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Abstract–The theoretical possibility is examined of constructing a tower to connect a geosta-

tionary satellite to the ground. The ”orbital tower” could be built only by overcoming the three

problems of buckling, strength, and dynamic stability. The buckling problem could be solved

by building the tower outward from the geostationary point so that it remains balanced in ten-

sion and stabilized by the gravity gradient until the lower end touches the Earth and the upper

end reaches 144,000 km altitude. The strength problem could be solved by tapering the cross-

sectional area of the tower as an exponential function of the gravitational and inertial forces, from

a maximum at the geostationary point to a minimum at the ends. The strength requirements

are extremely demanding, but the required strength-to-weight ratio is theoretically available in

perfect-crystal whiskers of graphite. The dynamic stability is investigated and the tower is found

to stable under the vertical forces of lunar tidal excitations and under the lateral forces due to

payloads moving along the tower. By recovering the excess energy of returning spacecraft, the

tower would be able to launch other spacecraft into geostationary orbit with no power required

other than frictional and conversion losses. By extracting energy from the Earth’s rotation, the

orbital tower would be able to launch spacecraft without rockets from the geostationary orbit to

reach all the planets or to escape the solar system.

Introduction

A SATELLITE in equatorial orbit with a period of 24 hr appears fixed above
a point on the equator, and is thus called a geostationary satellite. Since the
altitude of this orbit is 35,800 km, a geostationary satellite can provide continuous
communication over nearly half the earth. Arthur Clarke (1945) first proposed
the geostationary satellite for world-wide communication, and many such satellites
are now in orbit over various parts of the equator, carrying an increasing share of
international communications.

The fixed position of the geostationary satellite with respect to the ground
lends itself to more than an electro-magnetic signal connecting it to the Earth. If
a physical connection could be made between the geostationary satellite and the
ground, it would allow vertical ascent by powered capsules up this ”orbital tower”
directly into geostationary orbit. These capsules would be safer than rockets; in
case of power failure, they could clamp onto the tower until repairs could be made.
Satellites could be recovered by allowing them to slide down the tower to the
ground. This method of returning satellites to the Earth would allow the recovery
of their excess energy now wasted by heat shields. The use of this energy could
greatly decrease the cost of launching satellites.

The problem of building the orbital tower is examined in this paper. A concept
is proposed for the method of construction. The completed tower is analyzed
statically as a thin rod in tension under gravitational and inertial forces. The dy-
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namic response to Moon-induced tidal excitations uses the same model. The dy-
namic response of the tower to moving payloads is calculated based on the free
vibration modes of the tower considered as a wire with a variable tension.

Tower concept

Three problems stand in the way of building the orbital tower. First, any tower
35,800 km high would seemingly buckle unless it were hundreds of kilometers in
diameter. Second, even if it were prevented from buckling, the stress at the base
due to the weight of the material above would apparently exceed the strength of
any known material, and it would collapse. Third, if the tower elastic modes were
in resonance with the tidal excitations of the Moon, they would be amplified and
the tower would be destroyed. These problems have been overcome by the concept
for constructing the tower presented in this paper.

Assume that a uniform tower reaching the synchronous orbit is to be con-
structed and its weight is to be found. The net weight of an increment dr of the
tower at distance r from the Earth’s center is the excess of the gravitational over
the inertial force:

dF = (GMρA/r2 − ρAv2/r)dr (1)

where G is the gravitational constant, M is the mass of the earth, ρ is the density
of the tower and A is its cross-sectional area, and v is the velocity at point r on the
tower due to the Earth’s rotation. This velocity increases linearly with distance
from the Earth’s center according to the relation v = vsr/rs, where rs, and vs, are
the synchronous orbit radius and velocity. Using this relation and the fact that

GM = g0r
2
0 (2)

where r0 and g0 are the Earth’s radius and surface gravity, and the formula

v2
r = GM/r (3)

for the velocity v, at radius r of a body in circular orbit about the Earth, the
force on a length of tower dr is then

dF = ρAg0r
2
0(1/r2 − r/r3

s)dr. (4)

Integrating this equation from r0 to rs, gives the total weight of a uniform tower as
13.8% of its weight in a one-gravity field, assuming no deformation due to stress.
Constructing this tower to synchronous altitude is therefore equivalent to building
a tower 4900 km high in a uniform one-g field. This decrease in the effective gravi-
tational force to zero at the synchronous orbit thus lowers the strength requirement
greatly, but it leaves the buckling problem untouched.

