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Multi-Tasking on the PIC16F877 with the Salvo™ RTOS
INTRODUCTION

This application note covers a Real-Time Operating
System (RTOS) running on a PIC16F877. The applica-
tion is written in C using the HI-TECH C compiler.
MPLAB® IDE is used as the Integrated Development
Environment. This RTOS is unique, in that it is intended
for microcontroller applications where memory is
severely limited. The application runs on a prototype
PCB that monitors temperature, accepts user input and
displays important temperature information.

RTOS OVERVIEW

Salvo™ is a full featured, cooperative, event driven,
priority based, multi-tasking RTOS with highly efficient
memory utilization. It is ideally suited for use on
Microchip PICmicro® devices. Written in C, it is very
easy to use, employing standardized RTOS methods
and terminology. This RTOS makes PICmicro
programming a breeze, and includes:

• Over 40 callable user services in its API
• Up to 16 separate dynamic task priority levels 

• Support for multiple event types 
• Timer-based services 
• Minimal call … return stack usage 

• Low interrupt latency and fast context switching 

Every Salvo application must adhere to two “golden
rules”: 

1. Each task must have at least one context switch. 

2. Context switches may only occur in tasks. 

For this application, Salvo was user-configured to pro-
vide the basic multi-tasking kernel, along with binary
semaphore and message event services, as well as
timer based delays. It automatically manages complex
issues, like task scheduling, access to shared
resources, intertask communication, real-time delays,
PICmicro RAM banking and interrupt control. With this
multi-tasking RTOS foundation in place, the application
programmer can concentrate on quickly and efficiently
implementing the desired system functionality.

SYSTEM DESCRIPTION

The prototype's hardware includes a 20 MHz crystal,
four thermistors, four potentiometers, a serial port,
EEPROM, four 7-segment LEDs, 16-button keypad
and a piezo beeper. The phrase, “normal conditions,”
will be used frequently in this application note, indicat-
ing the demo board is in temperature monitoring mode
with no alarm or user functions being executed.

The time-base is a 2 ms periodic interrupt derived from
Timer1. There are a total of eight tasks, four of which
are in the waiting state under normal conditions. There
are five events, four of which are dependent upon the
status of outside conditions (e.g., keypad entry, alarm)
and one is required for resource control.

The thermistors are divided up into four zones (Z1, Z2,
Z3, Z4). Each zone will be monitored to check if the
temperature is between the low and high threshold
temperature range (set by user). The user sets the low
and high threshold temperatures by pressing the
Low-High program button (see Figure 1). 

FIGURE 1: KEYPAD CONFIGURATION  

The low temperature is entered first, then the high;
each entry is followed by a quick display of the entered
temperature. A zone that is not within these parameters
will set off the Piezo alarm, simultaneously displaying
the zone number that set off the alarm. An alarm con-
dition will also signal Task_Weeprom() with the zone
number. Under normal conditions, once selected, the
LEDs will always have a zone temperature displayed.
The particular zone on display is dependent upon
which zone button was pressed. Buttons 1 through 4
have two functions (see Figure 1), potentiometer selec-
tion and numerical. When one of these buttons is
pressed (under normal conditions), the current potenti-
ometer value is displayed on the LEDs. 
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At this point, two actions can be taken: potentiometer
adjustment, or press ‘0’ to exit the function. The Zone
Recall button is used to display the zone that set off the
alarm last. The USART is used for displaying the cur-
rent temperatures on a PC monitor; this is executed by
entering 'z' via the PC keyboard. The USART is config-
ured for Master Asynchronous mode with a 9600 baud
rate.

APPLICATION CONFIGURATION

The initial setup for the RTOS involves creating a con-
figuration file and creating an MPLAB project. The
Salvo user services are contained in different source
files. As code development progresses, more user ser-
vices are needed, resulting in additional source files
being added to the application. The application
includes the following files: 

• main.c 
• binsem.c 

• chk.c 
• delay.c 
• event.c 

• init.c 
• mem.c 
• task.c 

• util.c 
• msg.c 
• timer.c 

• qins.c 
• salvo.h 
• salvocfg.h 

 Keep in mind that these files are specific to this appli-
cation and may not apply to others. Each Salvo appli-
cation requires its own configuration file called
salvocfg.h. The default salvocfg.h file contains
all possible parameters. For this application, specific
parameters were stripped out of the default file and put
into a application specific salvocfg.h file. This file is
automatically included via the salvo.h header file.
The salvocfg.h file for this application is shown in
Appendix B. Table 1 shows the node property settings
in MPLAB IDE. 

MEMORY

General purpose RAM is allocated to four parts of the
application: 

• Global variables. 

