ΠρόοδοιΗ έννοια της ακολουθίας Ας υποθέσουμε ότι καταθέτουμε στην τράπεζα ένα κεφάλαιο 10000 ευρώ με ανατοκισμό ανά έτος και με επιτόκιο 2%. Αυτό σημαίνει ότι σε ένα χρόνο οι τόκοι που θα αποδώσει το κεφάλαιο προστίθενται σε αυτό και το ποσό που προκύπτει ξανατοκίζεται για τον επόμενο χρόνο με το ίδιο επιτόκιο. Η διαδικασία αυτή μπορεί να συνεχιστεί όσα χρόνια θέλουμε. Επομένως, το κεφάλαιο των 10000 ευρώ θα γίνει:
Συνεχίζοντας με τον ίδιο τρόπο βρίσκουμε ότι το ποσό των 10000 ευρώ θα γίνει: Σε 3 χρόνια 10000 (1,02)4 ευρώ, σε 4 χρόνια 10000•(1,02)4 ευρώ κτλ. και σε ν χρόνια θα γίνει 10000(1,02 )ν ευρώ. Έτσι έχουμε τον πίνακα:
Παρατηρούμε ότι κάθε θετικός ακέραιος ν αντιστοιχίζεται στον πραγματικό αριθμό 10000•(1,02)ν. Η παραπάνω αντιστοίχιση ονομάζεται ακολουθία πραγματικών αριθμών. Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών 1,2,3,…,ν,… στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο 1 καλείται πρώτος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με α1, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με α2 κ.λ.π. Γενικά ο αριθμός στον οποίο αντιστοιχεί ένας φυσικός αριθμός ν καλείται ν–οστός ή γενικός όρος της ακολουθίας και το συμβολίζουμε συνήθως με αν. Δηλαδή, 1→ α1, 2→ α2, 3→α3, …, ν→αν, … Την ακολουθία αυτή τη συμβολίζουμε (αν). Παραδείγματα.
|
Ακολουθίες που ορίζονται αναδρομικά Στην ακολουθία 12, 22, 32, ..., ν2,... ο γενικός της όρος αν = ν2 μας επιτρέπει να βρούμε τον οποιονδήποτε όρο της. Είναι π.χ. α20 = 202 = 400, α100 = 1002 = 10000 κτλ. Υπάρχουν όμως και ακολουθίες που για το γενικό τους όρο είναι δύσκολο να βρεθεί ένας μαθηματικός τύπος Ας θεωρήσουμε π.χ. την ακολουθία (αν), της οποίας ο πρώτος όρος είναι το 1, ο δεύτερος όρος είναι επίσης το 1 και κάθε άλλος όρος, από τον τρίτο και μετά, είναι ίσος με το άθροισμα των δυο προηγούμενων όρων:
Έχουμε:
Παρατηρούμε ότι μπορούμε με διαδοχικά βήματα να βρούμε τον οποιονδήποτε όρο της ακολουθίας. Αυτό σημαίνει ότι η ακολουθία (αν) είναι τελείως ορισμένη. Λέμε ότι η ακολουθία (αν) ορίζεται αναδρομικά και η ισότητα αν+2 = αν+1+αν λέγεται αναδρομικός τύπος της ακολουθίας. Γενικότερα, για να ορίζεται μια ακολουθία αναδρομικά, απαιτείται να γνωρίζουμε:
Σχόλιο: Υπάρχουν ακολουθίες, για τις οποίες μέχρι τώρα δε γνωρίζουμε ούτε έναν τύπο για το γενικό τους όρο ούτε έναν αναδρομικό τύπο. Μια τέτοια ακολουθία είναι π.χ. η ακολουθία των πρώτων αριθμών: 2, 3, 5, 7, 11, 13,... |
Γραφική παράσταση ακολουθίας
|
ΠΑΡΑΔΕΙΓΜΑΤΑ 1ο Να γράψετε τους τέσσερις πρώτους όρους και τους 20ους όρους των ακολουθιών
ΛΥΣΗ
2ο Δίνεται η ακολουθία με α = 2 και α = α2 + 1. Να βρεθούν οι πρώτοι τέσσερις όροι της ακολουθίας ΛΥΣΗ
3ο Δίνεται η ακολουθία αν = 3ν+5. Να οριστεί η ακολουθία αυτή και αναδρομικά. ΛΥΣΗ
|
ΑΣΚΗΣΕΙΣ Α' ΟΜΑΔΑΣ
|
ΑΣΚΗΣΕΙΣ B' ΟΜΑΔΑΣ
|