2ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ (Επαναλήψεις – Συμπληρώσεις)

Εισαγωγή

Στο Γυμνάσιο μάθαμε ότι οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς και παριστάνονται με τα σημεία ενός άξονα, του άξονα των πραγματικών αριθμών.

pic0180

Θυμίζουμε ότι:

  • Κάθε ρητός αριθμός έχει (ή μπορεί να πάρει) κλασματική μορφή, δηλαδή τη μορφή pic08, όπου α, β ακέραιοι, με β ≠ 0.
  • Κάθε ρητός αριθμός μπορεί να γραφεί ως δεκαδικός ή περιοδικός δεκαδικός και, αντιστρόφως, κάθε δεκαδικός ή περιοδικός δεκαδικός μπορεί να πάρει κλασματική μορφή. Για παράδειγμα,

pic0181

Μπορούμε δηλαδή να πούμε ότι οι ρητοί αριθμοί αποτελούνται από τους δεκαδικούς και τους περιοδικούς δεκαδικούς αριθμούς. Υπάρχουν όμως και αριθμοί, όπως οι pic0182 π, κτλ., που δεν μπορούν να πάρουν τη μορφή , όπου α, β ακέραιοι, με β ≠ 0 (ή, με άλλα λόγια, δεν μπορούν να γραφούν ούτε ως δεκαδικοί ούτε ως περιοδικοί δεκαδικοί). Οι αριθμοί αυτοί λέγονται άρρητοι αριθμοί.

Πράξεις

Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και, με τη βοήθειά τους, η αφαίρεση και η διαίρεση.

  • Για την πρόσθεση και τον πολλαπλασιασμό ισχύουν οι ιδιότητες που αναφέρονται στον επόμενο πίνακα, οι οποίες και αποτελούν τη βάση του αλγεβρικού λογισμού.
Ιδιότητα Πρόσθεση Πολλαπλασιασμός
Αντιμεταθετική α + β = β + α αβ = βα
Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ
Ουδέτερο Στοιχείο α + 0 = α α ·1 = α
Αντίθετος/Αντίστροφος Αριθμού α + (–α) = 0 α · Εικόνα = 1, α ≠ 0
Επιμεριστική α( β + γ) = αβ + αγ

 

Στον πίνακα αυτόν, αλλά και στη συνέχεια του βιβλίου, τα γράμματα που χρησιμοποιούνται παριστάνουν οποιουσδήποτε πραγματικούς αριθμούς , εκτός αν δηλώνεται διαφορετικά.
Ο αριθμός 0 λέγεται και ουδέτερο στοιχείο της πρόσθεσης, διότι προστιθέμενος σε οποιονδήποτε αριθμό δεν τον μεταβάλλει. Επίσης ο αριθμός 1 λέγεται και ουδέτερο στοιχείο του πολλαπλασιασμού, διότι οποιοσδήποτε αριθμός πολλαπλασιαζόμενος με αυτόν δεν μεταβάλλεται.

ΣΧΟΛΙΟ
Η αντιμεταθετική και η προσεταιριστική ιδιότητα της πρόσθεσης έχουν ως συνέπεια, κάθε άθροισμα με περισσότερους από δυο προσθετέους, να ισούται με οποιοδήποτε άλλο άθροισμα που σχηματίζεται από τους ίδιους αριθμούς με οποιαδήποτε σειρά και αν τους πάρουμε. Για παράδειγμα,

pic0183

Ομοίως, ένα γινόμενο με περισσότερους από δυο παράγοντες ισούται με οποιοδήποτε άλλο γινόμενο που μπορεί να σχηματισθεί από τους ίδιους αριθμούς με οποιαδήποτε σειρά και αν τους πάρουμε.
Για παράδειγμα,

pic0184

(Η απόδειξη των παραπάνω ισχυρισμών είναι αρκετά πολύπλοκη και παραλείπεται).