• Control blocks and other variables. 
• Parameter stack and auto variables maintained 

by the compiler. 
• Interrupt saves and restores. 

The memory requirements exceed the available mem-
ory in RAM Bank 0, so the global variables are placed
in Bank 1, and Salvo's variables are placed in Bank 2,
using configuration options in salvocfg.h. Salvo's
message pointers can access memory in any RAM
bank and anywhere in ROM. The final code consists of
three roughly equal portions: one-third Salvo RTOS,
one-third HI-TECH C compiler library functions and
one-third application specific code.

TIME-BASE

In an RTOS environment, establishing a true time-base
is critical for time-based task operations. In this applica-
tion, Timer1 triggers an interrupt every 2 ms and is
solely used for this periodic interrupt. The ISR calls the
OSTimer() function and reloads Timer1 for another
2 ms. The 2 ms interrupt is also known as the “system
tick rate” and forms the time basis for task delays. Six
of the eight tasks rely on OSTimer() via OSDelay().
Under normal conditions, each task's run time is con-
stant, thus the importance for a time-base. For
instance, Task_Convert() is configured to run every
40 ms via "OS_Delay(20);". In the salvocfg.h
include file, there is a configuration statement regard-
ing the number of bytes allocated for delays. This con-
figuration option tells the OS what the maximum delay
can be: 

one byte = 28-1 ticks

two bytes = 216-1 ticks, etc. 

In this application, we need two bytes.
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TABLE 1: MPLAB NODE PROPERTIES 
 

NODE PROPERTIES (.c-FILES)

 

NODE PROPERTIES (.hex-FILE)
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TASK CONFIGURATION

Tasks and Events are the building blocks of an RTOS.
These modules can be added and deleted without
affecting other parts of the code. This application is
divided into eight tasks. Under normal conditions, four
of the tasks are in the waiting state, while the other four
run and then delay themselves repeatedly.

Figure 2 shows program execution upon power-up. An
important point to realize here is that once multi-tasking
begins, the four waiting tasks do not consume any pro-
cessing power until they are signaled. When bringing
the system online, there will be no alarms or user func-
tions in operation. The result is, all tasks that wait for an
event will go into the waiting state and become eligible
only when signaled. 

FIGURE 2: MAIN( ) 
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The following is a detailed description of each task’s
priorities, status, and responsibilities.

Task_Convert()

Priority: 1 
Task has a priority of ‘1’ because we must determine
thermistor temperatures to decide whether an alarm
condition exists.

Status:  Runs every 40 milliseconds.

Responsibilities:

1. Converts the analog thermistor voltage into a
digital value, then translates this value into a
Fahrenheit temperature.

2. This value is compared against the low and high
threshold temperatures [via ConvertTemp()]
to determine if an alarm is necessary.

3. If no alarm is called then the other thermistor
zones are converted.

Task_Alarm_On()

Priority: 1 
This task also has a priority of ‘1’, but runs after
Task_Convert() in a round-robin fashion. After
determining temperature, checking for zone alarms is
most important.

Status: Waits for an event.

Responsibilities:

1. Has the same priority as, and runs immediately
after,  Task_Convert()at start-up.

2. Displays the zone number in alarm.

3. Turns the piezo beeper on and off.

Task_Display()

Priority: 2 
Enables temperatures  to be read from the display.

Status: Runs every 2 milliseconds.

Responsibilities:

1. Converts the temperature value to a format nec-
essary for displaying on the LEDs.

2. Displays each converted digit.

Task_KeyPad()

Priority: 3 
Keypad entry is infrequent and should not supercede
the prior tasks.

Status: Runs every 20 milliseconds.

Responsibilities:

1. Scans for the low-high entry.
2. Scans for potentiometer adjustment entry.
3. Scans for EEPROM recall entry.

4. Scans for zone display entry.

Task_Usart()

Priority: 4 
Remote PC monitoring is only performed occasionally
because usage is low.

Status: Runs every 800 milliseconds.

Responsibilities:

1. Scans for a PC keyboard entry (z).
2. Prepares each zone temperature for PC monitor

display.
3. Writes the Z1 string out to the HyperTerminal via

the USART. 

Task_Weeprom()

Priority: 5 
This task is only active when an alarm has occurred;
therefore, it is used very little.

Status: Waits for an event.

Responsibilities:

1. Receives the zone number in alarm.
2. Writes zone number to EEPROM.

3. I2C communication between the microcontroller
and EEPROM.

Task_Reeprom()

Priority: 6 
This task is dependent upon Task_KeyPad() and is
independent of temperature and alarm status; there-
fore, it is a very low priority.

Status: Waits for an event.

