
M AN777
Multi-Tasking on the PIC16F877 with the Salvo™ RTOS
INTRODUCTION

This application note covers a Real-Time Operating
System (RTOS) running on a PIC16F877. The applica-
tion is written in C using the HI-TECH C compiler.
MPLAB® IDE is used as the Integrated Development
Environment. This RTOS is unique, in that it is intended
for microcontroller applications where memory is
severely limited. The application runs on a prototype
PCB that monitors temperature, accepts user input and
displays important temperature information.

RTOS OVERVIEW

Salvo™ is a full featured, cooperative, event driven,
priority based, multi-tasking RTOS with highly efficient
memory utilization. It is ideally suited for use on
Microchip PICmicro® devices. Written in C, it is very
easy to use, employing standardized RTOS methods
and terminology. This RTOS makes PICmicro
programming a breeze, and includes:

• Over 40 callable user services in its API
• Up to 16 separate dynamic task priority levels

• Support for multiple event types
• Timer-based services
• Minimal call … return stack usage

• Low interrupt latency and fast context switching

Every Salvo application must adhere to two “golden
rules”:

1. Each task must have at least one context switch.

2. Context switches may only occur in tasks.

For this application, Salvo was user-configured to pro-
vide the basic multi-tasking kernel, along with binary
semaphore and message event services, as well as
timer based delays. It automatically manages complex
issues, like task scheduling, access to shared
resources, intertask communication, real-time delays,
PICmicro RAM banking and interrupt control. With this
multi-tasking RTOS foundation in place, the application
programmer can concentrate on quickly and efficiently
implementing the desired system functionality.

SYSTEM DESCRIPTION

The prototype's hardware includes a 20 MHz crystal,
four thermistors, four potentiometers, a serial port,
EEPROM, four 7-segment LEDs, 16-button keypad
and a piezo beeper. The phrase, “normal conditions,”
will be used frequently in this application note, indicat-
ing the demo board is in temperature monitoring mode
with no alarm or user functions being executed.

The time-base is a 2 ms periodic interrupt derived from
Timer1. There are a total of eight tasks, four of which
are in the waiting state under normal conditions. There
are five events, four of which are dependent upon the
status of outside conditions (e.g., keypad entry, alarm)
and one is required for resource control.

The thermistors are divided up into four zones (Z1, Z2,
Z3, Z4). Each zone will be monitored to check if the
temperature is between the low and high threshold
temperature range (set by user). The user sets the low
and high threshold temperatures by pressing the
Low-High program button (see Figure 1).

FIGURE 1: KEYPAD CONFIGURATION

The low temperature is entered first, then the high;
each entry is followed by a quick display of the entered
temperature. A zone that is not within these parameters
will set off the Piezo alarm, simultaneously displaying
the zone number that set off the alarm. An alarm con-
dition will also signal Task_Weeprom() with the zone
number. Under normal conditions, once selected, the
LEDs will always have a zone temperature displayed.
The particular zone on display is dependent upon
which zone button was pressed. Buttons 1 through 4
have two functions (see Figure 1), potentiometer selec-
tion and numerical. When one of these buttons is
pressed (under normal conditions), the current potenti-
ometer value is displayed on the LEDs.

Authors: Chris Valenti
Microchip Technology Inc.

Andrew E. Kalman, Ph.D.
Pumpkin, Inc.

SET POT-1 SET POT-2 SET POT-3 DISPLAY
ZONE 11 2 3

SET POT-4 5 6 DISPLAY
ZONE 24

7 8 9 DISPLAY
ZONE 3

LOW-HIGH
PROGRAM

EXIT POT
SETTING

ZONE
RECALL

DISPLAY
ZONE 4

0

 2001 Microchip Technology Inc. DS00777B-page 1

AN777
At this point, two actions can be taken: potentiometer
adjustment, or press ‘0’ to exit the function. The Zone
Recall button is used to display the zone that set off the
alarm last. The USART is used for displaying the cur-
rent temperatures on a PC monitor; this is executed by
entering 'z' via the PC keyboard. The USART is config-
ured for Master Asynchronous mode with a 9600 baud
rate.

APPLICATION CONFIGURATION

The initial setup for the RTOS involves creating a con-
figuration file and creating an MPLAB project. The
Salvo user services are contained in different source
files. As code development progresses, more user ser-
vices are needed, resulting in additional source files
being added to the application. The application
includes the following files:

• main.c
• binsem.c

• chk.c
• delay.c
• event.c

• init.c
• mem.c
• task.c

• util.c
• msg.c
• timer.c

• qins.c
• salvo.h
• salvocfg.h

 Keep in mind that these files are specific to this appli-
cation and may not apply to others. Each Salvo appli-
cation requires its own configuration file called
salvocfg.h. The default salvocfg.h file contains
all possible parameters. For this application, specific
parameters were stripped out of the default file and put
into a application specific salvocfg.h file. This file is
automatically included via the salvo.h header file.
The salvocfg.h file for this application is shown in
Appendix B. Table 1 shows the node property settings
in MPLAB IDE.

MEMORY

General purpose RAM is allocated to four parts of the
application:

• Global variables.

• Control blocks and other variables.
• Parameter stack and auto variables maintained

by the compiler.
• Interrupt saves and restores.

The memory requirements exceed the available mem-
ory in RAM Bank 0, so the global variables are placed
in Bank 1, and Salvo's variables are placed in Bank 2,
using configuration options in salvocfg.h. Salvo's
message pointers can access memory in any RAM
bank and anywhere in ROM. The final code consists of
three roughly equal portions: one-third Salvo RTOS,
one-third HI-TECH C compiler library functions and
one-third application specific code.

