Construction of a video pattern generator

A pattern generator should be capable not only to produce the RGB components but also to generate the corresponding composite video signal, with all its components: synchronism pulses, luminance, modulated color subcarrier, etc.
The first thing we must define is the amount and type of patterns the set should generate, because this will directly determine the characteristics and complexity of the circuit to develop.
Our generator will be capable of producing four basic patterns:

Bars

Cross-hatch

Raster

Points

It will also provide independent control for the three components, R, G and B , as well as for luminance (Y) and chrominance (C). This fact greatly increases the pattern generation capability, because the Raster could be of any of the eight colors, the Bars could be monochrome or adopt different color combinations, as shown in the following diagrams:

Bars: B off

Bars: R off

As an additional control we can suppress the color burst, which is very useful to troubleshoot the color processing stages of the TV receiver.
In order to select which of the four basic patterns will be generated we have two switches (S4 y S5), selecting a pattern as show in the following table:

Switches:	S4 OFF	S4 ON
S5 OFF	BARS	RASTER
S5 ON	CROSS-HATCH	POINTS

The OFF (or "zero") and ON (or "one") states mean that the middle terminal of the switch is connected to ground $(0 \mathrm{~V})$ or VCC $(5 \mathrm{~V})$ potentials respectively.
Once defined the characteristics of the generator let's see how to do it.

Synchronism and pattern generation

Time base, synchronism and the four basic patterns generation will be accomplished by a microcontroller (PIC16F84-10), so this stage would be basically a Software development. At the end of this stage the microcontroller will be able to do the following:

- Generate a stable time base, from which all required times will be obtained.
- Generate in one of it pins, the one that corresponds to Bit 0 of PORTB, all the necessary synchronism pulses to comply with the requirements of the selected television norm (N), without adding video to this signal (pure synchronism signal).
- Generate the R, G and B signals, using three different pins. This signals will have the information required to generate the selected pattern, and will not have added synchronism pulses (pure video signal). The pin designation will be the following:

> PORTB $(2)=B($ Blue $)$
> PORTB $(3)=R($ Red $)$
> PORTB $(4)=G($ Green $)$
(The corresponding bit of PORTB is indicated between brackets)

- Accept in two of its pins, configured as inputs, the commands from switches S4 and S5, in order to let the user select the pattern to generate. This two inputs correspond to two Bits of PORTA, as shown:

$$
\begin{aligned}
& \text { PORTA (2) }=\text { S4 } \\
& \text { PORTA (3) }=\text { S5 }
\end{aligned}
$$

Now we have the objectives clear; let's see how the program works.
It is basically composed of four independent blocks, each of them has a complete set of routines in order to generate a complete image. In the section of Diagrams I included a flowchart of the program, which will help to understand the following explanation.
After a first stage, in which all variables are defined and loaded with the initial values, the program reads the status of the two switches, S4 and S5. Depending on the combination of
these switches the program will be addressed to one of the four mentioned blocks, corresponding to one of the four basic patterns.
Each one of these blocks begins with the generation of pre-equalizing pulses, then vertical synchronism with the corresponding serrated pulses, followed by post-equalizing pulses.
After that the field is selected: odd or even. This is very important because we are working with interlaced scanning, which means that the first line of the odd field is a full line, while the even field begins with half line. If we did not take this into account the result would be an unstable image, with a noticeable flicker in the upper side.
Note that in two of the four patterns (Cross-hatch and Points) we will use non-interlaced scanning, in order to avoid the flicker of the fixed horizontal lines or points. In this case the first line is always a full one; in order to compensate for this, we need to eliminate one preequalizing pulse (half horizontal line), as previously shown in video signal diagrams.
Then the program generates 3 or 4 horizontal lines without video, depending on the field, so as to compensate for time differences (only in interlaced patterns).
Now it is time to activate the RGB lines. After generating the horizontal synchronism and back porch time, the video signal that correspond to the selected pattern is issues through the RGB lines. How is this achieved?. Let's see an example.
Suppose that we are generating a color bar signal. There are eight bars, so we must divide the usable video time into eight equal intervals.
Before going on we must remember that the usable video time is the time during which the generated information is effectively shown on the TV screen. In PAL-N each line has a duration of $64 \mu \mathrm{sec}$.; this time includes $4.8 \mu \mathrm{sec}$. of horizontal synchronism, $1.9 \mu \mathrm{sec}$. of front porch and $5 \mu \mathrm{sec}$. of back porch. So we only have $52.3 \mu \mathrm{sec}$. remaining to show video, and this is our usable time.
Back to our example, we already defined the eight intervals. Let's see how we should issue the RGB signals in each of them:

As you can see this is a well known diagram. We already mentioned it to describe what a simple RGB bar generator would do, and that is just what we are doing now.