The buckling problem can be solved, however, by noting that only towers in
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compression can buckle, and then by building the orbital tower entirely in tension.
This can be done by using the effect of the gravity gradient on a body in orbit. The
part of the tower at the synchronous altitude has no net weight; it is in orbit. The
tower below this point has less than orbital velocity and therefore experiences a net
downward force. Conversely, if the tower extended above the synchronous altitude,
the upper part would possess more than orbital velocity and would experience a
net upward force. If the tower extended far enough above the synchronous altitude,
the entire weight of the tower below this point could be overcome and the tower
would then be entirely in tension, balanced about the synchronous altitude. This
would have the effect of replacing the maximum compressive stress at the base by
the same maximum stress in tension at the synchronous point. The tower would
therefore not buckle.

To find the required height for a completely balanced tower, eqn (4) is set in
the form

F =
∫ r1

r0

ρAg0r
2
0(1/r2 − r/r3

s)dr = 0 (5)

and solved for the rt for which the weight is zero (F = 0). The value of rt is
found to be about 150,000 km, corresponding to an altitude of nearly 144,000 km.
This distance is a characteristic of the Earth’s radius, surface gravity, and period
of rotation.

The balanced tower has a maximum tensile force at the synchronous balance
point, and this tensile force decreases toward the ends. In order to minimize the
weight of the tower, its cross-sectional area should be tapered as a function of the
gravitational and inertial forces to maintain a constant stress. Using eqn (4) for
the force on the tower at point r, the expression for the differential weight dW may
be written as

dW = ρg0r
2
0(1/r2 − r/r3

s)A(r)dr (6)

where A (r) is the area at point r. If the stress is set to a constant σ, then

σdA = ρg0r
2
0(1/r2 − r/r3

s)A(r)dr. (7)

If this equation is put into the form

dA

A(r)
=

r2
0

h
(1/r2 − r/r3

s)dr (8)

where h = σ/ρg0, it can be integrated directly to find A(r):

A(r) = Ase
(3r2

0/2hrs)e(−r0/h)(r0/r+r0r2/2r3
s) (9)

where As is the cross-sectional area of the tower at the synchronous point. The
result is a tower with an exponential taper from a maximum at the synchronous



788

J. Pearson

point rs to a minimum at the ground r0 and the top r1. The height of the balanced
tapered tower is the same as the uniform tower. Solving eqn (9) for the taper ratio
As/A0 gives

As/A0 = e(r0/h)(1+r3
0/2r3

s−3r0/2rs) = e0.776r0/h. (10)

Equation (10) shows that the amount of taper required decreases rapidly with
increasing h. This relation between the taper ratio and h has been plotted in Fig.
1. The parameter h has the dimension of length and is often called the specific
strength. For the purpose of this paper, h will be called the characteristic height,
because it is the height to which a constant-diameter tower of the material could
be built in a uniform one-g field without exceeding the stress limit of the material
at the base.

Since the stress in the tower is due to its weight, the material used must have a
high strength and a low density–that is, a high strength-to-weight ratio. Possible
building materials can be classified by their characteristic heights, h = σ/ρg0,
where σ is the allowable stress and ρ is the density. Theoretically the tower could
be built of any material, by simply using a large enough taper ratio. Practically,
however, the taper ratio required for normal structural materials is very large,
resulting in an enormous area at the synchronous point for a reasonable area at
the ends.

The characteristic heights of some building materials have been plotted versus
density in Fig. 2. The values for the common structural metals vary with the alloy,
but they are generally in the tens of kilometers. To build the orbital tower with
a stainless steel with an h of 50 km, for example, the taper ratio required from
eqn (10) is e99, which is impossibly high. The orbital tower will require structural
materials with much greater characteristic heights.