TIME-BASE

In an RTOS environment, establishing a true time-base
is critical for time-based task operations. In this applica-
tion, Timer1 triggers an interrupt every 2 ms and is
solely used for this periodic interrupt. The ISR calls the
OSTimer() function and reloads Timer1 for another
2 ms. The 2 ms interrupt is also known as the “system
tick rate” and forms the time basis for task delays. Six
of the eight tasks rely on OSTimer() via OSDelay().
Under normal conditions, each task's run time is con-
stant, thus the importance for a time-base. For
instance, Task_Convert() is configured to run every
40 ms via "OS_Delay(20);". In the salvocfg.h
include file, there is a configuration statement regard-
ing the number of bytes allocated for delays. This con-
figuration option tells the OS what the maximum delay
can be:

one byte = 28-1 ticks

two bytes = 216-1 ticks, etc.

In this application, we need two bytes.
DS00777B-page 2  2001 Microchip Technology Inc.

AN777
TABLE 1: MPLAB NODE PROPERTIES

NODE PROPERTIES (.c-FILES)

NODE PROPERTIES (.hex-FILE)
 2001 Microchip Technology Inc. DS00777B-page 3

AN777
TASK CONFIGURATION

Tasks and Events are the building blocks of an RTOS.
These modules can be added and deleted without
affecting other parts of the code. This application is
divided into eight tasks. Under normal conditions, four
of the tasks are in the waiting state, while the other four
run and then delay themselves repeatedly.

Figure 2 shows program execution upon power-up. An
important point to realize here is that once multi-tasking
begins, the four waiting tasks do not consume any pro-
cessing power until they are signaled. When bringing
the system online, there will be no alarms or user func-
tions in operation. The result is, all tasks that wait for an
event will go into the waiting state and become eligible
only when signaled.

FIGURE 2: MAIN()

START

INITIALIZE
SFRs

INITIALIZE

INITIALIZE

GLOBAL

Salvo

CREATE

MULTI-TASK
VIA Salvo’s

SCHEDULER

VARIABLES

CREATE

EVENTS

TASKS
DS00777B-page 4  2001 Microchip Technology Inc.

AN777
The following is a detailed description of each task’s
priorities, status, and responsibilities.

Task_Convert()

Priority: 1
Task has a priority of ‘1’ because we must determine
thermistor temperatures to decide whether an alarm
condition exists.

Status: Runs every 40 milliseconds.

Responsibilities:

1. Converts the analog thermistor voltage into a
digital value, then translates this value into a
Fahrenheit temperature.

2. This value is compared against the low and high
threshold temperatures [via ConvertTemp()]
to determine if an alarm is necessary.

3. If no alarm is called then the other thermistor
zones are converted.

Task_Alarm_On()

Priority: 1
This task also has a priority of ‘1’, but runs after
Task_Convert() in a round-robin fashion. After
determining temperature, checking for zone alarms is
most important.

Status: Waits for an event.

Responsibilities:

1. Has the same priority as, and runs immediately
after, Task_Convert()at start-up.

2. Displays the zone number in alarm.

3. Turns the piezo beeper on and off.

Task_Display()

Priority: 2
Enables temperatures to be read from the display.

Status: Runs every 2 milliseconds.

Responsibilities:

1. Converts the temperature value to a format nec-
essary for displaying on the LEDs.

2. Displays each converted digit.

Task_KeyPad()

Priority: 3
Keypad entry is infrequent and should not supercede
the prior tasks.

Status: Runs every 20 milliseconds.

Responsibilities:

1. Scans for the low-high entry.
2. Scans for potentiometer adjustment entry.
3. Scans for EEPROM recall entry.

4. Scans for zone display entry.

Task_Usart()

Priority: 4
Remote PC monitoring is only performed occasionally
because usage is low.

Status: Runs every 800 milliseconds.

Responsibilities:

1. Scans for a PC keyboard entry (z).
2. Prepares each zone temperature for PC monitor

display.
3. Writes the Z1 string out to the HyperTerminal via

the USART.

Task_Weeprom()

Priority: 5
This task is only active when an alarm has occurred;
therefore, it is used very little.

Status: Waits for an event.

Responsibilities:

1. Receives the zone number in alarm.
2. Writes zone number to EEPROM.

3. I2C communication between the microcontroller
and EEPROM.

Task_Reeprom()

Priority: 6
This task is dependent upon Task_KeyPad() and is
independent of temperature and alarm status; there-
fore, it is a very low priority.

Status: Waits for an event.

Responsibilities:

1. Reads the last address that Task_Weeprom()
wrote to.

2. Reads the data within this address.

3. Displays the contents of the EEPROM address
on the LEDs (zone number).

Task_Pots()

Priority: 7
This task is least important because it is only used for
setting potentiometers, which do not affect any temper-
ature or alarm statuses.

Status: Waits for an event.

Responsibilities:

1. According to the value passed to the local vari-
able pot_val, the appropriate pot is selected for
adjustment while displaying the current potenti-
ometer A/D value on the LEDs.
 2001 Microchip Technology Inc. DS00777B-page 5

AN777
EVENT CONFIGURATION

Semaphores and messages can represent events and
these methods of intertask communication are used in
two ways. The first and more obvious is done by signal-
ing tasks. When a task is signaled, it transitions from a
waiting state to an eligible state and finally a running
state. ALARM, REEPROM, POTVAL and WEEPROM are
used in this fashion. The DISPLAY event is used to
control a resource, quite different from the other
events. Because the LED display is used by multiple
tasks and the LEDs and keypad both operate out of
PORTB on the microcontroller, PORTB has to be con-
figured differently for both. The DISPLAY event is used
to manage access to PORTB. When control of
DISPLAY is placed around a group of statements, it
creates a sequence whereby a resource is acquired,
used, and then released.

