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The evolution of a 2D ideal gas toward the state of thermodynamic equilibrium
The Boltzmann's H-theorem - The Maxwell-Boltzmann distribution

K. Papamichalis Dr. of Theoretical Physics

Synopsis
In this work we describe the theoretical model of an ideal 2-dimensional gas. The velocity
probability density function is defined and its evolution with time is derived. This has been
accomplished by means of a "master" equation(1,2) which expresses the variation of the velocity
probability density function caused by the mutual interactions of the particles. From the master
equation we derive the condition satisfied by the probability density in the equilibrium state,
and we formulate its analytic expression: the Maxwell-Boltzmann (M-B) distribution. Then, we
formulate the Boltzmann's H-theorem. We prove that the velocity probability density function
converges with time to the M-B distribution, independently on the initial velocity distribution of
the gas.
In the virtual environment of the simulation the user can test experimentally the Boltzmann H-
theorem in the case of a 2-dimensional ideal gas. He can check in real time if the particles'
velocity probability distribution converges with time to the Maxwell-Boltzmann distribution,
irrespectively of the analytic form of the initial distribution.

Open the simulation here: The evolution of a 2-dimensional ideal gas toward the
equilibrium state. The Boltzmann H-theorem

Key concepts and relationships
Probability - Event - Sample space - Random variable - Probability density - Distribution of a
random variable - Uniform distribution - Master equation - Maxwell-Boltzmann distribution –
Steady state of a dynamical system - Boltzmann's H functional
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A) Preliminary knowledge - Description of the model and the main features of the
application

The 2-dimensional ideal gas is consisted by an aggregate of N discrete particles moving in a
plane container of dimensions .L L Each particle has the form of a disk with radius r and mass
m. We correspond to each particle an integer j=0,1,2…N-1.
The particles interact with each other and with the walls of the container. The interactions with
the walls are elastic collisions. The mutual interactions of the particles take place among
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couples of particles. In each interaction the total linear momentum and the energy of the couple
are conserved. According to our model, the particles of a couple interact when the distance of
their centers is getting less than s r where s is a coefficient controlling the scope of the
interaction (see paragraph "The items, the graphs, and the tools of the simulation"). Then,
strong repelling forces obeying Newton's third law are exerted on the particles. The duration of
each interaction is negligible compared with the time passing among two successive interactions
(see paragraph: "How do the particles interact?"). Between two successive interactions,
each particle moves with constant velocity.
The positions  ,j jX Y and the velocities  ,jx jyV V of the particles (the centers of the disks) are

random variables(4). They are calculated in the inertial reference frame Oxy: the origin O is the
left-down edge of the container and the axes Ox, Oy are parallel to its walls.
The random variables ,j jX Y fulfill the conditions:

, , 0,1,... 1j jr Χ L r r Y L r j N        (1)

The initial state of the system is determined by the initial positions and velocities of the
particles. The initial distribution of the particles' positions is uniform, i.e. the following
conditions are fulfilled:
a) The probability of the event(4): "the x-coordinate of the j-particle takes a value in the
infinitesimal interval ,x x Δx ", is calculated by the relationship:

  , for each ,
2j

Δxp x X x Δx x r L r
L r

       
(2a)

b) The probability of the event: "the y-coordinate of the j-particle takes a value in the
infinitesimal interval , "y y Δy is calculated by the relationship:

  , for each ,
2j

Δyp y Y y Δy y r L r
L r

       
(2b)

The probability density(4)  Up u of a random variable U that takes values in an interval I of

the real numbers R  I R is defined by the relation:

    , 0Up u U u Δu p u Δu Δu     (2c)
For the case of the uniform distribution, the probability density is constant everywhere in the
range of the random variable. Hence, according to 2a and b, the probability densities of the
random variables ,j jX Y are determined by the analytic expressions:

    1 , , ,
2j jX Yp x p y x y r L r

L r
     

(3a)

The probability distribution (or simply: distribution)  
jX

P x of the random variable Xj is

defined as the probability of the event: "the value of the variable Xj is less than x". Given that
the range of Xj is the interval , ,r L r   we right:

   
jX jP x p r X x  

Consider two disjoint sets Ι1 and Ι2, in the range of the random variable Xj:
1 2I I  

The events: 1 2" "  and " "j jX I X I  are mutually independent and the following relation holds:

     1 2 1 2j j jp X I I p X I p X I     

Hence, we can partition the range of Xj in a sequence of successive infinitesimal intervals and
express the probability distribution  

jX
P x as follows:

         0 1 1 2 1...
jX j j j M j MP x p r X x p x X x p x X x p x X x           

1 0where: ,  0,1,... 1,  0,  and ,n n n n Mx x Δx n M Δx M x r x x         
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Hence, according to 2a and c, we obtain:

     
j j

x

X j X
r

P x p r X x p x dx     (3b)

  1 ,
2 2j

x

X
r

x rP x dx r x L r
L r L r


    

  (3c)

From the last equation, we result that:   1
jX

P L r  which agrees with our anticipation.