Responsibilities:

1. Reads the last address that Task_Weeprom()
wrote to.

2. Reads the data within this address.

3. Displays the contents of the EEPROM address
on the LEDs (zone number).

Task_Pots()

Priority: 7 
This task is least important because it is only used for
setting potentiometers, which do not affect any temper-
ature or alarm statuses.

Status: Waits for an event.

Responsibilities:

1. According to the value passed to the local vari-
able pot_val, the appropriate pot is selected for
adjustment while displaying the current potenti-
ometer A/D value on the LEDs.
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EVENT CONFIGURATION

Semaphores and messages can represent events and
these methods of intertask communication are used in
two ways. The first and more obvious is done by signal-
ing tasks. When a task is signaled, it transitions from a
waiting state to an eligible state and finally a running
state. ALARM, REEPROM, POTVAL and WEEPROM are
used in this fashion. The DISPLAY event is used to
control a resource, quite different from the other
events. Because the LED display is used by multiple
tasks and the LEDs and keypad both operate out of
PORTB on the microcontroller, PORTB has to be con-
figured differently for both. The DISPLAY event is used
to manage access to PORTB. When control of
DISPLAY is placed around a group of statements, it
creates a sequence whereby a resource is acquired,
used, and then released. 

The process flow for Task_Alarm_On(), has the task
in one of three states: running, delayed, or waiting for an
event. Salvo manages task execution so the PICmicro
always runs the highest priority, eligible task. Whenever
a particular task is running in this application, all other
tasks are either delayed, waiting for an event, or eligible
to run.

Looking at Task_Alarm_On()when the code reaches
OS_WaitBinSem (DISPLAY), if DISPLAY = 1, then
OS_WaitBinSem() flips it to ‘0’, and the following
code is executed. When Salvo context switches via
OS_Delay(), any piece of the code that waits for
DISPLAY will not run (DISPLAY = 0). After both
Task_Alarm_ON() and OS_Delay() are completed,
DISPLAY is signaled (DISPLAY = 1) and allows the
next piece of code waiting for DISPLAY to run.

ALARM

Type: Message

Purpose: Signal Task_Alarm_On() from within
Task_Convert()(ConvertTemp()), with a mes-
sage containing the zone number in alarm.

WEEPROM

Type: Message

Purpose: Signal Task_Weeprom() with a message
containing the zone number in alarm. This message
only happens if there is an alarm and after the signaling
of Task_Alarm_On().

REEPROM

Type: Binary Semaphore

Purpose: Signal Task_Reeprom() from within
Task_KeyPad() that the read EEPROM button has
been pressed. Signaling the binary semaphore causes
the waiting task to run.

POTVAL

Type: Message

Purpose: Signal Task_Pots() from within
Task_KeyPad() that a potentiometer adjustment but-
ton has been pressed. Passes information containing
the potentiometer number to set for adjustment mode.

DISPLAY

Type: Binary Semaphore

Purpose: This semaphore is used to control a
resource, this may be the function of the LEDs or the
keypad.

TIMING PERFORMANCE

Time management is a major responsibility for an
RTOS. An application's response is dependent upon
task execution times. The actual time between succes-
sive executions of Task_Convert() was measured
as 40 milliseconds, with less than one system tick
(2 ms) of timing jitter. When task delay times are calcu-
lated, the time necessary for instructions within the task
must also be taken into consideration. 

SUMMARY

This application note demonstrates how easy it is to
implement a common embedded application into an
RTOS environment. The temperature application
shown here is just one of the many ways in which an
RTOS can be applied. Some RTOS features that have
not been discussed may be what your application
requires. This includes counting semaphores and mes-
sage queues, which are extended versions of the user
services used in this application. Only one interrupt
was used (to maintain a time-base), but additional
interrupt sources can be included for added real-time
response. After establishing an understanding of RTOS
user services, it's just a matter of adding more tasks
and events to suit the demands of your application.

WEBSITES

Microchip Technology Inc. ............ www.microchip.com

Pumpkin, Inc.............................. www.pumpkininc.com

HI-TECH Software...............................www.htsoft.com
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APPENDIX A: FLOW CHARTS 

FIGURE A-1: SCHEMATIC (SHEET 1 OF 3)  
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FIGURE A-2: SCHEMATIC (SHEET 2 OF 3)  
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FIGURE A-3: SCHEMATIC (SHEET 3 OF 3)  
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Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX B: SOURCE CODE
salvocfg.h