Let's analyze the generation of a Raster signal. This is much simpler: all the usable time we must issue a high level signal through the three RGB lines. But, if all lines RGB are active at the same time, the result will always be a white Raster. True. Color selection is achieved by controlling the RGB signals outside the microcontroller, purely by hardware (three switches).
To generate lines or points we need more elaborated routines, because we must control not only the time in the horizontal direction but also the number of lines in the vertical direction, in order to keep an equal distance between lines or points. However, this is not a problem; we just add another variable to keep the count of lines and that's all.
What about RGB lines?. They are all active when drawing lines or points, so they are white.
If you analyze the program you will probably notice that the generation of horizontal lines and video signals within a video block is repeated three times. There is a simple reason for this. In each run inside a video block a complete field is generated, that is 312.5 horizontal lines. To achieve this we must count the lines and keep this count in a certain register. Since I used an eight bit signed register, the maximum number that can be stored is 127 , so I needed to load it three times to achieve the required number of lines.

To finish with the video block, after each field is completed the program evaluates the condition of the two switches (S4 and S5). If they remain unchanged, the program continues within the same block; if there is any change it jumps to the initial evaluation routine, and then goes to the selected video block.

And that's all. May be there is still an unclear issue... how do I calculate the time inside the program?. When you use a microcontroller this is very easy, you only have to count "instruction cycles". Using a 10 MHz oscillator and knowing the fact that each instruction cycle needs four oscillator cycles, we can easily calculate the time of one instruction cycle:

```
\(\mathrm{T}_{\text {osc }}=\mathbf{1} / \mathrm{f}_{\text {osc }}\)
\(\mathrm{T}_{\text {ins }}=\mathrm{T}_{\text {osc }} \times 4\)
\(\mathrm{T}_{\text {ins }}=\mathbf{1 / 1 0 ~ M H z ~ x ~} 4=0.4 \boldsymbol{\mu s e c}\).
```

If each instruction cycle lasts for $0.4 \mu \mathrm{sec}$., then we need to count 12 cycles in order to obtain the horizontal synchronization pulse:

$12 \times 0.4 \mu \mathrm{sec} .=4.8 \mu \mathrm{sec}$.

In the same way we can calculate the cycles needed for a complete horizontal line, 160 instruction cycles:

$160 \times 0.4 \mu \mathrm{sec} .=64 \mu \mathrm{sec}$.

So, this is what the program does. It counts instructions and set or clear, as required, the Bit 0 of PORTB. In our case, during the equalization and synchronization pulses (H or V) this bit will be clear $(0 \mathrm{~V})$ and the rest of the time it will remain set $(5 \mathrm{~V})$.

Composite Video generation

As we already stated, it is not enough to generate RGB signals to have a practical video generator, that can be connected to TV receivers or VCRs. We must combine this RGB signal with the synchronization signal and generate Composite Video, which is a practical signal to test receivers.
We already analyzed all the steps needed to obtain Composite Video from RGB, so we will not repeat it here. It is a hard process if you have to do it "manually". Fortunately, there is an integrated circuit, designed by Motorola®, that complies with the following specifications:

- It has four signal inputs: Synchronism, R, G and B
- From RGB it generates luminance (Y)
- Has an in-circuit oscillator, which generates the color subcarrier
- Generates B-Y and R-Y signals, with the phase alternation required by the PAL system
- From B-Y and R-Y generates chrominance (C)
- Mixes Y with C to obtain Composite Video

As you can see, a single IC does exactly what we need. And it requires exactly the four signal we already generated with the microcontroller.
This IC is the MC1377, RGB ENCODER, and with a few external components it can be fully functional. In fact, I used the configuration suggested in the data sheet, with some modifications to improve its performance.
The crystal used corresponds to PAL-N color subcarrier frequency, 3.582056 MHz . If you want to use this equipment in Europe, in those countries using PAL-B/G/I, you only need to replace the crystal by another one with the proper frequency (4.43 MHz) and make minor adjustments to the TRIMMER CV1.
In this stage we have control of all the signals: RGB, Y, C and color burst. There are basically six switches that derives the signal to ground, directly (RGB) or through a capacitor (Y, C). In the case of color burst, to eliminate it, the switch (S8) disconnect a capacitor (C04), responsible for generating the burst duration time.
Let's see a summary of the switches and their function:

Switch	Function
S1	G ON/OFF
S2	R ON/OFF
S3	B ON/OFF
S4	PROGRAM
S5	PROGRAM
S6	Y ON/OFF
S7	C ON/OFF
S8	BURST ON/OFF
S9	POWER

Once obtained the Composite Video signal, its level and impedance are adjusted by sending it through a buffer circuit, composed by Q1, R14 and R15.

This concludes the signal generation, and practically the circuit description. I only have to mention that the two main integrated circuits have different supply voltages, so you can see a main power supply of 12 V (8 AA alkaline batteries, this is a portable set) for the video sector (U2 and Q1), and a secondary power supply of 5 V , obtained from the main one, for the microcontroller (U1).