Fig. 1. Taper ratio required vs characteristic height.
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Fig. 2. Characteristic height vs density for various materials.

Some materials which promise characteristic heights of thousands of kilometers
are the perfect-crystal whiskers that have been produced on a small scale (Levitt,
1970). The theoretical characteristic heights of diamond and graphite crystals are
shown on Fig. 2 by symbols, based on a theoretical stress limit derived from
the bond strength of single crystals (Mann, 1962). The laboratory observations
of characteristic heights cover the range of values shown on the figure. Perfect
crystals of graphite produce the highest observed values of h, from 900 to 3200
km. For h = 2150 km, within this observed range, the taper ratio required to
build the orbital tower is only ten. This means that the cross-sectional area at the
synchronous point would have to be ten times the area at the ground. The tower
would thus be able to withstand the required stress if it were tapered exponentially
and built of these high-strength whisker materials. This design point of h = 2150
km for perfect-crystal whiskers of graphite is based on a laboratory measurement
of σ of 46.5 GN/m2. The modulus of elasticity of these crystals is also subject to
a large uncertainty, but one measurement is 964 GN/m2, giving σ/E = 0.0482 for
a taper ratio of ten (Mann, 1962). For a taper ratio of thirty, σ/E = 0.0322.

Tower construction

The orbital tower could be built in tension by constructing it outward from the
geostationary orbit. The raw material could be carried into orbit by an advanced
space shuttle and assembled there. An orbital construction module could be used,
as indicated in Fig. 3. This module could be used as a geostationary space station
after completion of the tower. The weightlessness and vacuum might even make
space the logical place to produce the needed perfect-crystal graphite whiskers.

The balanced tower construction from geostationary orbit is further simplified
in that the tower would be stable during construction. Since the long axis of the
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Fig. 3. Construction module for the orbital tower.

tower points toward the Earth, it would act as a gravity-gradient stabilized satel-
lite. Figure 4 indicates the final length of the orbital tower in relation to the
Earth and the Van Allen radiation belts, and also shows the variation in cross-
sectional diameter as a function of the taper ratio. The variation in area could
be accomplished by changing the thicknesses of hollow members while maintaining
the external dimensions constant.

There are many engineering problems which could occur during the tower con-
struction and anchoring, but none appears to be unsolvable. Orbital perturbations
would be caused by geophysical and astronomical sources. If the tower were an-
chored at other than one of the stable nodes of the geostationary orbit, a slight
daily drift in longitude would occur. Such perturbations would require that some
care be taken in the final anchoring of the tower to the ground.

The lowest few kilometers of the tower would feel wind loads, but the required
equatorial location of the tower base avoids the trade winds and the jet streams.
According to Garbell (1947), the equator experiences very low average wind speeds;
the jet streams are limited to temperature latitudes; and hurricanes never occur at
less than 5o latitude. On the other hand, there are tropical tornadoes, and

Fig. 4. The orbital tower and its cross-sectional diameter.
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the result of one passing through the tower would be an impulsive load. The
peak velocity might be 150 m/s, giving a dynamic pressure of 8300 N/m2. If the
tower had a minimum cross-sectional area of 50 cm2 comprising three 10-cm radius
cylinders, the total loading due to the wind would be 2500 N/m over perhaps 3000
m of tower length.

Wind loads of this magnitude would not be a problem, because of the large
tensile strength reserve of the tower at the base. The reason for this is the trun-
cation of the tower exponential taper at the Earth’s surface. The cross-sectional
area of the tower at any point is sufficient to support the weight of all the material
below it. The part of the tower at the Earth’s surface could thus support an imag-
inary extension of the tower to a zero diameter at the Earth’s center. The actual
tension in the tower at the Earth’s surface is zero, because the exponential taper
is truncated at this point. The increase in tension due to wind loads which could
be supported is σA(r0), or about 2 x 108 N. To exceed this limit would require a
much higher loading than that possible from a tornado. The tower thus appears
to be immune to the vagaries of the weather. Even in the unlikely event that the
orbital tower were severed near the base by a flying object, it would fail gracefully.
The tower above the break would bend under the applied force, then return to its
previous position. After the air resistance damped out the oscillation, the tower
could be re-connected to the base. Since the tower itself is in orbit, there would be
only infinitesimal motion of its center of mass.