The process flow for Task_Alarm_On(), has the task
in one of three states: running, delayed, or waiting for an
event. Salvo manages task execution so the PICmicro
always runs the highest priority, eligible task. Whenever
a particular task is running in this application, all other
tasks are either delayed, waiting for an event, or eligible
to run.

Looking at Task_Alarm_On()when the code reaches
OS_WaitBinSem (DISPLAY), if DISPLAY = 1, then
OS_WaitBinSem() flips it to ‘0’, and the following
code is executed. When Salvo context switches via
OS_Delay(), any piece of the code that waits for
DISPLAY will not run (DISPLAY = 0). After both
Task_Alarm_ON() and OS_Delay() are completed,
DISPLAY is signaled (DISPLAY = 1) and allows the
next piece of code waiting for DISPLAY to run.

ALARM

Type: Message

Purpose: Signal Task_Alarm_On() from within
Task_Convert()(ConvertTemp()), with a mes-
sage containing the zone number in alarm.

WEEPROM

Type: Message

Purpose: Signal Task_Weeprom() with a message
containing the zone number in alarm. This message
only happens if there is an alarm and after the signaling
of Task_Alarm_On().

REEPROM

Type: Binary Semaphore

Purpose: Signal Task_Reeprom() from within
Task_KeyPad() that the read EEPROM button has
been pressed. Signaling the binary semaphore causes
the waiting task to run.

POTVAL

Type: Message

Purpose: Signal Task_Pots() from within
Task_KeyPad() that a potentiometer adjustment but-
ton has been pressed. Passes information containing
the potentiometer number to set for adjustment mode.

DISPLAY

Type: Binary Semaphore

Purpose: This semaphore is used to control a
resource, this may be the function of the LEDs or the
keypad.

TIMING PERFORMANCE

Time management is a major responsibility for an
RTOS. An application's response is dependent upon
task execution times. The actual time between succes-
sive executions of Task_Convert() was measured
as 40 milliseconds, with less than one system tick
(2 ms) of timing jitter. When task delay times are calcu-
lated, the time necessary for instructions within the task
must also be taken into consideration.

SUMMARY

This application note demonstrates how easy it is to
implement a common embedded application into an
RTOS environment. The temperature application
shown here is just one of the many ways in which an
RTOS can be applied. Some RTOS features that have
not been discussed may be what your application
requires. This includes counting semaphores and mes-
sage queues, which are extended versions of the user
services used in this application. Only one interrupt
was used (to maintain a time-base), but additional
interrupt sources can be included for added real-time
response. After establishing an understanding of RTOS
user services, it's just a matter of adding more tasks
and events to suit the demands of your application.

WEBSITES

Microchip Technology Inc. www.microchip.com

Pumpkin, Inc.............................. www.pumpkininc.com

HI-TECH Software...............................www.htsoft.com
DS00777B-page 6  2001 Microchip Technology Inc.

AN777
APPENDIX A: FLOW CHARTS

FIGURE A-1: SCHEMATIC (SHEET 1 OF 3)

AN2

SDA

R9

10 k

+5 V

C8

.1 µF

+5 V

+5 V

SCL

+5 V

C11

.1 µF

+5 V

C14

.1 µF

+5 V

C16

.1 µF

+5 V

C15

.1 µF

+5 V

1

3

2

J13

DJ005B

+5 V

R12

10 k

.1 µF

C4
220 µF

C7

R28

R16
10 k

R29

R17
10 k

100

R26

100

R25 R11

10 k

100

R23

100

R24

+5 V

+5 V

100

R15

100

R18

C5

.1 µF

3
OUT

1
IN

2

COM

VR1

LM340T-5.0

+5 V

R10

10 k

D2

C6

.1 µF

R31

R21
10 k

9
PIN9

8
PIN8

7
PIN7

6
PIN6

1
PIN1

2
PIN2

3
PIN3

4
PIN4

5
PIN5

J14

DE9S-FRS

4
GND

1
RXOUT

2
VDRV

3
TXIN

5
TXOUT

6
NC

7
RXIN

8
VCC

U13

DS275_SO8

SP1

R30

R19
10 k

470

R3

100

R22

100

R20

5
SDA

1
A0

2
A1

3
A2

4
GND

7
WP

6
SCL

8
VCC

U2

24LC01B

PIZO

AN0

AN1 AN3

AN5 AN6

AN7AN4

RXD

TXD
 2001 Microchip Technology Inc. DS00777B-page 7

AN777
FIGURE A-2: SCHEMATIC (SHEET 2 OF 3)

MCLR

.1 µF

C2

+5 V

20 MHz

Y1

+5 V +5 V

4

32

1

S2

15 pF
C18

15 pF
C19

C17
15 pF

R27 1 k

4.7 k

R2

.1 µF

C1

.1 µF

C3

4.7 k

R1

+5 V

C20
15 pF

31
VSS

32
VDD

11
VDD

1
MCLR

2
RA0

3
RA1

4
RA2

5
RA3

6
RA4

7
RA5

33
RB0

34
RB1

35
RB2

36
RB3

37
RB4

38
RB5

39
RB6

40
RB7

12
VSS

13
OSC1

14
OSC2

15
RC0

16
RC1

17
RC2

18
RC3

23
RC4

24
RC5

25
RC6

26
RC7

19
RD0

20
RD1

21
RD2

22
RD3

27
RD4

28
RD5

29
RD6

30
RD7

10
RE2

9
RE1

8
RE0

U1

PIC16F877

R4

4.7 k

32 kHz

Y2

RB0

AN0

AN1

AN2

AN3

AN4

RB1

RB2

RB3

RB4

RB5

RB6

RB7

AN7

AN6

AN5

RD3

RD2

RD1

RD0

TXD

RXD

SDA

PIZO

SCL
DS00777B-page 8  2001 Microchip Technology Inc.