Practical implementation of the video generator

In the following pages you will find all the necessary information, diagrams and drawings, to construct a really working video generator. I have included the printed circuit board layout in actual size, so you only need to print it on a transparency film and transfer to the board. Note that the circuit is inverted, in order to make easier the mounting stage, using the component layout diagram provided. In the actual board the text "Generador de video" should be in the right direction.
About the program, I put it entirely in the final pages. You only need to copy it into a text editor, assemble it and load it into the PIC, using the tools provided by Microchip ${ }^{\circledR}$ or the ones you may have developed.

IMPORTANT ADVICE: While loading the program into the PIC, do not forget to set the option for crystal (XT) operation. Otherwise, the crystal will not oscillate.

And that's all. If everything is correctly placed the set will run as expected from the beginning. The only adjust you may have to do is to move CV1 until you have a clear color reproduction, which is quite simple.

I hope this project could be of use. I'll be expecting your comments, suggestions and also improvements you may think about. If you want a Spanish copy of this material do not hesitate to contact me.

Marcelo F. Maggi - April, 1998
mmaggi@hotmail.com

Block diagram

Schematic diagram

Parts list

R01	3K9
R02	3K9
R03	3K9
R04	1K
R05	1K
R06	1K
R07	1K
R08	1K
R09	1K
R10	68K
R11	82K
R12	10K
R13	2K2
R14	4K7
R15	2K7
R16	100
C01	0.1ر
C02	100 $/$ /16V
C03	100 $/ 16 \mathrm{~V}$
C04	1500p
C05	10ر/25V
C06	10 $/ 25 \mathrm{~V}$
C07	10 $/ 25 \mathrm{~V}$
C08	. 02μ
C09	.01 μ
C10	15p
C11	15p
C12	0.1 μ

C 13	0.1μ
C 14	220 p
C 15	0.1μ
C 16	18 p
C 17	150 p
C 18	$.02 \mu$
C 19	$100 \mu / 16 \mathrm{~V}$
C 20	0.1μ
C21	0.1μ
C22	$100 \mu / 16 \mathrm{~V}$
CV1	TRIMMER 5-45p
D1	1N4007
Q1	BF494C
U1	PIC16F84-10
U2	MC1377
U3	LM78L05
X1	10.000MHz
X2	3.582056MHz
S1	2 POSITION SWITCH
S2	2 POSITION SWITCH
S3	2 POSITION SWITCH
S4	2 POSITION SWITCH
S5	2 POSITION SWITCH
S6	2 POSITION SWITCH
S7	2 POSITION SWITCH
S8	2 POSITION SWITCH
S9	2 POSITION SWITCH
BT1	8 AA ALKALINE BATTERIES

Note: to change the color system from PAL-N to PAL-B/G/I replace X2 by a 4.43 MHz crystal

Printed circuit board

Component layout

Program

General flowchart


```
; ***** GENERADOR DE PATRONES PARA VIDEO *****
; VERSION 2.01
; GEN201.ASM
; (C) M. MAGGI - 30/08/1997
    list p=16f84
;DEFINICION DE PUERTOS:
;PORTB(0): SYNC
;PORTB(2): AZUL
;PORTB(3): ROJO
;PORTB(4): VERDE
;NO USAR EL BIT 1 DEL PORTB
;PARA LOS PATRONES DE RASTER Y BARRAS EL VIDEO ES ENTRELAZADO
; LOS PUNTOS Y EL CROSSHATCH SE HACEN CON VIDEO NO ENTRELAZADO PARA EVITAR EL
; "FLICKER"
CBLOCK OXOC ;VARIABLES
DURHOR, CANTHB1, CANTHB2, BLKLIN, CANTPRE, DUREQU, CANTVER, DURVER, CANTPOS
TIEMPO,FIELD,CARRY
WHITE, YELLOW, CYAN, GREEN, MAGEN, RED, BLUE, BLACK, CANTLIN
ENDC
\begin{tabular}{lll} 
PORTA & EQU & 5 \\
TRISA & EQU & 85
\end{tabular}
PORTB EQU 6
TRISB EQU 86H
STATUS EQU 3
RPO EQU 5
BLANCO EQU B'00011101'
AMARIL EQU B'00011001'
CYANO EQU B'00010101'
VERDE EQU B'00010001'
MAGENT EQU B'00001101'
ROJO EQU B'00001001'
AZUL EQU B'00000101'
NEGRO EQU B'00000001'
;
    CLRF PORTA ;TODOS LOS BITS EN O
    CLRF PORTB ;TODOS LOS BITS EN O
    BSF STATUS,RPO ;SELECCIONA BANCO DE REGISTROS 1
    MOVLW B'11111111
    MOVWF TRISA ;TODOS LOS BITS DEL PUERTO A COMO ENTRADAS
    CLRF TRISB^80H ;TODOS LOS BITS DEL PUERTO B COMO SALIDA
    BCF STATUS,RPO ;SELECCIONA BANCO DE REGISTROS O
;
```