Vertical vibration modes of the tower would be excited by the tidal forces of the
Moon if their periods were 12.5 hr. To assess this problem the periods of several
longitudinal vibration modes were calculated. Standard methods of analysis for a
tapered rod in tension were used (Meirovitch, 1967). The assumption was made
that the displacements, strains, and stresses are uniform at a given cross section, or
that plane sections remain plane during deformation. This assumption is justified
because the diameter of the tower is extremely small in relation to its length. The
further assumption was made that the material remains in the linear portion of
the stress-strain curve. Under these assumptions, the equation of motion is

∂

∂r

[
EA(r)

∂u(r, t)
∂r

]
= ρA(r)

∂2u(r, t)
∂t2

(11)

where u is the vertical deflection from equilibrium. Substituting for A(r) from
eqn (9) and assuming a constant E, the equation of the longitudinal motion is
found to be

∂2u

∂r2
+

1
h

(r2
0/r2 − r2

0r/r3
s)

∂u

∂r
=

ρ

E

∂2u

∂t2
. (12)

Separation of the variables with u(r, t) = U(r)F (t) gives

d2U

dr2
+

1
h

(r2
0/r2 − r2

0r/r3
s)

dU

dr
+

ω2ρ

E
U = 0

d2F

dt2
+ ω2F = 0 (13)
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where ω is the circular frequency. These equations were solved by using an analog
computer to obtain the periods of vibration of the first six modes. An iterative
process was used (Rogers and Connolly, 1960) based on the end conditions of
U(r0) = 0, U(rt) = U0 and U ′(rt) = 0, where the prime indicates the derivative
with respect to r. The periods of the first few modes are plotted as functions of
the taper ratio in Fig. 5. With a lunar tidal excitation period of 12.5 hr, there
should be no amplification of any longitudinal vibration mode except for a taper
ratio of three.

For the design point taper ratio of ten, the period of the longitudinal mode num-
ber one is seen from Fig. 5 to be 21.5 hr. Assuming that each mode responds as a
single-degree-of-freedom system without damping, the first mode would experience
an amplification factor of only 0.5 due to the tidal excitation. Smaller taper ratios
would result in greater amplification, but they are probably not feasible because
of the greater characteristic height required.

One other dynamic problem is the excitation of traveling waves along the tower
by the transverse forces of payloads ascending the tower, analogous to the whipping
of overhead electrical wires caused by the pantograph of a fast electric locomotive.
There are critical velocities for which large oscillations would occur, corresponding
to the velocities at which the payload would travel twice the length of the tower
during one complete period of a lateral vibration mode (Timoshenko, 1941).

To assess this problem the periods of the first few lateral vibration modes
were calculated. Since the tension in the tower is much greater than the Euler
buckling load, the tower is assumed to vibrate as a wire in tension rather than as
a beam. This assumption is surprisingly good, as will be demonstrated. Following
Timoshenko (1955), the equation for the lateral vibration of a bar in tension is
composed of two parts, one due to the restoring force of the tension and one due

Fig. 5. Longitudinal vibration mode period vs taper ratio.
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to the bending stiffness. However, for a large tension and a small stiffness, as
in a stretched wire, only the tensile restoring force need be considered. For the
orbital tower, with an average width on the order of 10 m, the ratio of the length
to the diameter is about fourteen million. The error in frequency caused by the
assumption of a wire in tension is about 10−5, because the restoring force in tension
divided by the restoring force in stiffness is proportional to the length squared. The
bending stiffness of the orbital tower can thus be quite safely neglected. Summing
the forces on an element of the tower gives the same form as eqn (11), with T (r)
in place of EA(r), where T (r) is the tension in the tower at point r. Assuming the
tension at any point is σA, the final equation in terms of the lateral displacement
y(r, t) = Y (r)F (t) has the form of eqn (13):

d2Y

dr2
+

1
h

(r2
0/r2 − r2

0r/r3
s)

dY

dr
+

ω2ρ

σ
Y = 0

d2F

dt2
+ ω2F = 0 (14)