  • Η αφαίρεση και η διαίρεση ορίζονται με τη βοήθεια της πρόσθεσης και του πολλαπλασιασμού αντιστοίχως ως εξής:


α – β = α + (–β) pic0185

Δηλαδή:
Για να βρούμε τη διαφορά α – β , προσθέτουμε στο μειωτέο τον αντίθετο του αφαιρετέου, ενώ για να βρούμε το πηλίκο pic08, με β ≠ 0 , πολλαπλασιάζουμε το διαιρετέο με τον αντίστροφο του διαιρέτη.

ΣΗΜΕΙΩΣΗ
Επειδή διαίρεση με διαιρέτη το μηδέν δεν ορίζεται, όπου στο εξής συναντάμε το πηλίκο pic08, εννοείται ότι β ≠ 0 και δεν θα τονίζεται ιδιαίτερα.

  • Για τις τέσσερις πράξεις και την ισότητα ισχύουν και οι ακόλουθες ιδιότητες που είναι γνωστές από το Γυμνάσιο:

1.

(α = β και γ = δ )     α + γ = β + δ

δηλαδή, δυο ισότητες μπορούμε να τις προσθέσουμε κατά μέλη.

2.

(α = β και γ = δ)  =>  αγ = βδ

δηλαδή, δυο ισότητες μπορούμε να τις πολλαπλασιάσουμε κατά μέλη.

3.

α = β <=>  α + γ = β + γ

δηλαδή, μπορούμε και στα δυο μέλη μιας ισότητας να προσθέσουμε ή να αφαιρέσουμε τον ίδιο αριθμό.

4.

Αν γ ≠ 0, τότε: α = β  <=>  αγ = βγ

δηλαδή, μπορούμε και τα δυο μέλη μιας ισότητας να τα πολλαπλασιάσουμε ή να τα διαιρέσουμε με τον ίδιο μη μηδενικό αριθμό.

5.

α · β = 0  <=>   α = 0 ή β = 0

δηλαδή, το γινόμενο δύο πραγματικών αριθμών είναι ίσο με το μηδέν, αν και μόνο αν ένας τουλάχιστον από τους αριθμούς είναι ίσος με το μηδέν.
Άμεση συνέπεια της ιδιότητας αυτής είναι η ακόλουθη:

α · β ≠ 0  <=>  α ≠ 0 και β ≠ 0

ΣΧΟΛΙΟ
Όταν από την ισότητα α + γ = β + γ ή από την ισότητα α · γ = β · γ μεταβαίνουμε στην ισότητα α = β, τότε λέμε ότι διαγράφουμε τον ίδιο προσθετέο ή τον ίδιο παράγοντα αντιστοίχως. Όμως στην περίπτωση που διαγράφουμε τον ίδιο παράγοντα πρέπει να ελέγχουμε μήπως ο παράγοντας αυτός είναι ίσος με μηδέν, οπότε ενδέχεται να οδηγηθούμε σε λάθος, όπως συμβαίνει στο ακόλουθο παράδειγμα.
Έστω α = 1. Τότε έχουμε διαδοχικά:

α = 1
α · α = α · 1
α2 = α
α2 – 1 = α –1
(α + 1)(α – 1) = (α – 1) · 1
α + 1 = 1
α = 0

Όμως έχουμε και α = 1, οπότε το 1 θα είναι ίσο με το 0. Οδηγηθήκαμε στο λανθασμένο αυτό συμπέρασμα, διότι στην ισότητα

(α + 1)(α – 1) = (α – 1) · 1

διαγράψαμε τον παράγοντα (α – 1) ο οποίος, λόγω της υπόθεσης, ήταν ίσος με μηδέν.

Δυνάμεις

Είναι γνωστή από το Γυμνάσιο η έννοια της δύναμης αριθμού με εκθέτη ακέραιο. Συγκεκριμένα, αν ο α είναι πραγματικός αριθμός και ο ν φυσικός, έχουμε ορίσει ότι:

           αν = α · α · α – α,    για ν > 1 και
pic011
ν παράγοντες


α1 = α,     για ν = 1.