AN777
FIGURE A-3: SCHEMATIC (SHEET 3 OF 3)

2

1

3
Q1

2N3906

2

1

3
Q2

2N3906

2

1

3
Q4

2N3906

+5 V +5 V +5 V +5 V

4 3

56

1 k

R8

6 5

78
12

3 4
2 1

RN1:1

2

1

3
Q3

2N39061 k

R7

1 k

R5

1 k

R6

8 7

220

9 b

5 d
4 e
2 f
3 g
7 dp

8 c

10 a

1anode
6anode

D4

HDSP-7301

9 b

5 d
4 e
2 f
3 g
7 dp

8 c

10 a

1anode
6anode

D3

HDSP-7301

9 b

5 d
4 e
2 f
3 g
7 dp

8 c

10 a

1anode
6anode

D1

HDSP-7301

9 b

5 d
4 e
2 f
3 g
7 dp

8 c

10 a

1anode
6anode

D5

HDSP-7301

RB0

RD0 RD1 RD2 RD3

A
B
C
D
E
F
G
DP

RB1
RB2
RB3
RB4
RB5
RB6
RB7

A

DP

B
C
D
E
F
G

A

DP

B
C
D
E
F
G

A
B
C
D
E
F
G

+5 V

4

32

1

S16

4

32

1

S17

4

32

1

S18

4

32

1

S8

4

32

1

S4

4

32

1

S9

4

32

1

S5

4

32

1

S10

4

32

1

S6

4

32

1

S12

4

32

1

S13

4

32

1

S14

4 3

6 5

8 7

10 k

4

32

1

S15

2 1
RN4:1

4 3
RN3:2

100 k

2 1
RN3:1

100 k

6 5
RN3:3

100 k

4

32

1

S7

4

32

1

S3

1

2

3

4

5

6

7

8

9

J1

4

32

1

S11

8 7
RN3:4

RB0

C4

E
G

F

E

DP

G

C3

C2

DP

C1

C4

C3

C2

C1

F

RB1

RB2

RB3

DP

E

 2001 Microchip Technology Inc. DS00777B-page 9

AN777

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX B: SOURCE CODE
salvocfg.h

#define OSCOMPILER OSHT_PICC
#define OSTARGET OSPIC16

#define OSBYTES_OF_DELAYS 2

#define OSLOC_ECB bank2
#define OSLOC_TCB bank2

#define OSEVENTS 5
#define OSTASKS 8

#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSENABLE_MESSAGES TRUE
#define OSBIG_MESSAGE_POINTERS TRUE

main.c
/*
This program is based on the Salvo RTOS (v2.1). Its function is to scan
four thermistors and report their temperatures. If any of reported temperatures
are not within a preset range, the alarm will sound. Four potentiometers adjustments
are accessed via keypad entry. Two of them will be used to determine the Piezo tone and
duty cycle, while these pots are being set their A/D values will appear on the LED display.
The four thermistor are divided up into 4 zones, each zone can be displayed on the
4-digit LED display via a keypad entry. The defined temperature range can be entered by keypad
entry, entering the LOW temp first followed by the HIGH temp. Zone temperatures can be recalled
onto a PC monitor via the HyperTerminal by pressing ’z’ on a PC keyboard.
Every time a zone goes into alarm, the alarm zone number will be written to the
EEPROM. The zone that last set off an alarm can be recalled via keypad entry and the
zone number will be displayed.
*/

#include <salvo.h>

#define ALARM 0
#define WEEPROM 1
#define REEPROM 2
#define POTVAL 3
#define DISPLAY 4

static volatile unsigned int TMR1 @ 0x0E;

bank1 unsigned char Low_Hi;
bank1 signed char data_address; //EEPROM ADDRESS
bank1 unsigned char *zone_dis; //ZONE DISPLAY
bank1 unsigned char temp1, temp2, temp3, temp4;//ALARM & ZONE TEMPS
bank1 unsigned char low, high; //LOW & HIGH TEMP THRESHOLD
 2001 Microchip Technology Inc. DS00777B-page 10

AN777
bank1 unsigned char Z1[39] = "ZONE Temps: z1-xx z2-xx z3-xx z4-xx\n\r\v";//RS-232 DISPLAY

const char SevenSegmentTable[] = //DIGIT SEGMENTS
{ 0b11000000, // 0

0b11111001, // 1
0b10100100, // 2
0b10110000, // 3
0b10011001, // 4
0b10010010, // 5
0b10000010, // 6
0b11111000, // 7
0b10000000, // 8
0b10010000 // 9

};

const unsigned char CHSmask[] = //A/D CHS BITS

{ 0b00100000,
0b00101000,
0b00110000,
0b00111000

};

const unsigned char zones[] = //TEMPERATURE ZONE NUMBERS
{

1,
2,
3,
4

};

bank1 unsigned char * const tempPArray [] = //ZONE TEMPERATURES
{

&temp1,
&temp2,
&temp3,
&temp4

};

//PROTOTYPES
void Delay(unsigned char tmr);
void interrupt isr(void);
void ConvertAD(void);
char ButtonPress(unsigned char buttons);
char Keys(void);
void BcdConv(char);
void WriteSevenSegment(unsigned char segment, unsigned char digit);
char ReadUSART(void);
void WriteUSART(char data);
void WriteUSARTBuffer(unsigned char *data, unsigned char len);
void Idle(void);
void Display(unsigned char lo_hi);
void PotDisplay(void);
void ConvertTemp(bank1 unsigned char * const temp,
 const unsigned char * zone);