These equations were solved in the same manner as eqns (13), with the end con-
ditions Y (r0) = 0, Y (rt) = Y0 (an arbitrary displacement), and Y ′(rt) = Y0/rt≈0.
This latter condition means that at the free end of the tower there cannot be any
transverse force. Since the tension is not zero near the end, the slope must parallel
the tension. This direction is radially outward from the center of the Earth. For
small oscillations, the ratio Y0/rt is essentially zero.

Based on these lateral vibration frequencies and the relation between them, the
tower length, and the critical velocities,

vn = 2fnl (15)

the first three critical velocities are shown in Fig. 6 as functions of the taper
ratio.

Fig. 6. Critical velocities vs taper ratio for moving payloads.
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Travel by payloads along the tower at these constant velocities would be prohibited,
just as the critical speeds of drive shafts must be avoided. However, it would be
permissible for a capsule to travel at a critical velocity for a few hours, before
dangerous amplitudes could build up.

The foregoing analysis has assumed no tower elongation under load. Since the
tensile force in the tower must necessarily be very high for a low taper ratio, there
would be a definite elongation of the tower. The expression for this elongation is

∆ =
∫ r

r0

T (r)dr

A(r)E
=

∫ r

r0

σ

E
dr =

σ

E
(r − r0)

since T (r) = σA(r). This formula gives a good approximation to the elonga-
tion, but it does not take into account the change in force on each element of the
tower when it is deformed. To do this, define y(r) = r + ∆(r) = r + (r − r0)σ/E
and evaluate the integral

∆ =
∫ y

r0

T (y)dy

A(y)E
=

∫ r

r0

σ

E

dy

dr
dr

=
∫ r

r0

σ

E
(1 + σ/E)dr =

σ

E
(1 + σ/E)(r − r0).

Of course this small addition to the deformation will again increase the tension. In
the limit, the total deformation is found by this iterative process to be

∆
r − r0

= σ/E + (σ/E)2 + (σ/E)3 + · · ·.

This series converges very rapidly. The result for a taper ratio of ten is a total
elongation of 5.1%. A higher taper ratio would result in less elongation; for a taper
ratio of thirty, the total elongation is 3.4%. The value of σ/E in these two cases is
0.0482 and 0.0322, respectively.

Such an elongation of the tower under stress would not change the shape, be-
cause each element has the same stress and therefore elongates by the same ratio.
However, the location of the tower top would be changed. The exact height can be
calculated from eqn (5) modified for elongation:

F =
∫ y

F (y)dy =
∫ r

F [y(r)]
dy

dr
dr = 0

where y = r(l + ∆)−∆rs, and F (y) = ρA(y)g0r
2
0(1/y2 − y/r3

s).
Using the relation for A (r) from eqn (9), the equation for F can be set to zero

and integrated. The result shows that for a taper ratio of 10, the tower length
derived by eqn (5) would be increased by 15.4%; for a taper ratio of 30, the length
would be increased by 8.6%. The effect of this elongation would be to increase
slightly the periods of lateral vibration plotted in Fig. 5. The critical velocities of
Fig. 6 would be unchanged, since the frequency decreases inversely with length.
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The major effect of allowing for the tower elongation is to make the orbital tower
less susceptible to tidal resonance. The amount of elongation is reduced by using a
higher taper ratio, which reduces the stress. The precise amount of the elongation is
subject to change when better values of E for perfect-crystal whiskers are available.

A major difficulty in building the orbital tower is the immense volume of ma-
terial needed. The amount of material is a function of the taper ratio and the
minimum cross-sectional area of the tower base, as shown in Fig. 7 in terms of
the volume of an untapered tower. The amount of material is also shown in terms
of the number of launches required to orbit the material, assuming an advanced
space shuttle with a capacity of 300 m3 and a minimum tower area of 50 cm2.
About 24,000 flights would be required for a taper ratio of 10, assuming that all
the material were rocketed into synchronous orbit. The number of flights could
be reduced by carrying most of the material up the tower itself after a minimum-
diameter strand touched the ground. Nevertheless, the tremendous amount of ma-
terial required means that the orbital tower would be by far the most demanding
engineering project ever undertaken.