Αν επιπλέον είναι α ≠ 0, τότε ορίσαμε ότι:
α0 = 1      και        pic010

ΣΧΟΛΙΟ
Ενώ είναι φανερό ότι, αν α = β, τότε αν = βν, δεν ισχύει το αντίστροφο, αφού για παράδειγμα είναι (–2)2 = 22, αλλά –2 ≠ 2.
Στον επόμενο πίνακα συνοψίζονται οι ιδιότητες των δυνάμεων με εκθέτη ακέραιο, με την προϋπόθεση ότι κάθε φορά ορίζονται οι δυνάμεις και οι πράξεις που σημειώνονται.

ακ · αλ = ακ+λ

  pic012

ακ · βκκ= (αβ)κ

 

κ)λ = ακλ

Αξιοσημείωτες ταυτότητες

Η έννοια της ταυτότητας είναι γνωστή από το Γυμνάσιο. Συγκεκριμένα, κάθε ισότητα που περιέχει μεταβλητές και επαληθεύεται για όλες τις τιμές των μεταβλητών αυτών λέγεται ταυτότητα.
Στον πίνακα που ακολουθεί αναφέρονται οι γνωστές μας πιο αξιοσημείωτες ταυτότητες:

(α + β )2 = α2 + 2αβ + β2
(α – β)2 = α2 – 2αβ + β2
α2 – β2 = ( α + β ) · ( α – β )
(α + β )3 = α3 + 3α2 β + 3αβ2 + β3
(α – β)3 = α3 – 3α2β + 3αβ2 – β3
α3 + β3 =(α + β ) · (α2 – αβ + β2)
α3 – β3 =( α – β ) · ( α2 + αβ + β2)
(α + β + γ )2 = α2 + β2 + γ2 + 2αβ – 2βγ + 2γα

Μέθοδοι απόδειξης

1η) Ευθεία Απόδειξη

Έστω ότι για τρεις πραγματικούς αριθμούς α, β και γ ισχύει η συνθήκη α + β + γ = 0 και θέλουμε να αποδείξουμε ότι α3 + β3 + γ3 = 3αβγ, δηλαδή έστω ότι θέλουμε να αποδείξουμε τη συνεπαγωγή:

« Αν α + β + γ = 0, τότε α3 + β3 + γ3 = 3αβγ ».

Επειδή α + β + γ = 0, είναι α = –(β + γ) , οπότε θα έχουμε:
α3 + β3 + γ3 = [–(β + γ)]3 + β3 + γ3
= –(β + γ )3 + β3 + γ3
= –β3 – 3β2γ – 3βγ2 – γ3 + β3 + γ3
= – 3β2γ – 3βγ2
= –3βγ(β + γ)
= 3αβγ,      (αφού β + γ = –α).

Για την απόδειξη της παραπάνω συνεπαγωγής ξεκινήσαμε με την υπόθεση α + β + γ = 0 και με διαδοχικά βήματα καταλήξαμε στο συμπέρασμα α3 + β3 + γ3 = 3αβγ . Μια τέτοια διαδικασία λέγεται ευθεία απόδειξη.

ΣΧΟΛΙΑ
1o) Ευθεία απόδειξη χρησιμοποιήσαμε και στο Γυμνάσιο για την απόδειξη των γνωστών μας ταυτοτήτων. Για παράδειγμα, για την απόδειξη της ταυτότητας (α + β )2 = α2 + 2αβ + β2, με α,β pic03R, έχουμε διαδοχικά:
(α + β)2 = (α + β)(α + β) [Ορισμός δύναμης]
= α (α + β) + β (α + β) [Επιμεριστική ιδιότητα ]
= α2 + αβ + βα + β2 [Επιμεριστική ιδιότητα ]
= α2 + 2αβ + β2 [Αναγωγή όμοιων όρων]

2o) Για να αποδείξουμε ότι ένας ισχυρισμός είναι αληθής, μερικές φορές με διαδοχικούς μετασχηματισμούς καταλήγουμε σε έναν λογικά ισοδύναμο ισχυρισμό που είναι αληθής. Έτσι συμπεραίνουμε ότι και ο αρχικός ισχυρισμός είναι αληθής.