#define OSCOMPILER OSHT_PICC
#define OSTARGET OSPIC16

#define OSBYTES_OF_DELAYS 2

#define OSLOC_ECB bank2
#define OSLOC_TCB bank2

#define OSEVENTS 5
#define OSTASKS 8

#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSENABLE_MESSAGES TRUE
#define OSBIG_MESSAGE_POINTERS TRUE

main.c
/*
This program is based on the Salvo RTOS (v2.1). Its function is to scan 
four thermistors and report their temperatures. If any of reported temperatures
are not within a preset range, the alarm will sound. Four potentiometers adjustments 
are accessed via keypad entry. Two of them will be used to determine the Piezo tone and 
duty cycle, while these pots are being set their A/D values will appear on the LED display. 
The four thermistor are divided up into 4 zones, each zone can be displayed on the 
4-digit LED display via a keypad entry. The defined temperature range can be entered by keypad 
entry, entering the LOW temp first followed by the HIGH temp. Zone temperatures can be recalled
onto a PC monitor via the HyperTerminal by pressing ’z’ on a PC keyboard.
Every time a zone goes into alarm, the alarm zone number will be written to the 
EEPROM. The zone that last set off an alarm can be recalled via keypad entry and the
zone number will be displayed.
*/

#include <salvo.h>

#define ALARM  0
#define WEEPROM 1
#define REEPROM 2
#define POTVAL  3
#define DISPLAY 4

static volatile unsigned int TMR1 @ 0x0E;

bank1 unsigned char Low_Hi;
bank1 signed   char data_address; //EEPROM ADDRESS
bank1 unsigned char *zone_dis; //ZONE DISPLAY
bank1 unsigned char temp1, temp2, temp3, temp4;//ALARM & ZONE TEMPS
bank1 unsigned char low, high; //LOW & HIGH TEMP THRESHOLD
 2001 Microchip Technology Inc.  DS00777B-page 10
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bank1 unsigned char Z1[39] = "ZONE Temps: z1-xx z2-xx z3-xx z4-xx\n\r\v";//RS-232 DISPLAY

const char SevenSegmentTable[] = //DIGIT SEGMENTS
{ 0b11000000, // 0

0b11111001, // 1
0b10100100, // 2
0b10110000, // 3
0b10011001, // 4
0b10010010, // 5
0b10000010, // 6
0b11111000, // 7
0b10000000, // 8
0b10010000 // 9

};
                                                     
const unsigned char CHSmask[] = //A/D CHS BITS

{ 0b00100000,
0b00101000,
0b00110000,
0b00111000

};

const unsigned char zones[] = //TEMPERATURE ZONE NUMBERS
{

1,
2,
3,
4

};

bank1 unsigned char * const tempPArray [] = //ZONE TEMPERATURES
{

&temp1,
&temp2,
&temp3,
&temp4

};

//PROTOTYPES
void Delay(unsigned char tmr);
void interrupt isr(void);
void ConvertAD(void);
char ButtonPress(unsigned char buttons);
char Keys(void);
void BcdConv(char);
void WriteSevenSegment( unsigned char segment, unsigned char digit);
char ReadUSART(void);
void WriteUSART(char data);
void WriteUSARTBuffer(unsigned char *data, unsigned char len);
void Idle(void);
void Display(unsigned char lo_hi);
void PotDisplay(void);
void ConvertTemp( bank1 unsigned char * const temp, 
           const unsigned char * zone );

_OSLabel (task_convert1)
_OSLabel (task_alarm_on1)
_OSLabel (task_alarm_on2)
_OSLabel (task_alarm_on3)
_OSLabel (task_alarm_on4)
_OSLabel (task_keypad1)
_OSLabel (task_keypad2)
_OSLabel (task_keypad3)
_OSLabel (task_display1)
_OSLabel (task_display2)
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_OSLabel (task_usart1)
_OSLabel (task_weeprom1)
_OSLabel (task_reeprom1)
_OSLabel (task_reeprom2)
_OSLabel (task_reeprom3)
_OSLabel (task_pots1)
_OSLabel (task_pots2)

//**************************(  FUNCTIONS  )****************************************

void Delay(unsigned char tmr) //TIMER0 MAX TIMEOUT = 13ms
{

TMR0 = 255 - tmr;
T0IF = 0;
while(T0IF==0);

}

#pragma interrupt_level 0
void interrupt isr(void) //TIMER1 2ms PERIODIC INTERRUPT
{

if(TMR1IF)
{

TMR1IF = 0;
TMR1 -= 5000;
OSTimer();

}
} 

void ConvertAD(void) //A/D CONVERSION
{

Delay(1); 
ADGO = 1; 
while(ADGO);

}

char ButtonPress(unsigned char buttons)
{

unsigned char Col_Row; //FIND BUTTON PRESS
PORTB = buttons;
Delay(55);
Col_Row = PORTB;
return Col_Row;