	BTFSS	FIELD, 0	;SI ES EL CAMPO 1 SE HACEN SOLO 3 LINEAS
	MOVLW	$\mathrm{D}^{\prime} 4{ }^{\prime}$; 4 LINEAS EN EL CAMPO 2
	MOVWF	BLKLIN	
	MOVLW	$D^{\prime} 99^{\prime}$	
	MOVWF	CANTHB1	; CANTIDAD DE LINEAS HORIZONTALES EN UN BLOQUE
	MOVLW	$\mathrm{D}^{\prime} 3^{\prime}$	
	MOVWF	CANTHB2	; CANTIDAD DE BLOQUES (3)
	MOVLW	5	
	MOVWF	CANTPRE	; PULSOS DE PREECUALIZACION
	MOVLW	5	
	MOVWF	CANTVER	;PULSOS DE SINCRONISMO VERTICAL
	MOVLW	5	
	MOVWF	CANTPOS	;PULSOS DE POSECUALIZACION
PREEQU	BCF	PORTB, 0	;DURACION: 2,6رS ABAJO
	MOVLW	$D^{\prime} 23$ '	
	MOVWF	DUREQU	
	NOP		
	NOP		
	NOP		
	BSF	PORTB, 0	
LOOP 1	DECFSZ	DUREQU	; SE COMPLETAN LOS 32 ${ }^{\text {S }}$ ARRIBA
	GOTO	LOOP 1	
	NOP		
	NOP		
	DECFSZ	CANTPRE	
	GOTO	PREEQU	
	NOP		
VERT	BCF	PORTB, 0	
	MOVLW	$\mathrm{D}^{\prime} 22^{\prime}$	
	MOVWF	DURVER	
LOOP 2	DECFSZ	DURVER	
	GOTO	LOOP 2	
	BSF	PORTB, 0	;DURACION: 4.8 ${ }^{\text {d }}$ ARRIBA ("SERRATED PULSES")
	MOVLW	2	
	MOVWF	TIEMPO	
TIME	DECFSZ	TIEMPO	
	GOTO	TIME	
	NOP		
	DECFSZ	CANTVER	
	GOTO	VERT	
	NOP		
POSEQU	BCF	PORTB, 0	
	MOVLW	$D^{\prime} 23^{\prime}$	
	MOVWF	DUREQU	
	NOP		
	NOP		
	NOP		
	BSF	PORTB, 0	
LOOP 3	DECFSZ	DUREQU	
	GOTO	LOOP 3	
	NOP		
	NOP		
	DECFSZ	CANTPOS	
	GOTO	POSEQU	
	NOP		
; SE EMPIEZAN A BARRER LAS LINEAS HORIZONTALES			
;LA PRIMERA LINEA ES COMPLETA EN EL CAMPO 1, EN TANTO QUE ES SOLO MEDIA LINEA			
	CAMPO 2,	Y NO COM	ON UN PULSO DE SINCRONISMO
	RLF	PORTB	; 1 O $1 / 2$ LINEA H SEGUN EL CAMPO
	NOP		; SE PASA EL CARRY AL BIT 0 DEL PUERTO B
	NOP		; CAMPO 1: 1 LINEA Y PULSO DE SINC (CARRY=0)

```
    NOP ;CAMPO 2: 1/2 LINEA SIN PULSO DE SINC (CARRY=1)
    NOP
    NOP
    NOP
    NOP
    MOVLW D'21' ;TIEMPO PARA 1/2 H (80 CICLOS TOTAL)
    BTFSS PORTB,0 ;SI HAY H SYNC (CAMPO 1) SE AGREGA MAS TIEMPO
    ADDLW D'27' ;TIEMPO PARA 1 H (160 CICLOS TOTAL)
    MOVWF DURHOR
    BSF PORTB,0
    BTFSS FIELD,0
    GOTO NEXT ;SE PIERDE 1 CICLO MAS (SOLO 1/2 H)
NEXT BCF PORTB,1
    NOP
LOOP DECFSZ DURHOR
    GOTO LOOP
    NOP
; SE HACEN 3 O 4 LINEAS EN BLANCO PARA CUMPLIR CON LAS 625 LINEAS DE LA NORMA N
;SI ES EL CAMPO 1 SE HACEN SOLO 3 LINEAS, YA QUE ANTES SE HIZO 1 DE MAS
HORIZ BCF PORTB,0
    MOVLW 2
    MOVWF TIEMPO ;PIERDO TIEMPO PARA
TIME3 DECFSZ TIEMPO ;HACER LOS 4,8\muS
    GOTO TIME3
    NOP
    NOP
    MOVLW D'48'
    MOVWF DURHOR
    BSF PORTB,0 ;BIT 0 ALTO
LOOPH3 DECFSZ DURHOR
    GOTO LOOPH3
    NOP
    DECFSZ BLKLIN
    GOTO HORIZ
    NOP
; SE HACEN 3 BLOQUES DE 99 LINEAS HORIZONTALES
;3*(99+1)=300 LINEAS
HORIZ1 BCF PORTB,0
    MOVLW 2
    MOVWF TIEMPO ;PIERDO TIEMPO PARA
TIME1 DECFSZ TIEMPO ;HACER LOS 4,8\muS
    GOTO TIME1
    NOP
    NOP
    MOVLW D'31'
    MOVWF DURHOR
    BSF PORTB,0 ;BIT 0 ALTO
    NOP
    NOP
    NOP
    MOVLW 5
    MOVWF WHITE
    MOVWF YELLOW
    MOVWF CYAN
    MOVWF GREEN
    MOVWF MAGEN
    MOVWF RED
    MOVWF BLUE
    MOVWF BLACK
    MOVLW BLANCO
```

