

AN-17
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Jul 10, 2002 updated on Jul 14, 2002
All trademarks mentioned herein are properties of their respective companies.

Using Salvo with HI-TECH PICC &
PICC-18 Demo Compilers

Introduction
HI-TECH Software (http://www.htsoft.com/) provides ANSI C
compilers for the full range of Microchip
(http://www.microchip.com/) PICmicro® MCUs.

Detailed instructions for building Salvo applications for
PICmicro® MCUs with the full versions of HI-TECH's compilers
can be found in Pumpkin Application Notes AN-1 Using Salvo
Freeware Libraries with the HI-TECH PICC Compiler and AN-4
Building a Salvo Application with HI-TECH PICC and Microchip
MPLAB. These Application Notes assume the user has the full
version of the PICC or PICC-18 compilers.

HI-TECH also provides time-limited demo versions of their
compilers for evaluation. This Application Note lists the additional
steps required to successfully build a project when using these
demo compilers with Salvo. The Microchip MPLAB IDE is used
to illustrate the build environment.

Limitations of Demo Compilers
The limitations of the HI-TECH demo compilers that affect Salvo
projects are the lack of support for the –I (set include path) and –D
(define symbol) command-line arguments.

Overview
The demo compilers' lack of certain command-line arguments
requires an alternate approach to successfully compile and link
Salvo projects. The demo compilers can only find header files
located in the same directory as the including source file(s), or in
the compiler's include directory. Since only the default include
paths are available, you must copy certain files to new locations so

http://www.htsoft.com/
http://www.microchip.com/

 Application Note

2 AN-17 Using Salvo with HI-TECH PICC & PICC-18 Demo Compilers

that they are properly included. Additionally, you'll create one
more files with the required symbols for inclusion in the project.

Five Steps to Success

Step 1 – Install the Compiler, Open a Project
After installing the demo compiler and Salvo Lite for PICmicro®
MCUs,1 open a Salvo Lite project or follow the instructions in
Pumpkin App Notes AN-1 and/or AN-4 to create your own
project. Building the project at this point will result in the compiler
error:

Cannot open include file "salvo.h" (error)

This error occurs because the demo compiler's include search path
does not include \salvo\inc.

Step 2 – Copy Salvo Header Files
Copy all of the files in \salvo\inc to the compiler's include
directory. The compiler always searches this directory for files to
include. For PICC, the default directory is \ht-pic\include. For
PICC-18, it's \htsoft\pic18\include. This will enable the
compiler to find the primary header file salvo.h as well as the
secondary ones. Building the project at this point will result in the
compiler error:

Cannot open include file "salvocfg.h" (error)

This error occurs because the demo compiler's include search path
does not include the directory in which the project's configuration
header file salvocfg.h resides.

Note Step 2 need only be performed once.

Step 3 – Copy Project Configuration File
Copy your project-specific configuration file salvocfg.h to the
compiler's include directory listed in Step 1. If you are building
your own project, then it should successfully compile and link after
this step.

 Application Note

AN-17 Using Salvo with HI-TECH PICC & PICC-18 Demo Compilers

3

Step 4 – Define Symbols
Note Steps 4 and/or 5 are only required when attempting to build
a project supplied in a Salvo distribution.

Projects included in Salvo distributions typically require one or
more defined symbols for a successful build.2 Rather than adding
these definitions to each source file that requires them, we
recommend that you create a header file in the compiler's include
directory, define the symbols therein, and include that header file
in each of the project's source files that requires the definitions.

Step 5 – Locate Additional Header Files
Multi-part Salvo projects that are spread across multiple directories
(e.g. tutorials tu1-tu6) often share header files located in the first
project's folder.3 The demo compilers can only find a header file if
it is located in the same directory as the source file, or if it is in the
compiler's include directory. If a project-specific header file cannot
be found, you must copy it from its default location to the same
directory as the source file that includes it.

Example 1 – Salvo Demo d4 & PICC

Steps 1-2
Install the HI-TECH PICC demo compiler and copy all the files in
\salvo\inc to \ht-pic\include.

Step 3
Copy the configuration file \salvo\demo\d4\sysa\salvocfg.h
to \ht-pic\include\salvocfg.h.