_OSLabel (task_convert1)
_OSLabel (task_alarm_on1)
_OSLabel (task_alarm_on2)
_OSLabel (task_alarm_on3)
_OSLabel (task_alarm_on4)
_OSLabel (task_keypad1)
_OSLabel (task_keypad2)
_OSLabel (task_keypad3)
_OSLabel (task_display1)
_OSLabel (task_display2)
 2001 Microchip Technology Inc. DS00777B-page 11

AN777
_OSLabel (task_usart1)
_OSLabel (task_weeprom1)
_OSLabel (task_reeprom1)
_OSLabel (task_reeprom2)
_OSLabel (task_reeprom3)
_OSLabel (task_pots1)
_OSLabel (task_pots2)

//**************************(FUNCTIONS)**

void Delay(unsigned char tmr) //TIMER0 MAX TIMEOUT = 13ms
{

TMR0 = 255 - tmr;
T0IF = 0;
while(T0IF==0);

}

#pragma interrupt_level 0
void interrupt isr(void) //TIMER1 2ms PERIODIC INTERRUPT
{

if(TMR1IF)
{

TMR1IF = 0;
TMR1 -= 5000;
OSTimer();

}
}

void ConvertAD(void) //A/D CONVERSION
{

Delay(1);
ADGO = 1;
while(ADGO);

}

char ButtonPress(unsigned char buttons)
{

unsigned char Col_Row; //FIND BUTTON PRESS
PORTB = buttons;
Delay(55);
Col_Row = PORTB;
return Col_Row;

}

char Keys(void) //NUMBER SELECTION
{

char KeyVal = 10; //BUTTON NUMBER PRESSED
PORTD = 0x0F; //LEDs OFF
TRISB = 0xF0; //RB7:RB4=INPUTS,RB3:RB0=OUTPUTS

while(KeyVal == 10)
{

switch(ButtonPress(0b00001110))
{
case 0xEE:

KeyVal = 0b00000001; //#1
break;

case 0xDE:
KeyVal = 0b00000100; //#4
break;
DS00777B-page 12  2001 Microchip Technology Inc.

AN777
case 0xBE:
KeyVal = 0b00000111; //#7
break;

default:
break;

}

switch(ButtonPress(0b00001101))
{
case 0xED:

KeyVal = 0b00000010; //#2
break;

case 0xDD:
KeyVal = 0b00000101; //#5
break;

case 0xBD:
KeyVal = 0b00001000; //#8
break;

case 0x7D:
KeyVal = 0; //#0
break;

default:
break;

}

switch(ButtonPress(0b00001011))
{
case 0xEB:

KeyVal = 0b00000011; //#3
break;

case 0xDB:
KeyVal = 0b00000110; //#6
break;

case 0xBB:
KeyVal = 0b00001001; //#9
break;

default:
break;

}
PORTB = 0b00000000;
}return KeyVal;

}

void BcdConv(char KeyVal) //BCD CONVERSION
{

Low_Hi *= 10;
Low_Hi += KeyVal;

}

void WriteSevenSegment(unsigned char segment, unsigned char digit)
{ //LED VALUE DISPLAY

switch(digit)
{
case 1:

PORTD = 0x0E; //FIRST DIGIT
break;
 2001 Microchip Technology Inc. DS00777B-page 13

AN777
case 2:
PORTD = 0x0D; //SECOND DIGIT
break;

case 3:
PORTD = 0x0B; //THIRD DIGIT
break;

case 4:
PORTD = 0x07; //FOURTH DIGIT
break;

}

TRISB = 0x00;
PORTB = SevenSegmentTable[segment]; //SEND SEGMENT NUMBER TO PORTB

}

char ReadUSART(void) //READ SERIAL DATA ENTRY
{

unsigned char rdata;
if(RCIF) //RECEPTION COMPLETE
rdata = RCREG;
return rdata;

}

void WriteUSART(char data) //WRITE SERIAL DATA
{

while(!TRMT);
TXREG = data;

}

void WriteUSARTBuffer(unsigned char *data, unsigned char len)
{

unsigned char i;

for (i = 0; i < len; i++)
WriteUSART(data[i]); //WRITE STRING

}

void Idle(void) //I2C IDLE FUNCTION
{

while((SSPCON2 & 0x1F)|(STAT_RW))
continue;

}

void Display(unsigned char lo_hi) //DISPLAY LOW & HIGH INPUT
{

unsigned char v1,v2,v3;
unsigned char i;

for(i=1; i<200; i++)
{
v1 = lo_hi/0x64; //FIND FIRST DISPLAY DIGIT
v2 = (lo_hi-(v1*0x64))/10; //FIND SECOND DIGIT
v3 = (lo_hi-(v1*0x64)-(v2*10)); //FIND THIRD DIGIT
WriteSevenSegment(0, 1); //SEND SEGMENT VALUE AND DIGIT 1
Delay(55); //DIGIT DELAY
WriteSevenSegment(v1, 2);
Delay(55);
WriteSevenSegment(v2, 3);
DS00777B-page 14  2001 Microchip Technology Inc.