	MOVWF	PORTB	
WHITE1	DECFSZ	WHITE	
	GOTO	WHITE1	
	MOVLW	AMARIL	
	MOVWF	PORTB	
YELLO1	DECFSZ	YELLOW	
	GOTO	YELLO1	
	MOVLW	CYANO	
	MOVWF	PORTB	
CYAN1	DECESZ	CYAN	
	GOTO	CYAN1	
	MOVLW	VERDE	
	MOVWF	PORTB	
GREEN1	DECFSZ	GREEN	
	GOTO	GREEN1	
	MOVLW	MAGENT	
	MOVWF	PORTB	
MAGEN1	DECFSZ	MAGEN	
	GOTO	MAGEN1	
	MOVLW	ROJO	
	MOVWF	PORTB	
RED1	DECFSZ	RED	
	GOTO	RED1	
	MOVLW	AZUL	
	MOVWF	PORTB	
BLUE1	DECFSZ	BLUE	
	GOTO	BLUE1	
	MOVLW	NEGRO	
	MOVWF	PORTB	
BLACK1	DECFSZ	BLACK	
	GOTO	BLACK1	
	NOP		
	DECFSZ	CANTHB1	
	GOTO	HORIZ1	
	NOP		
HORIZ2	BCF	PORTB, 0	; BIT 0 BAJO
	MOVLW	2	
	MOVWF	TIEMPO	; PIERDO TIEMPO PARA
TIME2	DECFSZ	TIEMPO	; HACER LOS 4, $8 \mu \mathrm{~S}$
	GOTO	TIME2	
	MOVLW	D'99'	
	MOVWF	CANTHB1	
	MOVLW	$\mathrm{D}^{\prime} 31$ '	
	MOVWF	DURHOR	
	BSF	PORTB, 0	; BIT 0 ALTO
	NOP		
	NOP		
	NOP		
	MOVLW	5	
	MOVWF	WHITE	
	MOVWF	YELLOW	
	MOVWF	CYAN	
	MOVWF	GREEN	
	MOVWF	MAGEN	
	MOVWF	RED	
	MOVWF	BLUE	
	MOVWF	BLACK	
	MOVLW	BLANCO	
	MOVWF	PORTB	
WHITE2	DECFSZ	WHITE	

	NOP		
	NOP		
	NOP		
	NOP		
	GOTO	INICIO	
$;^{* * * * *}$	RASTER *	*****	
INICIO1	RRF	FIELD	
	MOVLW	D'3'	
	BTFSS	FIELD, 0	
	MOVLW	$D^{\prime} 4^{\prime}$	
	MOVWF	BLKLIN	
	MOVLW	$D^{\prime} 99^{\prime}$	
	MOVWF	CANTHB1	
	MOVLW	$D^{\prime} 3^{\prime}$	
	MOVWF	CANTHB2	
	MOVLW	5	
	MOVWF	CANTPRE	
	MOVLW	5	
	MOVWF	CANTVER	
	MOVLW	5	
	MOVWF	CANTPOS	
APREEQU	BCF	PORTB, 0	; DURACION: 2,6uS ABAJO
	MOVLW	$\mathrm{D}^{\prime} 23$ '	
	MOVWF	DUREQU	
	NOP		
	NOP		
	NOP		
	BSF	PORTB, 0	
ALOOP 1	DECFSZ	DUREQU	; SE COMPLETAN LOS $32 \mu \mathrm{~S}$ ARRIBA
	GOTO	ALOOP 1	
	NOP		
	NOP		
	DECFSZ	CANTPRE	
	GOTO	APREEQU	
	NOP		
AVERT	BCF	PORTB, 0	
	MOVLW	$D^{\prime} 22^{\prime}$	
	MOVWF	DURVER	
ALOOP 2	DECFSZ	DURVER	
	GOTO	ALOOP2	
	BSF	PORTB, 0	;DURACION: 4.8 ${ }^{\text {dS }}$ ARRIBA ("SERRATED PULSES")
	MOVLW	2	
	MOVWF	TIEMPO	
ATIME	DECFSZ	TIEMPO	
	GOTO	ATIME	
	NOP		
	DECFSZ	CANTVER	
	GOTO	AVERT	
	NOP		
APOSEQU	BCF	PORTB, 0	
	MOVLW	$D^{\prime} 23^{\prime}$	
	MOVWF	DUREQU	
	NOP		
	NOP		
	NOP		
	BSF	PORTB, 0	
ALOOP 3	DECFSZ	DUREQU	
	GOTO	ALOOP 3	
	NOP		
	NOP		
	DECFSZ	CANTPOS	