}

char Keys(void) //NUMBER SELECTION
{

char KeyVal = 10; //BUTTON NUMBER PRESSED 
PORTD = 0x0F; //LEDs OFF
TRISB = 0xF0; //RB7:RB4=INPUTS,RB3:RB0=OUTPUTS

while(KeyVal == 10)
{

switch(ButtonPress(0b00001110))
{
case 0xEE:

KeyVal = 0b00000001; //#1
break;

case 0xDE:
KeyVal = 0b00000100; //#4
break;
DS00777B-page 12   2001 Microchip Technology Inc.
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case 0xBE:
KeyVal = 0b00000111; //#7
break;

default:
break;

}

switch(ButtonPress(0b00001101))
{
case 0xED:

KeyVal = 0b00000010; //#2
break;

case 0xDD:
KeyVal = 0b00000101; //#5
break;

case 0xBD:
KeyVal = 0b00001000; //#8
break;

case 0x7D:
KeyVal = 0; //#0
break;

default:
break;

}

switch(ButtonPress(0b00001011))
{
case 0xEB:

KeyVal = 0b00000011; //#3
break;

case 0xDB:
KeyVal = 0b00000110; //#6
break;

case 0xBB:
KeyVal = 0b00001001; //#9
break;

default:
break;

}
PORTB = 0b00000000;
}return KeyVal;

}

void BcdConv(char KeyVal) //BCD CONVERSION
{

Low_Hi *= 10;
Low_Hi += KeyVal;

}

void WriteSevenSegment(unsigned char segment, unsigned char digit)
{ //LED VALUE DISPLAY

switch(digit)
{
case 1:

PORTD = 0x0E; //FIRST DIGIT
break;
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case 2:
PORTD = 0x0D; //SECOND DIGIT
break;

case 3: 
PORTD = 0x0B; //THIRD DIGIT
break;

case 4:
PORTD = 0x07; //FOURTH DIGIT
break;

}

TRISB = 0x00;
PORTB = SevenSegmentTable[segment]; //SEND SEGMENT NUMBER TO PORTB

}

char ReadUSART(void) //READ SERIAL DATA ENTRY
{

unsigned char rdata;
if(RCIF) //RECEPTION COMPLETE
rdata = RCREG;
return rdata;

}

void WriteUSART(char data) //WRITE SERIAL DATA
{

while(!TRMT);
TXREG = data;

}

void WriteUSARTBuffer(unsigned char *data, unsigned char len)
{

unsigned char i;

for ( i = 0; i < len; i++ )
WriteUSART(data[i]); //WRITE STRING

}

void Idle(void) //I2C IDLE FUNCTION
{

while((SSPCON2 & 0x1F)|(STAT_RW)) 
continue;

}

void Display(unsigned char lo_hi) //DISPLAY LOW & HIGH INPUT
{

unsigned char v1,v2,v3;
unsigned char i;

for(i=1; i<200; i++)
{
v1 = lo_hi/0x64; //FIND FIRST DISPLAY DIGIT
v2 = (lo_hi-(v1*0x64))/10; //FIND SECOND DIGIT
v3 = (lo_hi-(v1*0x64)-(v2*10)); //FIND THIRD DIGIT 
WriteSevenSegment(0, 1); //SEND SEGMENT VALUE AND DIGIT 1
Delay(55); //DIGIT DELAY
WriteSevenSegment(v1, 2);
Delay(55);
WriteSevenSegment(v2, 3);
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Delay(55);
WriteSevenSegment(v3, 4);
Delay(55);
}

}

void PotDisplay(void)
{

unsigned char v1,v2,v3;
for(;;)
{

ConvertAD();
v1 = ADRESH/0x64; //FIND FIRST DISPLAY DIGIT
v2 = (ADRESH-(v1*0x64))/10; //FIND SECOND DIGIT
v3 = (ADRESH-(v1*0x64)-(v2*10)); //FIND THIRD DIGIT ;
WriteSevenSegment(v1, 2); //SEND SEGMENT VALUE AND DIGIT 2
Delay(15);
WriteSevenSegment(v2, 3); //SEND SEGMENT VALUE AND DIGIT 3
Delay(15);
WriteSevenSegment(v3, 4); //SEND SEGMENT VALUE AND DIGIT 4
Delay(15);

PORTD = 0x0F; //PREPARE FOR KEYPAD USE
TRISB = 0xF0;
if(ButtonPress(0b00001101) == 0x7D)
break;