AN777
Delay(55);
WriteSevenSegment(v3, 4);
Delay(55);
}

}

void PotDisplay(void)
{

unsigned char v1,v2,v3;
for(;;)
{

ConvertAD();
v1 = ADRESH/0x64; //FIND FIRST DISPLAY DIGIT
v2 = (ADRESH-(v1*0x64))/10; //FIND SECOND DIGIT
v3 = (ADRESH-(v1*0x64)-(v2*10)); //FIND THIRD DIGIT ;
WriteSevenSegment(v1, 2); //SEND SEGMENT VALUE AND DIGIT 2
Delay(15);
WriteSevenSegment(v2, 3); //SEND SEGMENT VALUE AND DIGIT 3
Delay(15);
WriteSevenSegment(v3, 4); //SEND SEGMENT VALUE AND DIGIT 4
Delay(15);

PORTD = 0x0F; //PREPARE FOR KEYPAD USE
TRISB = 0xF0;
if(ButtonPress(0b00001101) == 0x7D)
break;

}
}

void ConvertTemp(bank1 unsigned char * const temp, const unsigned char * zone)
{ float adresh;

adresh = ADRESH;
temp = ((.538) + (.444(adresh)) + (.001*(adresh)*(adresh)));

if ((low > *temp) || (*temp > high))
 {

OSSignalMsg(ALARM, (OStypeMsgP) zone); //SIGNAL task_alarm() W/ ZONE #
OSSignalMsg(WEEPROM, (OStypeMsgP) zone); //SIGNAL task_weeprom() W/ ZONE #

 }
}

//**************************(TASKS)***
//**

void Task_Convert(void)
{

static unsigned char i = 0;

for(;;)
{

ADCON0 &= ~0b00111000; //CLEAR CHS BITS
ADCON0 |= CHSmask[i]; //SELECT CHS
ConvertAD(); //CONVERT CHS
ConvertTemp(tempPArray[i], &zones[i]);

if (++i > 3) i = 0;

OS_Delay(20,task_convert1); //DELAYED FOR 40ms
}

}

 2001 Microchip Technology Inc. DS00777B-page 15

AN777
void Task_Alarm_On(void) //WAITING TASK
{

OStypeMsgP msgP;

for(;;)
{

OS_WaitMsg(ALARM, &msgP, task_alarm_on1);
OS_WaitBinSem(DISPLAY, task_alarm_on2);
WriteSevenSegment(* (const unsigned char *) msgP, 4);//DISPLAY ALARM ZONE
CCP1CON = 0x0F;
OS_Delay(200, task_alarm_on3);
CCP1CON = 0;
OS_Delay(200, task_alarm_on4);
OSSignalBinSem(DISPLAY);

}
}

void Task_Keypad(void)
{

static char pot;
for(;;)
{

OS_WaitBinSem(DISPLAY, task_keypad1);
PORTD = 0x0F; //LEDs OFF
TRISB = 0xF0; //RB7:RB4 = INPUTS,RB3:RB0 = OUTPUTS

switch(ButtonPress(0b00001110))
{
case 0x7E: //SET LOW AND HIGH TEMPS

PORTD = 0x00; //TURN ON DIGITS TO
TRISB = 0x00; // SHOW TEMP SETTING
PORTB = 0x00; // ACTIVATION
OS_Delay(200, task_keypad2);

//GET LOW TEMPERATURE LIMIT
PEIE = 0; //INTERRUPT DISABLED

Low_Hi = 0;
BcdConv(Keys()); //GET 1ST DIGIT
while(PORTB != 0xF0);

BcdConv(Keys()); //GET 2ND DIGIT
while(PORTB != 0xF0);

BcdConv(Keys()); //GET 3RD DIGIT
low = Low_Hi;

Display(low); //DISPLAY LOW TEMP
PORTD = 0x0F; //LEDs OFF
TRISB = 0xF0; //RB7:RB4 = INPUTS,RB3:RB0 = OUTPUTS

//GET HIGH TEMPERATURE LIMIT

Low_Hi = 0;
BcdConv(Keys()); //GET 1ST DIGIT
while(PORTB != 0xF0);

BcdConv(Keys()); //GET 2ND DIGIT
while(PORTB != 0xF0);

BcdConv(Keys()); //GET 3RD DIGIT
high = Low_Hi;
Display(high); //DISPLAY HIGH TEMP
PEIE = 1; //INTERRUPT RE-ENABLED
break;
DS00777B-page 16  2001 Microchip Technology Inc.

AN777
//POTENTIOMETER SELECTION

case 0xEE: //#1
pot = 1;
OSSignalMsg(POTVAL,(OStypeMsgP)&pot); //SIGNAL task_pots() W/ POT-1
break;

case 0xDE: //#4
pot = 4;
OSSignalMsg(POTVAL,(OStypeMsgP)&pot); //SIGNAL task_pots() W/ POT-4
break;

default:
break;

}

if(ButtonPress(0b00001101) == 0xED) //#2
{

pot = 2;
OSSignalMsg(POTVAL,(OStypeMsgP)&pot); //SIGNAL task_pots() W/ POT-2

}

switch(ButtonPress(0b00001011))
{
case 0xEB:

pot = 3; //#3
OSSignalMsg(POTVAL,(OStypeMsgP)&pot); //SIGNAL task_pots() W/ POT-3
break;

//EEPROM BUTTON
case 0x7B:

OSSignalBinSem(REEPROM); //SIGNAL task_reeprom()
break;

default:
break;

}

//ZONE BUTTONS

switch(ButtonPress(0b00000111))
{
case 0xE7:

zone_dis = &temp1; //ZONE 1 BUTTON
break;

case 0xD7:
zone_dis = &temp2; //ZONE 2 BUTTON
break;

case 0xB7:
zone_dis = &temp3; //ZONE 3 BUTTON
break;

case 0x77:
zone_dis = &temp4; //ZONE 4 BUTTON
break;

default:
break;