	GOTO	APOSEQU	
	NOP		
	RLF	PORTB	;1 O 1/2 LINEA H SEGUN EL CAMPO
	NOP		
	MOVLW	D'21'	; TIEMPO PARA 1/2 H (80 CICLOS TOTAL)
	BTFSS	PORTB, 0	
	ADDLW	D'27'	; TIEMPO PARA 1 H (160 CICLOS TOTAL)
	MOVWF	DURHOR	
	BSF	PORTB, 0	
	BTFSS	FIELD, 0	
	GOTO	ANEXT	; SE PIERDE 1 CICLO MAS (SOLO 1/2 H)
ANEXT	BCF	PORTB, 1	
	NOP		
ALOOP	DECFSZ	DURHOR	
	GOTO	ALOOP	
	NOP		
AHORIZ	BCF	PORTB, 0	
	MOVLW	2	
	MOVWF	TIEMPO	; PIERDO TIEMPO PARA
ATIME3	DECFSZ	TIEMPO	; HACER LOS 4,8 ${ }^{\text {a }}$
	GOTO	ATIME3	
	NOP		
	NOP		
	MOVLW	$\mathrm{D}^{\prime} 48^{\prime}$	
	MOVWF	DURHOR	
	BSF	PORTB, 0	; BIT 0 Alto
ALOOPH3	DECFSZ	DURHOR	
	GOTO	ALOOPH3	
	NOP		
	DECFSZ	BLKLIN	
	GOTO	AHORIZ	
	NOP		
AHORIZ1	BCF	PORTB, 0	
	MOVLW	2	
	MOVWF	TIEMPO	; PIERDO TIEMPO PARA
ATIME1	DECFSZ	TIEMPO	; HACER LOS 4, $8 \mu \mathrm{~S}$
	GOTO	ATIME1	
	NOP		
	NOP		
	MOVLW	D'44'	
	MOVWF	DURHOR	
	BSF	PORTB, 0	; BIT 0 ALTO
	NOP		
	MOVLW	B'00011101'	
	MOVWF	PORTB	
ALOOPH4	DECFSZ	DURHOR	
	GOTO	ALOOPH4	

```
    MOVLW B'00000001'
    MOVWF PORTB
    DECFSZ CANTHB1
    GOTO AHORIZ1
    NOP
    BCF PORTB,0
    MOVLW 2
    MOVWF TIEMPO ;PIERDO TIEMPO PARA
ATIME2 DECFSZ TIEMPO ;HACER LOS 4,8\muS
    GOTO ATIME2
    MOVLW D'99'
    MOVWF CANTHB1
    MOVLW D'44'
    MOVWF DURHOR
    BSF PORTB,0
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    MOVLW B'00011101'
    MOVWF PORTB
ALOOPH5 DECFSZ DURHOR
    GOTO ALOOPH5
    MOVLW B'00000001'
    MOVWF PORTB
    DECFSZ CANTHB2
    GOTO AHORIZ1
    NOP
;ESTA ULTIMA LINEA/MEDIA LINEA, LA 305, LA USO PARA CARGAR VARIABLES
\begin{tabular}{llll} 
BCF & PORTB, 0 & ;BIT O PASA A NIVEL BAJO \\
NOP & & ;PIERDO TIEMPO PARA \\
NOP & & ;HACER LOS 4, 8 \(\mu \mathrm{S}\) \\
MOVLW & 0 & ;NO USAR EL BIT 1 DEL PORTB, BIT \(0=\) SYNC \\
BTFSC & FIELD,0 &
\end{tabular}
    MOVLW 1
    MOVWF CARRY
    NOP
    MOVLW D'15'
    BTFSC FIELD,0
    ADDLW D'24'
    MOVWF DURHOR
    BSF PORTB,0 ;BIT O PASA A NIVEL ALTO
    BTFSS FIELD,0
    GOTO ANEXT1
ANEXT1 NOP
    NOP
ALOOPH6 DECFSZ DURHOR
    GOTO ALOOPH6
    RRF CARRY ;CARRY = 1 SI 1 H, CARRY = 0 SI 1/2 H
    BTFSS PORTA,2
    GOTO LECTURA
    BTFSC PORTA, 3
    GOTO LECTURA
    NOP
    NOP
    NOP
```

```
        NOP
        NOP
        GOTO INICIO1
;***** CROSSHATCH *****
INICIO2 RRF FIELD
    NOP
    NOP
    MOVLW D'4'
    MOVWF BLKLIN
    MOVLW D'28'
    MOVWF CANTHB1
    MOVLW D'10'
    MOVWF CANTHB2
    MOVLW 4
    MOVWF CANTPRE ; SOLO 4 PULSOS POR SER VIDEO NO ENTRELAZADO
        MOVLW 5
        MOVWF CANTVER
        MOVLW 5
        MOVWF CANTPOS
BPREEQU BCF PORTB,0 ;DURACION: 2,6\muS ABAJO
        MOVLW D'23'
        MOVWF DUREQU
        NOP
        NOP
        NOP
        BSF PORTB,0
BLOOP1 DECFSZ DUREQU ;SE COMPLETAN LOS 32 
        GOTO BLOOP1
        NOP
        NOP
        DECFSZ CANTPRE
        GOTO BPREEQU
        NOP
BVERT BCF PORTB,0
        MOVLW D'22'
        MOVWF DURVER
BLOOP2 DECFSZ DURVER
        GOTO BLOOP2
        BSF PORTB,0 ;DURACION: 4.8\muS ARRIBA ("SERRATED PULSES")
        MOVLW 2
        MOVWF TIEMPO
        DECFSZ TIEMPO
        GOTO BTIME
        NOP
        DECFSZ CANTVER
        GOTO BVERT
        NOP
BPOSEQU BCF PORTB,0
        MOVLW D'23'
        MOVWF DUREQU
        NOP
        NOP
        NOP
        BSF PORTB,0
BLOOP3 DECFSZ DUREQU
        GOTO BLOOP3
        NOP
        NOP
        DECFSZ CANTPOS
        GOTO BPOSEQU
        NOP
```