}
}

void ConvertTemp( bank1 unsigned char * const temp, const unsigned char * zone )
{ float adresh;

adresh = ADRESH;
*temp = ( (.538) + (.444*(adresh) ) + (.001*(adresh)*(adresh) ) ); 

if ( ( low > *temp ) || ( *temp > high ) )
 {

OSSignalMsg(ALARM, (OStypeMsgP) zone); //SIGNAL task_alarm() W/ ZONE #
OSSignalMsg(WEEPROM, (OStypeMsgP) zone); //SIGNAL task_weeprom() W/ ZONE #

 }
}

//**************************(   TASKS   )*******************************************
//**********************************************************************************

void Task_Convert(void)
{

static unsigned char i = 0;

for(;;)
{

ADCON0 &= ~0b00111000; //CLEAR CHS BITS
ADCON0 |=  CHSmask[i]; //SELECT CHS
ConvertAD(); //CONVERT CHS
ConvertTemp(tempPArray[i], &zones[i] );

if ( ++i > 3 ) i = 0;

OS_Delay(20,task_convert1); //DELAYED FOR 40ms
}

}
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void Task_Alarm_On(void) //WAITING TASK
{

OStypeMsgP msgP;

for(;;)
{

OS_WaitMsg(ALARM, &msgP, task_alarm_on1);
OS_WaitBinSem(DISPLAY, task_alarm_on2);
WriteSevenSegment(* ( const unsigned char *) msgP, 4);//DISPLAY ALARM ZONE
CCP1CON = 0x0F;
OS_Delay(200, task_alarm_on3);
CCP1CON = 0;
OS_Delay(200, task_alarm_on4);
OSSignalBinSem(DISPLAY); 

}
}

void Task_Keypad(void)
{

static char pot;
for(;;)
{

OS_WaitBinSem(DISPLAY, task_keypad1);
PORTD = 0x0F; //LEDs OFF
TRISB = 0xF0; //RB7:RB4 = INPUTS,RB3:RB0 = OUTPUTS

switch(ButtonPress(0b00001110) )
{
case 0x7E: //SET LOW AND HIGH TEMPS

PORTD = 0x00; //TURN ON DIGITS TO
TRISB = 0x00; //  SHOW TEMP SETTING
PORTB = 0x00; //   ACTIVATION
OS_Delay(200, task_keypad2);

//GET LOW TEMPERATURE LIMIT
PEIE = 0; //INTERRUPT DISABLED

Low_Hi = 0;
BcdConv(Keys()); //GET 1ST DIGIT
while( PORTB != 0xF0 );

BcdConv(Keys()); //GET 2ND DIGIT
while( PORTB != 0xF0 );

BcdConv(Keys()); //GET 3RD DIGIT
low = Low_Hi;

Display(low); //DISPLAY LOW TEMP
PORTD = 0x0F; //LEDs OFF
TRISB = 0xF0; //RB7:RB4 = INPUTS,RB3:RB0 = OUTPUTS

//GET HIGH TEMPERATURE LIMIT

Low_Hi = 0;
BcdConv(Keys()); //GET 1ST DIGIT
while( PORTB != 0xF0 );

BcdConv(Keys()); //GET 2ND DIGIT
while( PORTB != 0xF0 );

BcdConv(Keys()); //GET 3RD DIGIT
high = Low_Hi;
Display(high); //DISPLAY HIGH TEMP
PEIE = 1; //INTERRUPT RE-ENABLED
break;
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//POTENTIOMETER SELECTION

case 0xEE: //#1
pot = 1;
OSSignalMsg(POTVAL,(OStypeMsgP)&pot); //SIGNAL task_pots() W/ POT-1
break;

case 0xDE: //#4
pot = 4;
OSSignalMsg(POTVAL,(OStypeMsgP)&pot);     //SIGNAL task_pots() W/ POT-4
break;

default:
break;

}

if(ButtonPress(0b00001101) == 0xED) //#2
{

pot = 2;
OSSignalMsg(POTVAL,(OStypeMsgP)&pot); //SIGNAL task_pots() W/ POT-2

}

switch(ButtonPress(0b00001011) )
{
case 0xEB:

pot = 3; //#3 
OSSignalMsg(POTVAL,(OStypeMsgP)&pot);     //SIGNAL task_pots() W/ POT-3
break;

//EEPROM BUTTON
case 0x7B:

OSSignalBinSem(REEPROM); //SIGNAL task_reeprom()
break;

default:
break;

}

//ZONE BUTTONS

switch(ButtonPress(0b00000111))
{
case 0xE7:

zone_dis = &temp1; //ZONE 1 BUTTON
break;

case 0xD7:
zone_dis = &temp2; //ZONE 2 BUTTON
break;

case 0xB7:
zone_dis = &temp3; //ZONE 3 BUTTON
break;

case 0x77:
zone_dis = &temp4; //ZONE 4 BUTTON
break;

default:
break;

