Τετραγωνική ρίζα μη αρνητικού αριθμού Στο Γυμνάσιο μάθαμε την έννοια της τετραγωνικής ρίζας μη αρνητικού αριθμού και τις ιδιότητές της. Συγκεκριμένα μάθαμε ότι: ΟΡΙΣΜΟΣ
Μπορούμε επομένως να πούμε ότι: Για τις τετραγωνικές ρίζες μη αρνητικών αριθμών γνωρίσαμε τις παρακάτω ιδιότητες:
|
ν–οστή ρίζα μη αρνητικού αριθμού
|
ΟΡΙΣΜΟΣ
|
Επίσης γράφουμε
Μπορούμε επομένως να πούμε ότι: ΣΧΟΛΙΟ (1)Αποδεικνύεται ότι υπάρχει και είναι μοναδικός |
Ιδιότητες των ριζών Από τον ορισμό της ν–οστής ρίζας ενός μη αρνητικού αριθμού α , συμπεραίνουμε αμέσως ότι:
Για παράδειγμα:
Ισχύουν όμως και οι ακόλουθες ιδιότητες, από τις οποίες οι δύο πρώτες είναι ανάλογες των ιδιοτήτων της τετραγωνικής ρίζας:
ΑΠΟΔΕΙΞΗ , που ισχύει. 2. Αποδεικνύεται όπως και η 1. 3. Έχουμε: 4. Έχουμε: |
ΣΧΟΛΙΟ |
Δυνάμεις με ρητό εκθέτη Στη συνέχεια θα ορίσουμε παραστάσεις της μορφής αμ/ν , όπου α > 0, μ ακέραιος και ν θετικός ακέραιος, τις οποίες θα ονομάσουμε δυνάμεις με ρητό εκθέτη. Ο ορισμός θα γίνει με τέτοιο τρόπο, ώστε να διατηρούνται οι γνωστές μας ιδιότητες των δυνάμεων με ακέραιο εκθέτη. |
ΟΡΙΣΜΟΣ
Επιπλέον, αν μ, ν θετικοί ακέραιοι, τότε ορίζουμε 0μ/ν. Για παράδειγμα: Με τη βοήθεια των ιδιοτήτων των ριζών αποδεικνύεται ότι οι ιδιότητες των δυνάμεων με ακέραιο εκθέτη ισχύουν και για δυνάμεις με ρητό εκθέτη. Το γεγονός αυτό διευκολύνει το λογισμό με τα ριζικά. Έτσι έχουμε για παράδειγμα είναι: |
ΕΦΑΡΜΟΓΕΣ 1η Αν α και β είναι μη αρνητικοί αριθμοί, να αποδειχθεί η ισοδυναμία: ΑΠΟΔΕΙΞΗ Έχουμε: 2η Να τραπούν οι παραστάσεις σε ισοδύναμες, χωρίς ριζικά στους παρονομαστές: ΛΥΣΗ Έχουμε: 3η Να αποδειχθεί ότι: ΑΠΟΔΕΙΞΗ Έχουμε: |
Ασκήσεις
|
ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ Ο «διπλασιασμός του τετραγώνου», δηλαδή η κατασκευή ενός τετραγώνου με εμβαδόν διπλάσιο ενός άλλου δοθέντος τετραγώνου, μπορεί να γίνει με μια απλή «γεωμετρική» κατασκευή. Λέγοντας «γεωμετρική» κατασκευή εννοούμε κατασκευή με χάρακα και διαβήτη.
Ωστόσο, η πλευρά β, του τετραγώνου με το διπλάσιο εμβαδόν, δεν προκύπτει από την πλευρά α με πολλαπλασιασμό επί ρητό αριθμό. Αυτό σημαίνει ότι δεν υπάρχει ευθύγραμμο τμήμα (ως μονάδα μέτρησης) με το οποίο μπορούμε να μετρήσουμε ακριβώς τα δυο αυτά τμήματα, πλευρά και διαγώνιο τετραγώνου. Η απόδειξη της ύπαρξης άρρητων αριθμών θεωρείται μια από τις σπουδαιότερες ανακαλύψεις των Πυθαγορείων. (Πυθαγόρας: 6ος π. Χ. αιώνας). Οι αρχαίοι Έλληνες είχαν μια βαθιά πίστη ότι πάντοτε δυο ευθύγραμμα τμήματα έχουν κοινό μέτρο. Γι’ αυτό, στα πλαίσια της εποχής εκείνης, η ανακάλυψη αυτή των Πυθαγορείων δεν ήταν απλά και μόνο μια ενδιαφέρουσα μαθηματική πρόταση, αλλά σήμαινε την ανατροπή θεμελιωδών φιλοσοφικών αντιλήψεων για τον κόσμο και τη φύση. Ήταν κεντρική αντίληψη των Πυθαγορείων ότι η ουσία κάθε όντος μπορεί να αναχθεί σε φυσικούς αριθμούς. Ο νεοπυθαγόρειος Φιλόλαος γύρω στα 450 π.Χ., έγραφε: «Πραγματικά το καθετί που γνωρίζουμε έχει έναν αριθμό (δηλαδή φυσικό). Αλλιώς θα ήταν αδύνατο να το γνωρίσουμε και να το καταλάβουμε με τη λογική. Το ένα είναι η αρχή του παντός». Η ανακάλυψη λοιπόν ότι υπάρχουν μεγέθη και μάλιστα απλά, όπως η υποτείνουσα τετραγώνου, τα οποία δεν μπορούν να εκφραστούν στα πλαίσια των φυσικών αριθμών, θεωρήθηκε αληθινή συμφορά για την πυθαγόρεια φιλοσοφία. Χαρακτηριστικοί είναι οι θρύλοι που περιβάλλουν το γεγονός αυτό. Κατά έναν από αυτούς, η ανακάλυψη της ύπαρξης των άρρητων αριθμών έγινε από τον πυθαγόρειο Ίπασσο, όταν αυτός και άλλοι Πυθαγόρειοι ταξίδευαν με πλοίο. Η αντίδραση των Πυθαγορείων ήταν να πνίξουν τον Ίπασσο και να συμφωνήσουν μεταξύ τους να μη διαδοθεί η ανακάλυψη προς τα έξω. Η υπέρβαση των «δυσκολιών» που φέρνει στα Μαθηματικά η ύπαρξη άρρητων αριθμών, κατέστη δυνατή από τον Εύδοξο (360 π.Χ.) με την ιδιοφυή «θεωρία των Λόγων». Η απόδειξη για το ότι ένας συγκεκριμένος αριθμός είναι άρρητος είναι ένα πρόβλημα που απαιτεί πολλές φορές πολύπλοκούς συλλογισμούς. |