Step 4
Open the MPLAB project \salvo\demo\d4\sysa\d4free.pjt.
Choose Project > Edit Project and examine the Project Files:

 Application Note

4 AN-17 Using Salvo with HI-TECH PICC & PICC-18 Demo Compilers

Figure 1: Edit Project Window for demo4

This project has two source file nodes – main.c and isr.c.
main.c is located in \salvo\demo\d4\main.c and isr.c is
located in \salvo\demo\d4\isr.c.4 To find the defined symbols
for these nodes, select the file and then click on Node Properties:

Figure 2: Symbols Defined for Source File Node

\salvo\demo\d4\main.c in Project demo\d4

In this project, main.c (and isr.c) must be compiled with the
symbols SYSA and MAKE_WITH_FREE_LIB defined. Therefore
follow Step 4 – Define Symbols above by adding:

#include "hdrpiccd.h"

 Application Note

AN-17 Using Salvo with HI-TECH PICC & PICC-18 Demo Compilers

5

to the beginning of both \salvo\demo\d4\main.c and
\salvo\demo\d4\isr.c. Create a header file containing:

#define SYSA
#define MAKE_WITH_FREE_LIB

and save it as \ht-pic\include\hdrpiccd.h.5 The demo project
should now build successfully:

Building D4FREE.HEX...

Compiling main.c:
Command line: "C:\HT-PIC\BIN\PICC.EXE -FAKELOCAL -G -O -Zg9
-DMAKE_WITH_FREE_LIB -E -16C77 -C -I\SALVO\DEMO\D4\SYSA
-I\salvo\inc -DSYSA \salvo\demo\d4\main.c"
Enter PICC -HELP for help
This compiler will expire in 20 days

Compiling isr.c:
Command line: "C:\HT-PIC\BIN\PICC.EXE -FAKELOCAL -G -O -Zg9
-DMAKE_WITH_FREE_LIB -E -16C77 -C -I\SALVO\DEMO\D4\SYSA
-I\salvo\inc -DSYSA \salvo\demo\d4\isr.c"
Enter PICC -HELP for help
This compiler will expire in 20 days

Linking:
Command line: "C:\HT-PIC\BIN\PICC.EXE -FAKELOCAL -G -Md4free.map
-E -ICD -16C77 -oD4FREE.HEX
\salvo\demo\d4\main.obj \salvo\demo\d4\isr.obj
\salvo\lib\SFP42CDB.lib "
Enter PICC -HELP for help
This compiler will expire in 20 days

Memory Usage Map:

Program ROM $0000 - $0082 $0083 (131) words
Program ROM $058C - $07FF $0274 (628) words
 $02F7 (759) words total Program ROM
Bank 0 RAM $0020 - $0036 $0017 (23) bytes
Bank 0 RAM $0070 - $0072 $0003 (3) bytes
 $001A (26) bytes total Bank 0 RAM
Bank 1 RAM $00A0 - $00B6 $0017 (23) bytes total Bank 1 RAM
Config Data $2007 - $2007 $0001 (1) words total Config Data

Program statistics:

Total ROM used 759 words (9.3%)
Total RAM used 46 bytes (12.5%)

Build completed successfully.

Figure 3: Build Results with PICC Demo Compiler

Step 5
This step is not required for this project, as all of its source files are
contained in the project folder \salvo\demo\d4.

 Application Note

6 AN-17 Using Salvo with HI-TECH PICC & PICC-18 Demo Compilers

Example 2 – Salvo Tutorial tu6 & PICC-18

Steps 1-2
Install the HI-TECH PICC-18 demo compiler and copy all the files
in \salvo\inc to \htsoft\pic18\include.

Step 3
Copy the configuration file \salvo\tut\tu6\sysf\salvocfg.h
to \htsoft\pic18\include\salvocfg.h.