}
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OSSignalBinSem(DISPLAY);
OS_Delay(10,task_keypad3); //DELAYED FOR 20ms

}
}

void  Task_Display(void)
{

unsigned char v1,v2,v3;
unsigned char dis_temp;

for(;;)
{

OS_WaitBinSem(DISPLAY, task_display1);

dis_temp = *zone_dis;
v1 = dis_temp/0x64; //FIND FIRST DISPLAY DIGIT
v2 = (dis_temp-(v1*0x64))/10; //FIND SECOND DIGIT
v3 = (dis_temp-(v1*0x64)-(v2*10)); //FIND THIRD DIGIT 
WriteSevenSegment(0, 1); //SEND SEGMENT VALUE AND DIGIT 1
Delay(100); //DIGIT-ON DELAY
WriteSevenSegment(v1, 2);
Delay(100);
WriteSevenSegment(v2, 3);
Delay(100);
WriteSevenSegment(v3, 4);
Delay(100);
PORTB = 0xFF; // TURN OFF LAST DIGIT

OSSignalBinSem(DISPLAY);
OS_Delay(1, task_display2); // DELAYED FOR 2ms

}
}

void  Task_Usart(void)
{

unsigned char v1,v2,v3,v2A,v3A,v2B,v3B,v2C,v3C,v2D,v3D;
for(;;)
{

ReadUSART();
if(ReadUSART() == 0x7A) // ASCII CHARACTER z
{
v1 = temp1 / 0x64; // CONVERT TEMP1 FOR DISPLAY
v2 = (temp1 - (v1*0x64))/10;
v3 = (temp1 - (v1*0x64) - (v2*10));
v2A = v2, v3A = v3;

v1 = temp2 / 0x64; //   TEMP2 
v2 = (temp2 - (v1*0x64))/10;
v3 = (temp2 - (v1*0x64) - (v2*10));
v2B = v2, v3B = v3;

v1 = temp3 / 0x64; //   TEMP3 
v2 = (temp3 - (v1*0x64))/10;
v3 = (temp3 - (v1*0x64) - (v2*10));
v2C = v2, v3C = v3;

v1 = temp4 / 0x64; //   TEMP4 
v2 = (temp4 - (v1*0x64))/10;
v3 = (temp4 - (v1*0x64) - (v2*10));
v2D = v2, v3D = v3;
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Z1[15] = v2A + ’0’;
Z1[16] = v3A + ’0’;
Z1[21] = v2B + ’0’;
Z1[22] = v3B + ’0’;
Z1[27] = v2C + ’0’;
Z1[28] = v3C + ’0’;
Z1[33] = v2D + ’0’;
Z1[34] = v3D + ’0’;
WriteUSARTBuffer(Z1,39); //WRITE STRING Z1 FOR 39 BYTES

}

OS_Delay(400, task_usart1); //DELAYED FOR 800ms
}

}

void Task_Weeprom(void) //WAITING TASK
{

OStypeMsgPalarm_zoneP;
char word;

for(;;)
{

OS_WaitMsg(WEEPROM, &alarm_zoneP, task_weeprom1);
word = *(const unsigned char*) alarm_zoneP;

SEN = 1; //START ENABLED
while(SEN); //WAIT UNTIL START IS OVER
SSPBUF = 0b10100000; //CONTROL BYTE
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT); //LOOK FOR ACK
else

break;

SSPBUF = data_address; //ADDRESS BYTE
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT); //LOOK FOR ACK
else

break;

SSPBUF = word; //DATA BYTE (ZONES: 1,2,3 or 4)
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT) //LOOK FOR ACK
{ PEN = 1; //STOP ENABLED

while(PEN); //WAIT UNTIL STOP IS OVER
}
else

break;
}

}

void Task_Reeprom(void)
{

char word;
for(;;) //WAITING TASK
{

OS_WaitBinSem(REEPROM,task_reeprom1);

Idle(); //ENSURE MODULE IS IDLE
SEN = 1; //START ENABLED
while(SEN); //WAIT UNTIL START IS OVER

SSPBUF = 0b10100000; //CONTROL BYTE (write)
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT); //LOOK FOR ACK
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else
break;

SSPBUF = data_address; //ADDRESS BYTE (write)
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT); //LOOK FOR ACK
else

break;
RSEN = 1; //REPEAT START CONDITION
while(RSEN); //WAIT UNTIL RESTART IS OVER

SSPBUF = 0b10100001; //CONTROL BYTE (read)
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT); //LOOK FOR ACK
else

break;