The preceding development has indicated that the orbital tower is theoretically
possible; its practicality is another matter. The necessary ingredients include a
highly advanced space shuttle with a payload perhaps thirty times that of the
presently proposed shuttle; the perfection of techniques for growing the perfect-
crystal graphite whiskers and enclosing them in a suitable matrix; and the devel-
opment of a propulsion system for carrying payloads up the tower. The

Fig. 7. Tower volume and advanced shuttle launches required vs taper ratio.

addition of propulsion and communication equipment to the tower and the necessity
of allowing a proper safety factor to the allowed stresses would mean that a higher
taper ratio would be required than shown for the theoretical values in Fig. 1; this
would increases the required volume of material. Nevertheless, these needs can be
met theoretically by choosing a taper ratio large enough.
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Tower uses

To justify its tremendous costs, the orbital tower has several unique attributes.
The first is the potential for greatly reducing the energy required to launch geo-
stationary satellites. The energy required for rocket launches may be summarized
as the potential energy of the orbital radius and the kinetic energy of the orbital
velocity. By sending a payload up the tower, the kinetic energy is saved; the tower
imparts the orbital velocity automatically as the payload ascends. The saving is
about 8% to geostationary orbit. This saving could be increased if the tower could
be used as the conductor for a linear induction propulsion system (Thornton, 1973).
By this method, a capsule ascending the would receive power through the tower
itself, from a ground power station, or possibly from a solar power station located
at the geostationary point (Patha and Woodcock, 1974). Conversely, a capsule
descending the tower from orbit would be braked by having its excess energy ab-
sorbed electrically by the tower. By operating the capsules in pairs, one descending
and providing energy to the tower and one ascending and absorbing energy from
the tower, payloads could be orbited with greatly reduced energy. The net energy
required would be only that portion used to lift into orbit the excess payload over
that returning, plus frictional and conversion losses. Recapturing the energy of
returning spacecraft would also end the need for heat shields.

The second important advantage of the tower is that it could be used to extract
energy from the Earth’s rotation by launching payloads from the geostationary
altitude into higher orbits. At any point above the synchronous altitude the tower
velocity is greater than orbital velocity; therefore, a payload released from the
upper tower would attain a higher orbit. The velocity at the top of the tower is
so great (10.93 km/s) that a payload released from there would escape the Earth
without rocket propulsion. This velocity is sufficient to allow a probe to reach a
solar distance of 12.3 or 0.26 astronomical units, depending on whether the probe
is launched to augment or to diminish the Earth’s orbital velocity. Probes released
from the top would thus have sufficient velocity to travel as far from the Sun as
Saturn or as far sunward as Mercury. These planets, Venus, Mars, and Jupiter
would thus be accessible with no more energy than that required to reach the
geostationary orbit. Since the tower’s equatorial orbit is inclined to the ecliptic,
trajectories out of the ecliptic plane would be possible in order to avoid the thickest
part of the asteroid belt.

Even more energy could be extracted from the Earth’s rotation by allowing the
net outward force to accelerate a payload located above the synchronous altitude.
If a payload were allowed to slide freely on the leading edge of the tower on a low-
friction connection such as an air cushion, it would attain a large radial velocity
as it moved upward. The net upward force is found from eqn (4) to be

F (r) = mg0(r2
0r/r3

s − r2
0/r2). (16)

By the energy theorem, the final velocity is given by

1
2
mv2 =

∫ rt

rs

Fdr = mg0r
2
0

∫ rt

rs

(r/r3
s − 1/r2)dr. (17)
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Substituting values and integrating gives a final radial velocity of 10.1 km/s at the
end of the tower. This velocity, coupled with the tower tangential velocity, would
allow the payload to reach all the planets past Saturn, and even to escape the solar
system completely.

