FUNCTIONAL DESCRIPTION

The FG-500 is a function generator integrated circuit capable of producing high quality sine, triangle, and square waves of high stability and accuracy. A picture of each waveform is shown below:

Sine Wave

Triangle Wave

Square Wave

THEORY OF OPERATION

The heart of the FG-500 Function Generator is the XR-2206 monolithic function generator integrated circuit. The XR-2206 is comprised of four main functional blocks as shown in the functional block diagram (Figure 1). They are:

- A Voltage Controlled Oscillator (VCO)
- An Analog Multiplier and Sine-shaper
- Unity Gain Buffer Amplifier
- A set of current switches

The VCO actually produces an output frequency proportional to an input current, which is produced by a resistor from the timing terminals to ground. The current switches route one of the currents to the VCO to produce an output frequency. Which timing pin current is used, is controlled by the FSK input (pin 9). In the FG-500, the FSK input is left open, thus only the resistor on pin 7 is used. The frequency is determined by this formula:

FUNCTIONAL BLOCK DIAGRAM

Figure 1

$$
\mathrm{f}_{\mathrm{o}}=1 / \mathrm{RC} \mathrm{~Hz}
$$

where f_{0} is the frequency in Hertz
R is the resistance at pin 7 in Ohms
C is the capacitance across pin 5 and 6 in Farads
Note that frequency is inversely proportional to the value of RC. That is, the higher the value of RC, the smaller the frequency.

The resistance between pins 13 and 14 determine the shape of the output wave on pin 2. No resistor produces a triangle wave. A 200Ω resistor produces a sine wave.

RANGE SWITCHES

Six ranges of frequency are provided by the range switch as shown in Table 1.

POSITION
1
2
3
4
5
6

TYPICAL FREQUENCY RANGE $1 \mathrm{~Hz}-15 \mathrm{~Hz}$
$10 \mathrm{~Hz}-150 \mathrm{~Hz}$
$100 \mathrm{~Hz}-1.5 \mathrm{kHz}$
$1 \mathrm{kHz}-15 \mathrm{kHz}$
$10 \mathrm{kHz}-150 \mathrm{kHz}$
$100 \mathrm{kHz}-1 \mathrm{MHz}$
Table 1

SINE/TRIANGLE SWITCH

This SINE/TRIANGLE Switch selects the waveform, sine wave or triangle wave, sent to the SINE/TRIANGLE output terminal.

FREQUENCY MULTIPLIER

The multiplier is a variable control allowing frequency settings between fixed ranges. The ranges are as shown in Table 1.

AMPLITUDE CONTROL

The Amplitude Control provides amplitude adjustment from near 0 to 3 V or greater for both sine and triangle waveforms.

ON/OFF SWITCH

The ON/OFF Switch turns the power to the FG-500 on or off.

POWER JACK

This jack allows the FG-500 to be powered from an external power source of 9V to 18VDC. Putting a plug into the jack disconnects the internal 9 V battery.

OUTPUT TERMINAL

The output marked SINE/TRIANGLE provides the sine and triangle waveforms. The output marked SQUARE WAVE provides the square wave. The output marked GND provides the ground for all output waveforms.

PARTS LIST

Contact Elenco Electronics (address/phone/e-mail is at the back of this manual) if any parts are missing or damaged. DO NOT contact your place of purchase as they will not be able to help you.

RESISTORS				
Qty	Symbol	Description	Color Code	Part \#
$\square 1$	R6	$200 \Omega 5 \% 1 / 4 \mathrm{~W}$	red-black-brown-gold	132000
$\square 1$	R1	$620 \Omega 5 \% 1 / 4 \mathrm{~W}$	blue-red-brown-gold	136200
$\square 1$	R5	$3.9 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	orange-white-red-gold	143900
$\square 1$	R7	$8.2 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	gray-red-red-gold	148200
$\square 1$	R8	$10 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	brown-black-orange-gold	151000
$\square 1$	R4	$22 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	red-red-orange-gold	152200
$\square 1$	R9	$100 \mathrm{k} \Omega 5 \% 1 / 4 \mathrm{~W}$	brown-black-yellow-gold	161000
$\square 1$	R2	$10 \mathrm{k} \Omega$ Potentiometer		192531
$\square 1$	R3	$100 \mathrm{k} \Omega$ Potentiometer		192612

CAPACITORS

Qty	Symbol	Value
$\square 1$	C 6	$820 \mathrm{pF}(821) 10 \%$
$\square 1$	C 5	$.01 \mu \mathrm{~F}(103) 10 \%$
$\square 1$	C 4	$.1 \mu \mathrm{~F}(104) 10 \%$
$\square 1$	C 3	$1 \mu \mathrm{~F} 50 \mathrm{~V}$
$\square 3$	$\mathrm{C} 2, \mathrm{C} 7, \mathrm{C} 8$	$10 \mu \mathrm{~F} 16 \mathrm{~V}$
$\square 1$	C 1	$100 \mu \mathrm{~F} 16 \mathrm{~V}$
$\square 1$	C 9	$1,000 \mu \mathrm{~F} 16 \mathrm{~V}$