RCEN = 1; //ENABLE RECEIVE
while(RCEN); //WAIT UNTIL RECEIVE IS OVER

ACKDT = 1; //NO ACK
ACKEN = 1;
while(ACKEN); //WAIT UNTIL ACK IS FINISHED

PEN = 1; //STOP ENABLED
while(PEN); //WAIT UNTIL STOP IS OVER

word = SSPBUF; //WRITE DATA TO VARIABLE
++data_address; //MOVE ADDRESS TO NEXT SPACE

OS_WaitBinSem(DISPLAY, task_reeprom2);
WriteSevenSegment(word, 3); //DISPLAY ZONE OF LAST ALARM
OS_Delay(200, task_reeprom3);
OSSignalBinSem(DISPLAY);

}
}
void Task_Pots(void) //WAITING TASK
{

OStypeMsgP pot_valP;
char pot_val;

for(;;)
{

OS_WaitMsg(POTVAL, &pot_valP, task_pots1);
pot_val = *(char*) pot_valP;
OS_WaitBinSem(DISPLAY, task_pots2);

switch(pot_val)
{

case 1:
CHS2=0, CHS1=0, CHS0=0; //AN0 - PIEZO "TONE" (PWM PERIOD)
PotDisplay();
PR2 = ADRESH;
break;

case 2:
CHS2=0, CHS1=0, CHS0=1; //DISPLAY A/D VALUE
PotDisplay();
break;

case 3:
CHS2=0, CHS1=1, CHS0=0; //DISPLAY A/D VALUE
PotDisplay();
break;

case 4:
CHS2=0, CHS1=1, CHS0=1; // AN3 - FOR PIEZO DUTY CYCLE
PotDisplay();
CCPR1L = ADRESH;
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break;
}

OSSignalBinSem(DISPLAY);
}

}

//*****************************(  MAIN  )****************************************
//*******************************************************************************

void main(void)
{

TXSTA = 0b10100100; //TRANSMIT 
RCSTA = 0b10010000; //RECEIVE 
SPBRG = 0x81; //BAUD RATE
TRISC6 = 0,TRISC7 = 1; //TXD OUTPUT & RXD INPUT

TRISC3 = 1,TRISC4 = 1; //SCL & SDA - I2C
SSPADD = 0x32; //I2C BAUD RATE (MASTER MODE)
SSPCON = 0b00101000; //ENABLE SDA & SCL, S-PORT MODE-MASTER

ADCON0 = 0b01000001; //A/D CONFIG

OPTION = 0b10000101; //TIMER0 CONFIG

T1CON = 0b00010101; //TIMER1 CONFIG (system tick rate)
TMR1IE = 1; //ENABLE INTERRUPT
TMR1IF = 0; //CLEAR FLAG

TRISC2 = 0; //PIEZO
CCPR1L = 0x80,CCP1X=0,CCP1Y=0; //PWM DUTY CYCLE
T2CON = 0b00000101; //TIMER2 PRESCALE = 4 (PWM)

GIE = 1, PEIE = 1; //ENABLE GLOBAL & PERIPHERAL INTERRUPTS

TRISD = 0x00; //PORTD OUTPUT-DIGITS
low=20,high=170; //INITIAL TEMPERATURE RANGE
data_address = 0x00; //FIRST EEPROM WRITE

OSInit();  
//ID PRIORITY

OSCreateTask(Task_Convert,  0, 1);
OSCreateTask(Task_Alarm_On, 1, 1);
OSCreateTask(Task_Keypad,  2, 3);
OSCreateTask(Task_Display, 3, 2);
OSCreateTask(Task_Usart,  4, 4);
OSCreateTask(Task_Weeprom,  5, 5);
OSCreateTask(Task_Reeprom,  6, 6);
OSCreateTask(Task_Pots,  7, 7);

OSCreateMsg(ALARM,  (OStypeMsgP) 0);
OSCreateMsg(WEEPROM,(OStypeMsgP) 0);
OSCreateBinSem(REEPROM, 0);
OSCreateMsg(POTVAL, (OStypeMsgP) 0);
OSCreateBinSem(DISPLAY, 1);

for(;;)
OSSched();

}
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Memory Usage Map:

Program ROM   $0000 - $0819  $081A (  2074) words
Program ROM   $0AAC - $0FFF  $0554 (  1364) words
                             $0D6E (  3438) words total Program ROM 

Bank 0 RAM    $0020 - $004C  $002D (    45) bytes
Bank 0 RAM    $0070 - $007C  $000D (    13) bytes
                             $003A (    58) bytes total Bank 0 RAM  

Bank 1 RAM    $00A0 - $00CE  $002F (    47) bytes total Bank 1 RAM  
Bank 2 RAM    $0110 - $0156  $0047 (    71) bytes total Bank 2 RAM  

Build completed successfully.
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