Step 4
Open the MPLAB project \salvo\tut\tu6\sysf\tu6free.pjt.
Choose Project > Edit Project and examine the Project Files:

Figure 4: Edit Project Window for demo4

This project has three source file nodes – mem.c, main.c and
isr.c. mem.c is located in \salvo\src\mem.c, main.c is located
in \salvo\tut\tu6\main.c and isr.c is located in
\salvo\tut\tu1\isr.c.6 To find the defined symbols for these
nodes, select the file and then click on Node Properties:

 Application Note

AN-17 Using Salvo with HI-TECH PICC & PICC-18 Demo Compilers

7

Figure 5: Symbols Defined for Source File Node

\salvo\src\mem.c in Project tut\tu6

In this project, mem.c must be compiled with the symbol
MAKE_WITH_FREE_LIB defined.

Figure 6: Symbols Defined for Source File Node

\salvo\tut\tu6\main.c in Project tut\tu6

In this project, main.c (and isr.c) must be compiled with the
symbols MAKE_WITH_FREE_LIB, SYSF and USE_INTERRUPTS
defined. Therefore follow Step 4 – Define Symbols above by
adding:

#include "hdrpiccd.h"

to the beginning of \salvo\src\mem.c, \salvo\tut\tu6\main.c
and \salvo\tut\tu1\isr.c. Create a header file containing:

 Application Note

8 AN-17 Using Salvo with HI-TECH PICC & PICC-18 Demo Compilers

#define SYSF
#define MAKE_WITH_FREE_LIB
#define USE_INTERRUPTS

and save it as \htsoft\pic18\include\hdrpiccd.h.

Note In this example, SYSF and USE_INTERRUPTS are not
required for a successful compile of mem.c. However, using the
same hdrpiccd.h header file for all three files simplifies things
and is therefore recommended.

Step 5
Attempting to build the project will result in the following error
message:

Error[] file \salvo\tut\tu6\main.c 14 : Cannot
open include file "main.h"

This occurs because the header file main.h that is included in this
project's main.c resides in \salvo\tut\tu1, the first of this multi-
part tutorial. With the full version of the PICC-18 compiler, this
file would automatically be found because of the additional
-I\salvo\tut\tu1 command-line option (see Figure 6).

With the demo version, you must copy \salvo\tut\tu1\main.h
to \salvo\tut\tu6\main.h for a successful compile:

Building TU6FREE.HEX...

Compiling mem.c:
Command line: "C:\HTSOFT\PIC18\BIN\PICC18.EXE -FAKELOCAL -G -O -Zg9
-I\salvo\inc -D24 -E -18C452 -C -I\SALVO\TUT\TU6\SYSF
-DMAKE_WITH_FREE_LIB \salvo\src\mem.c"

Compiling main.c:
Command line: "C:\HTSOFT\PIC18\BIN\PICC18.EXE -FAKELOCAL -G -O -Zg9
-I\salvo\inc -D24 -E -18C452 -C -I\SALVO\TUT\TU6\SYSF
-DMAKE_WITH_FREE_LIB -DSYSF -DUSE_INTERRUPTS
-I\salvo\tut\tu1 \salvo\tut\tu6\main.c"

Compiling isr.c:
Command line: "C:\HTSOFT\PIC18\BIN\PICC18.EXE -FAKELOCAL -G -O -Zg9
-I\salvo\inc -D24 -E -18C452 -C -I\SALVO\TUT\TU6\SYSF
-DMAKE_WITH_FREE_LIB -DSYSF -DUSE_INTERRUPTS
-I\salvo\tut\tu1 \salvo\tut\tu1\isr.c"

Linking:
Command line: "C:\HTSOFT\PIC18\BIN\PICC18.EXE -G -FAKELOCAL -INTEL
-Mtu6.map -18C452 -OTU6FREE.HEX
\salvo\src\mem.obj \salvo\tut\tu6\main.obj
\salvo\tut\tu1\isr.obj \salvo\lib\SFP800AB.lib "
Enter PICC18 -HELP for help
This compiler will expire in 20 days

Memory Usage Map:
Program ROM $000000 - $000003 $000004 (4) bytes
Program ROM $000008 - $000013 $00000C (12) bytes
Program ROM $000018 - $0009DD $0009C6 (2502) bytes
 $0009D6 (2518) bytes total Program ROM