	NOP		;1/2 LINEA H (NO ENTRELAZADO)
	NOP		
	MOVLW	D'21'	; TIEMPO PARA $1 / 2 \mathrm{H}$ (80 CICLOS TOTAL)
	NOP		
	NOP		
	MOVWF	DURHOR	
	NOP		
	BCF	PORTB, 1	
	NOP		
BLOOP	DECFSZ	DURHOR	
	GOTO	BLOOP	
	NOP		
BHORIZ	BCF	PORTB, 0	
	MOVLW	2	
	MOVWF	TIEMPO	; PIERDO TIEMPO PARA
BTIME3	DECFSZ	TIEMPO	; HACER LOS 4, $8 \mu \mathrm{~S}$
	GOTO	BTIME3	
	NOP		
	NOP		
	MOVLW	$\mathrm{D}^{\prime} 48^{\prime}$	
	MOVWF	DURHOR	
	BSF	PORTB, 0	; BIT 0 ALto
BLOOPH3	DECFSZ	DURHOR	
	GOTO	BLOOPH3	
	NOP		
	DECFSZ	BLKLIN	
	GOTO	BHORIZ	
	NOP		
BHORIZ1	BCF	PORTB, 0	
	MOVLW	2	
	MOVWF	TIEMPO	; PIERDO TIEMPO PARA
BTIME1	DECFSZ	TIEMPO	; HACER LOS 4, $8 \mu \mathrm{~S}$
	GOTO	BTIME1	
	NOP		
	NOP		
	MOVLW	9	
	MOVWF	CANTLIN	
	BSF	PORTB, 0	; BIT 0 ALto
	NOP		
BLOOPHA	MOVLW	B'00011100'	
	ADDWF	PORTB	
	SUBWF	PORTB	
	NOP		
	MOVLW	2	

BLOOPH4	MOVWF	DURHOR	
	DECFSZ	DURHOR	
	GOTO	BLOOPH4	
	DECFSZ	CANTLIN	
	GOTO	BLOOPHA	
	NOP		
	MOVLW	$B^{\prime} 00011100 '$	
	ADDWF	PORTB	
	SUBWF	PORTB	
	NOP		
	DECFSZ	CANTHB1	
	GOTO	BHORIZ1	
	NOP		
	BCF	PORTB, 0	
	MOVLW	2	
	MOVWF	TIEMPO	; PIERDO TIEMPO PARA
BTIMEZ	DECFSZ	TIEMPO	; HACER LOS 4,8رS
	GOTO	BTIMEZ	
	NOP		
	NOP		
	MOVLW	D'44'	
	MOVWF	DURHOR	
	BSF	PORTB, 0	; BIT 0 ALTO
	NOP		
	MOVLW	B'00011101'	
	MOVWF	PORTB	
BLOOPHZ	DECFSZ	DURHOR	
	GOTO	BLOOPHZ	
	MOVLW	B'00000001'	
	MOVWF	PORTB	
	NOP		
	NOP		
	NOP		
	BCF	PORTB, 0	
	MOVLW	2	
	MOVWF	TIEMPO	; PIERDO TIEMPO PARA
BTIME2	DECFSZ	TIEMPO	; HACER LOS 4,8رS
	GOTO	BTIME2	
	MOVLW	D'28'	
	MOVWF	CANTHB1	
	MOVLW	D'44'	
	MOVWF	DURHOR	
	BSF	PORTB, 0	; BIT 0 ALTO
	NOP		

```
    NOP
    NOP
    NOP
    MOVLW B'00011101'
    MOVWF PORTB
BLOOPH5 DECFSZ DURHOR
    GOTO BLOOPH5
    MOVLW B'00000001'
    MOVWF PORTB
    DECFSZ CANTHB2
    GOTO BHORIZ1
    NOP
;ESTA ULTIMA MEDIA LINEA, LA 305, LA USO PARA CARGAR VARIABLES
    BCF PORTB,0 
    MOVLW 1
    MOVWF CARRY
    NOP
    MOVLW D'15'
    NOP
    NOP
    MOVWF DURHOR
    BSF PORTB,0 ;BIT O PASA A NIVEL ALTO
    NOP
    NOP
    NOP
    NOP
    NOP
BLOOPH6 DECFSZ DURHOR
    GOTO BLOOPH6
    RRF CARRY ;CARRY = 1 SI 1 H, CARRY = 0 SI 1/2 H
    BTFSC PORTA,2
    GOTO LECTURA
    BTESS PORTA,3
    GOTO LECTURA
    NOP
    NOP
    NOP
    NOP
    NOP
    GOTO INICIO2
;***** PUNTOS *****
INICIO3 RRF FIELD
    NOP
    NOP
    MOVLW D'4'
    MOVWF BLKLIN
    MOVLW D'28'
    MOVWF CANTHB1
    MOVLW D'10'
    MOVWF CANTHB2
    MOVLW 4
    MOVWF CANTPRE
    MOVLW 5
    MOVWF CANTVER
    MOVLW 5
    MOVWF CANTPOS
```

```
CPREEQU BCF 
```