Description	Part \#
Discap	228210
Mylar	241017
Mylar	251017
Electrolytic (Lytic)	261047
Electrolytic (Lytic)	271015
Electrolytic (Lytic)	281044
Electrolytic (Lytic)	291044

SEMICONDUCTORS

Qty	Symbol	Value
1	U1	XR-2206

Description	Part \#
Integrated Circuit	332206

Qty	Description
$\square 1$	PC Board

Part \#
511003
541009
542207
590098
614111
622009
622130
623003 LP
624432
625031
625031 HN
625031 LW

Qty	Description	Part \#
$\square 2$	Binding Post Yellow	625034
$\square 4$	Screw 4-40 x 1/4" Phillips	641433
$\square 3$	Hex Nut 7mm	644101
$\square 1$	Hex Switch Nut 9mm	644102
$\square 2$	Flat Washer 8mm x 14mm	645101
$\square 1$	Flat Washer 9mm	645103
$\square 1$	16-pin IC Socket	664016
$\square 1$	Handle	666600
$\square 2 "$ Weather Strip	790007	
$\square 1.5$ ' Black Wire 22ga.	814120	
$\square 1$	Solder	9 ST4

PARTS IDENTIFICATION

IDENTIFYING RESISTOR VALUES

Use the following information as a guide in properly identifying the value of resistors.

Bands ${ }^{\text {a }}$ M Mliplier	BAND 1 1st Digit		BAND 2 2nd Digit		Multiplier		Resistance Tolerance	
	Color	Digit	Color	Digit	Color	Multiplier	Color	Tolerance
	Black	0	Black	0	Black	1	Silver	$\pm 10 \%$
	Brown	1	Brown	1	Brown	10	Gold	$\pm 5 \%$
	Red	2	Red	2	Red	100	Brown	$\pm 1 \%$
	Orange	3	Orange	3	Orange	1,000	Red	$\pm 2 \%$
	Yellow	4	Yellow	4	Yellow	10,000	Orange	$\pm 3 \%$
	Green	5	Green	5	Green	100,000	Green	$\pm .5 \%$
	Blue	6	Blue	6	Blue	1,000,000	Blue	$\pm .25 \%$
	Violet	7	Violet	7	Silver	0.01	Violet	$\pm .1 \%$
	Gray	8	Gray	8	Gold	0.1		
	White	9	White	9				

IDENTIFYING CAPACITOR VALUES

Capacitors will be identified by their capacitance value in pF (picofarads), nF (nanofarads) or $\mu \mathrm{F}$ (microfarads). Most capacitors will have their actual value printed on them. Some capacitors may have their value printed in the following manner.

The above value is $10 \times 1,000=10,000 \mathrm{pF}$ or $.01 \mu \mathrm{~F}$
The letter K indicates a tolerance of $\pm 10 \%$
The letter J indicates a tolerance of $\pm 5 \%$

Multiplier	For the No.	0	1	2	3	4	5	8	9
	Multiply By	1	10	100	1 k	10 k	100 k	.01	0.1

INTRODUCTION

Assembly of your FG-500 Function Generator will prove to be an exciting project and give much satisfication and personal achievement. The FG-500 contains a complete function generator capable of producing sine, square and triangle wave forms. The frequency of this generator can be contiuously varied from 1 Hz to 1 MHz in 6 steps. A fine frequency control makes selection of any frequency in between easy. The amplitude of the wave forms are adjustable from 0 to 3 Vpp . This complete function generator system is suitable for experimentation and applications by the student. The entire function generator is comprised of a single XR-2206 monolithic IC and a limited number of passive circuit components.

SPECIFICATIONS

OUTPUT:

- Waveforms: Sine, Triangle, Square
- Impedance: $600 \Omega \pm 10 \%$.
- Frequency: $1 \mathrm{~Hz}-1 \mathrm{MHz}$ in 6 decade steps with variable ranges.

SINE WAVE:

- Amplitude: $0-3 \mathrm{Vpp}$ at 9VDC input.
- Distortion: Less than 1% (at 1 kHz).
- Flatness: $\pm 0.05 \mathrm{~dB} 1 \mathrm{~Hz}-100 \mathrm{kHz}$.

SQUARE WAVE:

- Amplitude: 8V (no load) at 9VDC input.
- Rise Time: Less than 50 ns (at 1 kHz).
- Fall Time: Less than 30 ns (at 1 kHz).
- Symmetry: Less than 5% (at 1 kHz).

TRIANGLE WAVE:

- Amplitude: $0-3$ Vpp at 9VDC input.
- Linearity: Less than 1% (up to 100 kHz).

POWER REQUIREMENTS:

- Standard 9V Battery or 9V to 18VDC at input.

OPERATING TEMPERATURE:

- $0^{\circ} \mathrm{C}$ TO $50^{\circ} \mathrm{C}$.