Για παράδειγμα, έστω ότι για τους πραγματικούς αριθμούς α, β, x, y θέλουμε να αποδείξουμε την ταυτότητα:

2 + β2)(x2 + y2) = (αx + βy)2 + (y – βx)2

Έχουμε διαδοχικά:
2 + β2)( x2 + y2) =
= (αx + βy)2 + (αy – βx)2
<=> α2x2 + α2y2 + β2x2 + β2y2 =
= α2x2 + 2αβxy + β2y2 + α2y2 – 2αβxy + β2x2
<=>α2x2 + α2y2 + β2x2 + β2y2 =
= α2x2 + α2y2 + β2x2 + β2y2, που ισχύει.

3ο) Για να αποδείξουμε ότι ένας ισχυρισμός δεν είναι πάντα αληθής, αρκεί να βρούμε ένα παράδειγμα για το οποίο ο συγκεκριμένος ισχυρισμός δεν ισχύει ή, όπως λέμε, αρκεί να βρούμε ένα αντιπαράδειγμα. Έτσι ο ισχυρισμός

«για κάθε α > 0 ισχύει α2 > α »

δεν είναι αληθής, αφού για pic014 έχουμε pic015 , δηλαδή α2 < α .

 

2η) Μέθοδος της Απαγωγής σε Άτοπο

Έστω ότι θέλουμε να αποδείξουμε τον ισχυρισμό:
«Αν το τετράγωνο ενός ακεραίου αριθμού είναι άρτιος, τότε και ο αριθμός αυτός είναι άρτιος», δηλαδή

«Αν ο α2 είναι άρτιος αριθμός, τότε και ο α είναι άρτιος αριθμός»

Για την απόδειξη του ισχυρισμού αυτού σκεπτόμαστε ως εξής:
Έστω ότι ο α δεν είναι άρτιος. Τότε ο α θα είναι περιττός, δηλαδή θα έχει τη μορφή α = 2κ + 1, όπου κ ακέραιος, οπότε θα έχουμε:
α2 = ( 2κ + 1)2
= 4κ2 + 4κ + 1
=2(2κ2 + 2κ) + 1
= 2λ + 1 (όπου λ = 2κ2 + 2κ).
Δηλαδή α2 = 2λ + 1, λ pic03 Ζ, που σημαίνει ότι ο α2 είναι περιττός. Αυτό όμως έρχεται σε αντίθεση με την υπόθεση ότι ο α2 είναι άρτιος. Επομένως, η παραδοχή ότι α δεν είναι άρτιος είναι λανθασμένη. Άρα ο α είναι άρτιος.

Στην παραπάνω απόδειξη υποθέσαμε ότι δεν ισχύει αυτό που θέλαμε να αποδείξουμε και χρησιμοποιώντας αληθείς προτάσεις φθάσαμε σε ένα συμπέρασμα που έρχεται σε αντίθεση με αυτό που γνωρίζουμε ότι ισχύει. Οδηγηθήκαμε όπως λέμε σε άτοπο.

Η μέθοδος αυτή απόδειξης χρησιμοποιήθηκε για πρώτη φορά από τους Αρχαίους Έλληνες και λέγεται απαγωγή σε άτοπο.

ΕΦΑΡΜΟΓΕΣ

Να αποδειχθούν οι εξής ιδιότητες των αναλογιών:

i) pic016    (εφόσον βδ ≠ 0)

ii) pic017    (εφόσον βγδ ≠ 0)

iii) pic018   (εφόσον βδ ≠ 0)

iv) pic019   (εφόσον βδ(β + δ) ≠ 0)

 

ΑΠΟΔΕΙΞΗ

i) Για βδ ≠ 0 έχουμε:
pic020

ii) Για βγδ ≠ 0 έχουμε: pic021

iii) Για βδ ≠ 0 έχουμε:
pic023

iν) Για βδ (β + δ) ≠ 0, αν θέσουμεpic025 , έχουμε:
α = λβ και γ = λδ,
οπότε α + γ = λ(β + δ).
Επομένως, pic026 δηλαδή pic027

Να αποδειχθεί ότι ο αριθμός pic028 είναι άρρητος. Στη συνέχεια, με τη χρήση του κανόνα και του διαβήτη, να παρασταθούν οι pic028 και –pic028 στον άξονα των πραγματικών αριθμών.