}

 2001 Microchip Technology Inc. DS00777B-page 17

AN777
OSSignalBinSem(DISPLAY);
OS_Delay(10,task_keypad3); //DELAYED FOR 20ms

}
}

void Task_Display(void)
{

unsigned char v1,v2,v3;
unsigned char dis_temp;

for(;;)
{

OS_WaitBinSem(DISPLAY, task_display1);

dis_temp = *zone_dis;
v1 = dis_temp/0x64; //FIND FIRST DISPLAY DIGIT
v2 = (dis_temp-(v1*0x64))/10; //FIND SECOND DIGIT
v3 = (dis_temp-(v1*0x64)-(v2*10)); //FIND THIRD DIGIT
WriteSevenSegment(0, 1); //SEND SEGMENT VALUE AND DIGIT 1
Delay(100); //DIGIT-ON DELAY
WriteSevenSegment(v1, 2);
Delay(100);
WriteSevenSegment(v2, 3);
Delay(100);
WriteSevenSegment(v3, 4);
Delay(100);
PORTB = 0xFF; // TURN OFF LAST DIGIT

OSSignalBinSem(DISPLAY);
OS_Delay(1, task_display2); // DELAYED FOR 2ms

}
}

void Task_Usart(void)
{

unsigned char v1,v2,v3,v2A,v3A,v2B,v3B,v2C,v3C,v2D,v3D;
for(;;)
{

ReadUSART();
if(ReadUSART() == 0x7A) // ASCII CHARACTER z
{
v1 = temp1 / 0x64; // CONVERT TEMP1 FOR DISPLAY
v2 = (temp1 - (v1*0x64))/10;
v3 = (temp1 - (v1*0x64) - (v2*10));
v2A = v2, v3A = v3;

v1 = temp2 / 0x64; // TEMP2
v2 = (temp2 - (v1*0x64))/10;
v3 = (temp2 - (v1*0x64) - (v2*10));
v2B = v2, v3B = v3;

v1 = temp3 / 0x64; // TEMP3
v2 = (temp3 - (v1*0x64))/10;
v3 = (temp3 - (v1*0x64) - (v2*10));
v2C = v2, v3C = v3;

v1 = temp4 / 0x64; // TEMP4
v2 = (temp4 - (v1*0x64))/10;
v3 = (temp4 - (v1*0x64) - (v2*10));
v2D = v2, v3D = v3;
DS00777B-page 18  2001 Microchip Technology Inc.

AN777
Z1[15] = v2A + ’0’;
Z1[16] = v3A + ’0’;
Z1[21] = v2B + ’0’;
Z1[22] = v3B + ’0’;
Z1[27] = v2C + ’0’;
Z1[28] = v3C + ’0’;
Z1[33] = v2D + ’0’;
Z1[34] = v3D + ’0’;
WriteUSARTBuffer(Z1,39); //WRITE STRING Z1 FOR 39 BYTES

}

OS_Delay(400, task_usart1); //DELAYED FOR 800ms
}

}

void Task_Weeprom(void) //WAITING TASK
{

OStypeMsgPalarm_zoneP;
char word;

for(;;)
{

OS_WaitMsg(WEEPROM, &alarm_zoneP, task_weeprom1);
word = *(const unsigned char*) alarm_zoneP;

SEN = 1; //START ENABLED
while(SEN); //WAIT UNTIL START IS OVER
SSPBUF = 0b10100000; //CONTROL BYTE
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT); //LOOK FOR ACK
else

break;

SSPBUF = data_address; //ADDRESS BYTE
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT); //LOOK FOR ACK
else

break;

SSPBUF = word; //DATA BYTE (ZONES: 1,2,3 or 4)
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT) //LOOK FOR ACK
{ PEN = 1; //STOP ENABLED

while(PEN); //WAIT UNTIL STOP IS OVER
}
else

break;
}

}

void Task_Reeprom(void)
{

char word;
for(;;) //WAITING TASK
{

OS_WaitBinSem(REEPROM,task_reeprom1);

Idle(); //ENSURE MODULE IS IDLE
SEN = 1; //START ENABLED
while(SEN); //WAIT UNTIL START IS OVER

SSPBUF = 0b10100000; //CONTROL BYTE (write)
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT); //LOOK FOR ACK
 2001 Microchip Technology Inc. DS00777B-page 19

AN777
else
break;

SSPBUF = data_address; //ADDRESS BYTE (write)
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT); //LOOK FOR ACK
else

break;
RSEN = 1; //REPEAT START CONDITION
while(RSEN); //WAIT UNTIL RESTART IS OVER

SSPBUF = 0b10100001; //CONTROL BYTE (read)
Idle(); //ENSURE MODULE IS IDLE
if(!ACKSTAT); //LOOK FOR ACK
else

break;

RCEN = 1; //ENABLE RECEIVE
while(RCEN); //WAIT UNTIL RECEIVE IS OVER

ACKDT = 1; //NO ACK
ACKEN = 1;
while(ACKEN); //WAIT UNTIL ACK IS FINISHED

PEN = 1; //STOP ENABLED
while(PEN); //WAIT UNTIL STOP IS OVER

word = SSPBUF; //WRITE DATA TO VARIABLE
++data_address; //MOVE ADDRESS TO NEXT SPACE

OS_WaitBinSem(DISPLAY, task_reeprom2);
WriteSevenSegment(word, 3); //DISPLAY ZONE OF LAST ALARM
OS_Delay(200, task_reeprom3);
OSSignalBinSem(DISPLAY);

}
}
void Task_Pots(void) //WAITING TASK
{

OStypeMsgP pot_valP;
char pot_val;

for(;;)
{

OS_WaitMsg(POTVAL, &pot_valP, task_pots1);
pot_val = *(char*) pot_valP;
OS_WaitBinSem(DISPLAY, task_pots2);

switch(pot_val)
{

case 1:
CHS2=0, CHS1=0, CHS0=0; //AN0 - PIEZO "TONE" (PWM PERIOD)
PotDisplay();
PR2 = ADRESH;
break;

case 2:
CHS2=0, CHS1=0, CHS0=1; //DISPLAY A/D VALUE
PotDisplay();
break;

case 3:
CHS2=0, CHS1=1, CHS0=0; //DISPLAY A/D VALUE
PotDisplay();
break;

case 4:
CHS2=0, CHS1=1, CHS0=1; // AN3 - FOR PIEZO DUTY CYCLE
PotDisplay();
CCPR1L = ADRESH;
DS00777B-page 20  2001 Microchip Technology Inc.