 Application Note

AN-17 Using Salvo with HI-TECH PICC & PICC-18 Demo Compilers

9

RAM data $000010 - $000035 $000026 (38) bytes
RAM data $0000F0 - $0000FF $000010 (16) bytes
RAM data $0005E0 - $0005FF $000020 (32) bytes
 $000056 (86) bytes total RAM data

Near RAM $000000 - $00000F $000010 (16) bytes total Near RAM
ROM data $000004 - $000005 $000002 (2) bytes total ROM data

Program statistics:

Total ROM used 2520 bytes (7.7%)
Total RAM used 102 bytes (6.6%) Near RAM used 54 bytes (42.2%)

Build completed successfully.

Figure 7: Build Results with PICC-18 Demo Compiler

Note In this project, isr.c includes isr.h. Since they are both
located in \salvo\tut\tu1, there is no need to copy isr.h to
another directory.

Example 3 – Your Own Application

Steps 1-2
Install the HI-TECH PICC or PICC-18 demo compiler and copy all
the files in \salvo\inc to \ht-pic\include (PICC) or
\htsoft\pic18\include (PICC-18).

Step 3
Create a configuration file salvocfg.h for your project and copy it
to \ht-pic\include\salvocfg.h (PICC) or
\htsoft\pic18\include\salvocfg.h (PICC-18).

Steps 4-5
These steps are not required for Salvo projects that you create from
scratch.

Troubleshooting
A failure to compile and/or link a Salvo project when using a HI-
TECH demo compiler is likely due to either a failure to follow the
five-step process outlined above, or due to an incorrect
hdrpiccd.h (or other) header file left over from a previous build.
Ensure that the contents of the hdrpiccd.h file are correct for the
project you are attempting to build. Also ensure that the

 Application Note

10 AN-17 Using Salvo with HI-TECH PICC & PICC-18 Demo Compilers

salvocfg.h header file in the compiler's include directory is the
correct one for your project.

When in doubt, uninstall Salvo completely (including deleting the
\salvo directory and all its subdirectories) and re-install Salvo.
This will restore all of the Salvo projects to their correct values.

Precautions
For obvious reasons, you must undo these steps once you obtain a
full version of the HI-TECH compiler. To do this, uninstall the
compiler and Salvo, delete the root directories and all
subdirectories of the compiler and Salvo, and then re-install each
in its default location.

Note The entire five-step process outlined above does not require
any changes to existing MPLAB projects.

Conclusion
The HI-TECH demo compilers can be used to build Salvo
applications by copying Salvo header and configuration files to the
compilers' default include directories.

Projects supplied with Salvo distributions may also require the
definition of one or more symbols. It is recommended that these
symbols be defined in a user-created header file. In multi-part
projects, some header files may need to be copied to new locations.

1 It is assumed that the user is evaluating the demo compiler along with the

freeware version of Salvo, Salvo Lite. However, this Application Note applies to
all versions of Salvo (Lite, LE, Pro, etc.) for PICmicro® MCUs.

2 These symbols are used for hardware-specific settings and in the project's
salvocfg.h configuration header file.

3 In this case, salvo\tut\tu1.
4 Most source files in a project are located in the project's folder. Shared files may

be located outside the project's folder. In MPLAB, use Window > Project to
open the Project Window and find the source file's path.

5 hdrpiccd.h for "header file for PICC demo compiler."
6 See endnote 4.

	Using Salvo with HI-TECH PICC & PICC-18 Demo Compilers
	Introduction
	Limitations of Demo Compilers
	Overview
	Five Steps to Success
	Step 1 – Install the Compiler, Open a Project
	Step 2 – Copy Salvo Header Files
	Step 3 – Copy Project Configuration File
	Step 4 – Define Symbols
	Step 5 – Locate Additional Header Files

	Example 1 – Salvo Demo d4 & PICC
	Steps 1-2
	Step 3
	Step 4
	Step 5

	Example 2 – Salvo Tutorial tu6 & PICC-18
	Steps 1-2
	Step 3
	Step 4
	Step 5

	Example 3 – Your Own Application
	Steps 1-2
	Step 3
	Steps 4-5

	Troubleshooting
	Precautions
	Conclusion