ΑΠΟΔΕΙΞΗ

Έστω ότι ο pic028είναι ρητός. Τότε μπορούμε να γράψουμε pic028 = pic029 όπου κ, λ είναι φυσικοί αριθμοί και pic029 ανάγωγο κλάσμα (δηλαδή κλάσμα στο οποίο έχουν γίνει όλες οι δυνατές απλοποιήσεις). Τότε έχουμε διαδοχικά:

pic030

που σημαίνει ότι ο κ2 είναι άρτιος, οπότε (σελ. 60–61) και ο κ2 είναι άρτιος, δηλαδή είναι της μορφής κ = 2μ.
Τότε έχουμε διαδοχικά:

κ2 = 2λ2
(2μ)2 = 2λ2
2 = 2λ2
λ2 = 2μ2

Που σημαίνει ότι ο λ2 είναι άρτιος, άρα και ο λ είναι άρτιος.

Αφού λοιπόν οι κ, λ είναι άρτιοι, το κλάσμα pic029 δεν είναι ανάγωγο (άτοπο).

pic031

Στο σημείο Α του πραγματικού άξονα που παριστάνει τον αριθμό 1 υψώνουμε κάθετο τμήμα ΑΒ με μήκος 1. Τότε η υποτείνουσα του ορθογωνίου τριγώνου ΟΑΒ έχει μήκος ίσο με pic028. Στη συνέχεια με κέντρο το Ο και ακτίνα ΟΒ = pic028 γράφουμε κύκλο ο οποίος τέμνει τον άξονα x΄x στα σημεία Μ και M΄ που παριστάνουν τους αριθμούς pic028 και –pic028 αντιστοίχως.

Ασκήσεις

Α' ΟΜΑΔΑΣ
1.

Δίνεται η παράσταση

pic032

i) Να δείξετε ότι Α = x9 · y9
ii) Να βρείτε την τιμή της παράστασης για x = 2010 καιpic033

 

2.

Να βρείτε την τιμή της παράστασης pic034 για x = 0,4 και y = – 2,5.

3.

Να υπολογίσετε τις παραστάσεις :
i) 10012 – 9992
ii) 99 · 101
pic035

4.

i) Να δείξετε ότι (α + β)2 – (α – β)2 = 4αβ .
ii) Να υπολογίσετε την τιμή της παράστασης:
pic036

5.

i) Να αποδείξετε ότι α2 – (α – 1)(α + 1)= 1.
ii) Να υπολογίσετε την τιμή της παράστασης: (1,3265)2 – 0,3265 · 2,3265.

6.

Να δείξετε ότι η διαφορά των τετραγώνων δυο διαδοχικών φυσικών αριθμών (του μικρότερου από του μεγαλύτερου) ισούται με το άθροισμά τους.

7. Αν ν φυσικός αριθμός, να δείξετε ότι ο αριθμός 2ν + 2ν+1 + 2ν+2 είναι πολλαπλάσιο του 7.
Β' ΟΜΑΔΑΣ
1.

Να απλοποιήσετε τις παραστάσεις:
pic037    

2.

Να απλοποιήσετε τις παραστάσεις:
pic039    

3.

Να απλοποιήσετε τις παραστάσεις:
i) (x + y)2 · (x–1 + y–1)–2
pic041

 

4.

Να δείξετε ότι :pic042

5.

Έστω α, β και γ τα μήκη των πλευρών ενός τριγώνου ΑΒΓ. Να δείξετε ότι το τρίγωνο είναι ισόπλευρο σε καθεμιά από τις παρακάτω περιπτώσεις:
pic043
ii) Αν α – β = β – γ = γ – α

6.

Να δείξετε ότι, αν ένα ορθογώνιο έχει περίμετρο L = 4α και εμβαδόν E = α2, τότε το ορθογώνιο αυτό είναι τετράγωνο με πλευρά ίση με α.

7.

Να δείξετε ότι:
i) Αν α ρητός και β άρρητος, τότε α + β άρρητος.
ii) Αν α ρητός, με α ≠ 0, και β άρρητος, τότε α · β άρρητος.