Figure 8 shows against the background stars the narrow band about the eclip-
tic which would be accessible to unpowered probes launched from the synchronous
altitude on the tower. The maximum attainable hyperbolic excess velocity would
be 13.8 km/s. By launching probes to pass near Jupiter and using Jupiter’s grav-
itational field to increase the probe’s heliocentric velocity, the accessible region
could be greatly enlarged (Flandro, 1966). However, this would require the use
of a powered stage with guidance, such as a Pioneer or Mariner spacecraft. A
powered stage could also increase the accessible region directly by augmenting the
tower launch velocity; but even unpowered probes could explore the neighborhood
of the solar system beyond Pluto for the expected halo of comets and investigate
the junction between the solar wind and the interstellar medium.

These results have been calculated based on the undeformed tower length. The
effect of allowing for elongation of the tower due to the tension would be to increase
the length somewhat for small taper ratios and to increase the launch capability
correspondingly.

Any probe launched from the synchronous altitude would accelerate through
the first two or three critical velocities of the tower, depending on the taper ratio,
and the probe mass and its Coriolis acceleration would excite the tower lateral
vibration modes. As a result, the probe mass would be limited by the allowable
deflection of the tower. Fortunately, this is not a serious limit because the probe
would pass through the critical velocities so rapidly that there would not be time
for resonant amplitudes to build up. For example, from eqn (17) it can be derived
that a probe launched from the synchronous point with a small initial velocity
would require about 6 hr to reach the tower top. On the other hand, eqn (15) in
conjunction with Fig. 6 shows that the first lateral mode has a period of about 30
hr. The excitation of this mode would then last only a small fraction of a cycle,
producing little amplification.

The orbital tower has another interesting application, which is radioactive waste
disposal. If the use of nuclear power plants continues to increase, so will the
accumulation of radioactive wastes and the probability of an environmental

Fig. 8. Celestial region accessible to unpowered probes launched by the orbital
tower.
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disaster. One safe and permanent solution is to place these wastes into the ultimate
incinerator, the Sun. If a small upper stage were added to a vehicle launched by
the tower out past Saturn, this stage could be fired at aphelion to cancel the small
remaining heliocentric velocity. The payload would then drop directly into the
Sun, where its contents would be rendered completely harmless.

Other applications of the orbital tower might include the positioning of geosta-
tionary monitoring platforms at various altitudes and the experimental use of the
orbital tower as a fixed conductor between the various radiation belts.

Conclusions

The developments in this paper have indicated that it is theoretically possible
to construct a tower connecting a geostationary satellite to the ground, if certain
requirements are met. The orbital tower would be a gravity-gradient stabilized
satellite itself, balanced in tension about the synchronous altitude and reaching to
more than 144,000 km altitude. The tower material would require a strength-to-
weight ratio equaled at present only by laboratory measurements of perfect-crystal
whiskers. The tower would also require a very large volume of material to be
carried into orbit. To construct a tower with a base cross-sectional area of 50 cm2

and a taper ratio of 10, about 24,000 flights would be required of an advanced
space shuttle with thirty times the payload of the presently proposed shuttle.

The orbital tower could be used to launch probes without rockets from the
synchronous altitude to all the planets or to escape the solar system, by extracting
energy from the Earth’s rotation. The tower could also be used to recapture the
energy of returning spacecraft and use it to power other vehicles up the tower
into orbit. This would require a linear induction propulsion system in the tower.
By this method, the net energy cost of launching vehicles into geostationary orbit
would be greatly reduced.

A simplified static analysis of the orbital tower and a dynamic analysis of its
response to Moon-induced tidal excitations was performed, based on a model of the
tower as a thin rod in tension and with small deflection. The results indicate that
the tower would be stable for any taper ratio greater than 3. The dynamic analysis
of the tower response to the forces of moving payloads, under the assumption of the
tower as a wire in tension, indicates that there are critical velocities at which steady
travel must be avoided. However, the tower vibration periods are several hours,
so moderate acceleration through these critical velocities would prevent resonant
buildup. Payloads launched from the geostationary point would accelerate rapidly
enough to prevent large tower deflections.
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