AN777
break;
}

OSSignalBinSem(DISPLAY);
}

}

//*****************************(MAIN)**
//***

void main(void)
{

TXSTA = 0b10100100; //TRANSMIT
RCSTA = 0b10010000; //RECEIVE
SPBRG = 0x81; //BAUD RATE
TRISC6 = 0,TRISC7 = 1; //TXD OUTPUT & RXD INPUT

TRISC3 = 1,TRISC4 = 1; //SCL & SDA - I2C
SSPADD = 0x32; //I2C BAUD RATE (MASTER MODE)
SSPCON = 0b00101000; //ENABLE SDA & SCL, S-PORT MODE-MASTER

ADCON0 = 0b01000001; //A/D CONFIG

OPTION = 0b10000101; //TIMER0 CONFIG

T1CON = 0b00010101; //TIMER1 CONFIG (system tick rate)
TMR1IE = 1; //ENABLE INTERRUPT
TMR1IF = 0; //CLEAR FLAG

TRISC2 = 0; //PIEZO
CCPR1L = 0x80,CCP1X=0,CCP1Y=0; //PWM DUTY CYCLE
T2CON = 0b00000101; //TIMER2 PRESCALE = 4 (PWM)

GIE = 1, PEIE = 1; //ENABLE GLOBAL & PERIPHERAL INTERRUPTS

TRISD = 0x00; //PORTD OUTPUT-DIGITS
low=20,high=170; //INITIAL TEMPERATURE RANGE
data_address = 0x00; //FIRST EEPROM WRITE

OSInit();
//ID PRIORITY

OSCreateTask(Task_Convert, 0, 1);
OSCreateTask(Task_Alarm_On, 1, 1);
OSCreateTask(Task_Keypad, 2, 3);
OSCreateTask(Task_Display, 3, 2);
OSCreateTask(Task_Usart, 4, 4);
OSCreateTask(Task_Weeprom, 5, 5);
OSCreateTask(Task_Reeprom, 6, 6);
OSCreateTask(Task_Pots, 7, 7);

OSCreateMsg(ALARM, (OStypeMsgP) 0);
OSCreateMsg(WEEPROM,(OStypeMsgP) 0);
OSCreateBinSem(REEPROM, 0);
OSCreateMsg(POTVAL, (OStypeMsgP) 0);
OSCreateBinSem(DISPLAY, 1);

for(;;)
OSSched();

}

 2001 Microchip Technology Inc. DS00777B-page 21

AN777
Memory Usage Map:

Program ROM $0000 - $0819 $081A (2074) words
Program ROM $0AAC - $0FFF $0554 (1364) words
 $0D6E (3438) words total Program ROM

Bank 0 RAM $0020 - $004C $002D (45) bytes
Bank 0 RAM $0070 - $007C $000D (13) bytes
 $003A (58) bytes total Bank 0 RAM

Bank 1 RAM $00A0 - $00CE $002F (47) bytes total Bank 1 RAM
Bank 2 RAM $0110 - $0156 $0047 (71) bytes total Bank 2 RAM

Build completed successfully.
DS00777B-page 22  2001 Microchip Technology Inc.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
 2001 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, PIC, PICmicro,
PICMASTER, PICSTART, PRO MATE, KEELOQ, SEEVAL,
MPLAB and The Embedded Control Solutions Company are reg-
istered trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, FilterLab,
MXDEV, microID, FlexROM, fuzzyLAB, MPASM, MPLINK,
MPLIB, PICC, PICDEM, PICDEM.net, ICEPIC, Migratable
Memory, FanSense, ECONOMONITOR, Select Mode, dsPIC,
rfPIC and microPort are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2001, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00777B - page 23

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

DS00777B-page 24  2001 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Austin - Analog
13740 North Highway 183
Building J, Suite 4
Austin, TX 78750
Tel: 512-257-3370 Fax: 512-257-8526
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Boston - Analog
Unit A-8-1 Millbrook Tarry Condominium
97 Lowell Road
Concord, MA 01742
Tel: 978-371-6400 Fax: 978-371-0050
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Two Prestige Place, Suite 130
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Rm. 531, North Building
Fujian Foreign Trade Center Hotel
73 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7557563 Fax: 86-591-7557572
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Germany - Analog
Lochhamer Strasse 13
D-82152 Martinsried, Germany
Tel: 49-89-895650-0 Fax: 49-89-895650-22
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

08/01/01

WORLDWIDE SALES AND SERVICE

	Introduction
	RTOS Overview
	System Description
	FIGURE 1: Keypad configuration

	Application Configuration
	Memory
	Time-Base
	TABLE 1: MPLAB Node Properties

	Task Configuration
	FIGURE 2: Main()
	Task_Convert()
	Task_Alarm_On()
	Task_Display()
	Task_KeyPad()
	Task_Usart()
	Task_Weeprom()
	Task_Reeprom()
	Task_Pots()

	Event Configuration
	ALARM
	WEEPROM
	REEPROM
	POTVAL
	DISPLAY

	Timing Performance
	Summary
	Websites
	Appendix A: Flow charts
	FIGURE A-1: Schematic (Sheet 1 of 3)
	FIGURE A-2: Schematic (Sheet 2 of 3)
	FIGURE A-3: Schematic (Sheet 3 of 3)

	Appendix B: Source Code
	Worldwide Sales and Service