	NOP		
CHORIZ	BCF	PORTB, 0	
	MOVLW	2	
	MOVWF	TIEMPO	; PIERDO TIEMPO PARA
CTIME3	DECFSZ	TIEMPO	; HACER LOS 4,8رS
	GOTO	CTIME3	
	NOP		
	NOP		
	MOVLW	$\mathrm{D}^{\prime} 48^{\prime}$	
	MOVWF	DURHOR	
	BSF	PORTB, 0	; BIT 0 ALTO
CLOOPH3	DECFSZ	DURHOR	
	GOTO	CLOOPH3	
	NOP		
	DECFSZ	BLKLIN	
	GOTO	CHORIZ	
	NOP		
CHORIZ1	BCF	PORTB, 0	
	MOVLW	2	
	MOVWF	TIEMPO	; PIERDO TIEMPO PARA
CTIME1	DECFSZ	TIEMPO	; HACER LOS 4,8 $\mu \mathrm{S}$
	GOTO	CTIME1	
	NOP		
	NOP		
	MOVLW	D'48'	
	MOVWF	DURHOR	
	BSF	PORTB, 0	; BIT 0 Alto
CLOOPHZ	DECFSZ	DURHOR	
	GOTO	CLOOPHZ	
	NOP		
	DECFSZ	CANTHB1	
	GOTO	CHORIZ1	
	NOP		
	BCF	PORTB, 0	
	MOVLW	2	
	MOVWF	TIEMPO	; PIERDO TIEMPO PARA
CTIMEZ	DECFSZ	TIEMPO	; HACER LOS 4, $8 \mu \mathrm{~S}$
	GOTO	CTIMEZ	
	NOP		
	NOP		
	MOVLW	9	
	MOVWF	CANTLIN	
	BSF	PORTB, 0	; BIT 0 ALTO
	NOP		
CLOOPHA	MOVLW	$B^{\prime} 00011100 '$	
	ADDWF	PORTB	
	SUBWF	PORTB	
	NOP		
	MOVLW	2	
	MOVWF	DURHOR	
CLOOPH4	DECFSZ	DURHOR	
	GOTO	CLOOPH4	
	DECFSZ	CANTLIN	

```
    GOTO CLOOPHA
    NOP
    MOVLW B'00011100'
    ADDWF PORTB
    SUBWF PORTB
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    BCF PORTB,0
    MOVLW 2
    MOVWF TIEMPO ;PIERDO TIEMPO PARA
    DECFSZ TIEMPO ;HACER LOS 4,8\muS
    MOVLW D'28'
    MOVWF CANTHB1
    MOVLW 9
    MOVWF CANTLIN
    BSF PORTB,0 ;BIT O ALTO
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
CLOOPHB MOVLW B'00011100'
    ADDWF PORTB
    SUBWF PORTB
    NOP
    MOVLW 2
    MOVWF DURHOR
CLOOPH5 DECFSZ DURHOR
    GOTO CLOOPH5
    DECFSZ CANTLIN
    GOTO CLOOPHB
    NOP
    MOVLW B'00011100'
    ADDWF PORTB
    SUBWF PORTB
    NOP
    NOP
    NOP
    NOP
    NOP
    NOP
    DECFSZ CANTHB2
    GOTO CHORIZ1
    NOP
;ESTA ULTIMA MEDIA LINEA, LA 305, LA USO PARA CARGAR VARIABLES
\begin{tabular}{lll} 
BCF & PORTB, 0 & ;BIT 0 PASA A NIVEL BAJO \\
NOP & & ;PIERDO TIEMPO PARA \\
NOP & ;HACER LOS 4, 8 1 S \\
MOVLW & 0 & \(; N O\) USAR EL BIT 1 DEL PORTB, BIT \(0=\) SYNC
\end{tabular}
```


