BD = CE. Prove that DM = EN (see
Fig. 6).

Exercise 2. In an isosceles triangle ABC, with AB = AC, the points M , N
lie on the line segments AB, and AC, respectively, such that M is the mid-point
of AB, and N is the mid-point of AC. We extend the base BC of the triangle
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Fig. 6 Fig. 7

through B and C, respectively, to points D and E, so that BD = CE. Segments
DM , and EN intersect at point I. Prove that segment AI is the bisector of angle
A (see Fig. 7).

Exercise 3. Prove that the common external tangents BC and B′C ′, of two
externally tangential circles K, and O, are equal (see Fig. 8).

Fig. 8 Fig. 9

Exercise 4. Given BC and B′C ′ are common external tangents of two ex-
ternally tangential circles K and O, prove that B′C = BC ′ (see Fig. 9).

The post-test comprised of the following exercises:

Exercise 1. In parallelogram ABCD, the points M , N lie on the line seg-
ments AB and CD, respectively, such that M is the midpoint of AB, and N is the
midpoint of CD. Prove that ANCM is a parallelogram (see Fig. 10).

Fig. 10 Fig. 11
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Exercise 2. In parallelogram ABCD, the points M , N lie on the line seg-
ments AB and CD, respectively, such that M is the midpoint of AB, and N is the
midpoint of CD. Prove that the diagonal AC is trisected by the segments MD
and NB (see Fig. 11).

Exercise 3. In square ABCD, the point E lies on the segment AB. From
point A we draw a perpendicular to DE, which intersects BC at point Z. Prove
that DE = AZ (see Fig. 12).

Fig. 12 Fig. 13

Exercise 4. In square ABCD, two vertically intersected line segments inter-
sect sides AB, BC, CD, and DA of the given square at points E, Z, E′, and Z ′,
respectively. Prove that EE′ = ZZ ′ (see Fig. 13).

Reasoning control matrix for the proving process: RECOMPP was employed
for proving propositions assigned to students, which also required a theoretical
documentation.

Results

A 2 × 2 mixed repeated measures ANOVA with one within-subjects factor—
time (time1 = pre, time2 = post measures) and one between-subjects factor—group
(control versus experimental group) was conducted to evaluate the effect of group
and time, on students’ performance. The ANOVA yielded a significant pre-post
main effect (F1,87 = 146.931, p < .001; partial eta squared = .628, observed power
= 1.00), and a significant group main effect (F1,87 = 16.03, p < .001; partial eta

squared = .156, observed power = .977). The interaction between the pre-post
measures and the group was found to be significant (F1,87 = 92.70, p < .001; partial
eta squared = .516, observed power = 1.00).

Also, we conducted paired samples T -test to follow up the significant inter-
action. Table 1 displays the pre/post-measures scores, and change scores for the
experimental and control groups.

As shown in Table 1, the research results revealed that children of the exper-
imental group significantly improved their performance (t43 = −14.395, p < .05)
in comparison to students of the control group who did not make progress in sta-
tistically significant terms (t44 = −1.986, p > .05). Also, an independent samples
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T -test conducted after the pre-test revealed the non significant statistical difference,
in terms of performance, between the two groups (t87 = 1.42, p > .05).

Figure 14 illustrates the pattern of interaction between pre (time1)/ post
(time2) measures, and groups (control and experimental).

Profile plot

Additionally, we conducted a sim-
ilar ANOVA to evaluate the effect of
sex (boys versus girls) and time (pre
versus post measures) on students’ per-
formance. The ANOVA yielded a sig-
nificant pre-post main effect (F1,87 =
64.54, p < .001; partial eta squared
= .426 and observed power = 1),

and a non significant sex main effect
(F1,87 = .05, p > .05). The inter-
action between the pre-post measures
and the sex was found to be non sig-
nificant (F1,87 = .171, p > .05).

Fig. 14

Also, a two-way repeated measures ANOVA with one within-subjects factor
[time (pre versus post measures)] and two between-subjects factors [group (control
versus experimental group) and sex (boys versus girls)] was conducted to evaluate
the effect of group, sex and time on students’ performance. Apart from time, all
the other effects of that ANOVA were found to be non significant.

Discussion

In order to move on to the next stage of the proving procedure, students’ first
contact with formal proofs should convince them, not only about the necessity to
prove a geometrical proposition, but also about the necessity to produce reasoning.
In every step of the proving process students should be able to understand the need
for reasoning. Instructors should realize how important is to either offer some help
to those students, who write a typical proof for first time or to encourage their
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students to write formal geometry proofs. RECOMPP is designed in such a way
that stresses students’ need to reason in every stage of the proving procedure, while
it simultaneously puts in order their thinking. The role of hypotheses-results cell is
very important, because it assists students to distinguish the hypotheses from the
questions of an exercise. As a result, it assists them to define what they need to
prove. At the very beginning of their solution many students declare their difficulty,
i.e. they ignorance on how to begin the proving procedure.

An important characteristic of RECOMPP is that it serves as a guidance tool
for the students to begin their proving procedure. At the same time, students
who are not experienced in writing formal proofs, are given the opportunity to
develop a reasoning production skill that is necessary during the process of writing
a formal geometry proof. The application of RECOMPP into the cognitive skills
requires the externalization of some processes that are often implicit. Besides,
it encourages students to reflect on their action. In this way, it promotes the
cultivation and development of generic control strategies and diagnostic skills. It
also urges students to justify their reasoning provided that they already employ
some forms of control strategies.

As a reusable pattern of reasoning production, RECOMPP enables its transfer
to other learning situations. It is worthwhile to mention that during the official
examinations conducted at the end of every year the students who had been taught
to employ RECOMPP in their proving procedure, used it at their initiatives to
solve the exercises of the examinations. Moreover, they answered the examinations’
exercises using the framework of RECOMPP.

Finally, the research results give rise to some important questions for further
research: “Does the improvement in proof-writing observed with the employment of
RECOMPP lead to an overall improvement of students’ performance in the subject
of Euclidean Geometry?” Furthermore, given that Senk (1989) found a positive
correlation between van Hiele levels and proof-writing, the following question rises:
“If we slightly modify RECOMPP can it help to reduce van Hiele gap among
students?”
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