In our model, the position of each particle at time t is independent of the positions of the other
particles; the N events (j=0,1,…N-1): "at time , for the j-particle it holds: , "jt X x x Δx  are
mutually independent. Hence the number of particles Δn(x,t), with x-coordinate in the interval

,x x Δx at time t, is calculated by the equations:

   
1 1

0 0
,

2 2

N N

j
j j

Δx NΔn x t p x X x Δx Δx
L r L r

 

 

     
   (4a)

The number of particles N(x,t) with x-coordinates less than a given value x is the "distribution
of the particles' x-position". Its value arises directly from 3b, 3c and 4a:

   
1

0
,

2j

N

X X
j

x rN x P x N r x L r
L r






    

 (4b)

The particles' interactions do not cause any change at the analytical expression of the particles'
x-position distribution: at every time t, the probability densities of the random variables Xj, Yj,
j=0,1,…N-1 are given by the expressions 3.
One can easily derive relations similar to 4a and b, for the random variables Yj, j=0,1,…N.

In the environment of the simulation, the initial positions of the particles are determined by
using the JavaScript method for generating random numbers. The directions of the initial
velocities are chosen so that the gas is homogeneous and isotropic. On the other hand, along
any pair-interaction, the particles emerge with velocities with directions completely random,
independent of their initial directions. Hence, the homogeneity and the isotropy of the system
are not affected.
We shall prove that according to our model, the velocity distribution is changing with time and
converges to an equilibrium distribution. The equilibrium distribution is the Maxwell-
Boltzmann distribution (2,5) (M-B distribution).
We must notice that the system will finally get the M-B distribution, independently of
the initial velocity distribution. When the system reaches the M-B distribution, it
remains in that state: this state, determined by the M-B distribution, is a stable state
of equilibrium. This theoretical prediction is impressively confirmed in the virtual
environment of the simulation.

The user is permitted to choose the initial velocity distribution of the system among three
alternatives:
1st choice: At t=0 the directions of the velocities are random, but their magnitudes have the
same value, Vin. In that case, consider a partition of the velocity-range in a union of
infinitesimal intervals:

 
1

max 1
0

0, ,
M

μ μ
μ

V v v





  (5a)

0 1 0 0 2 1 1 1 max0 ... ...μ μ μ Mv v v Δv v v Δv v v Δv v V           

We symbolize Vmax the least upper bound of the velocity magnitude in the simulation
environment. So, in the initial state, max0,jV V  and we can write:

 
0 για 

1 για 
μ in

μ j μ μ
μ in

v V
p v V v Δv

v V

    


Hence, the distribution probability of the variable Vj takes the form:
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       1
0

0
μ

j
μ

v v

V j μ j μ in
v

P v p V v p v V v θ v V





       

where:  
0 for  
1 for 

in
in

in

v V
θ v V

v V
  


The particles' velocity-distribution for the initial state of the gas is:

         
1 1 1

0 0 0
0

j

N N N

V V j in in
j j j

N v P v p V v θ v V Nθ v V
  

  

          (5b)

2nd choice: At t=0 the velocities of the half number of particles are equal to zero. For the
other half, the directions of the velocities are random, and their magnitudes have the same
value, Vin. Hence, the initial velocity distribution is expressed as follows:
The magnitude of the velocity of whichever particle in the aggregate equals 0 with probability
1/2 or Vin with probability 1/2 too. The probability of any other value is zero. Consider again a
partition of the velocity-range to a union of infinitesimal intervals (see 5a):

 
1

max 1
0

0, ,
M

μ μ
μ

V v v





 
Then, the probability of the event "the value of the random variable Vj is in the infinitesimal
interval 1,μ μv v  of the partition" is given by the relation:

 

1  for 0
2
1  for 
2

0  for 0 and  

μ

μ inμ j μ μ

μ μ in

v

v Vp v V v Δv

v v V





     


  

We infer that the particles' velocity distribution is calculated by the expression:

   
1

0
j

N

V V
j

N v P v




 

   
1 1

0 0 0
0

μ

μ

v vN N

j μ j μ μ
j j v
p V v p v V v Δv

 

  

         

        
1

0

1 1
2 2 2

N

in in
j

Nθ v θ v V θ v θ v V




       
 

 (6)

3d choice: At t=0, both the directions of the velocities, and their magnitudes are random. The
values of the velocity magnitude for each particle are chosen by the random number generator
of JavaScript, in the interval [0, vmax). The parameter vmax is related to the mean energy of the
gas particles and is to be determined as follows:

The velocity magnitude of each particle is chosen by the random-numbers generator in the
interval [0,vmax). Hence, the probability of the event: "The velocity magnitude Vj of the j-particle
is in the infinitesimal interval ,μ μ μv v Δv  " is given by the equation:

 
max

μ
μ j μ μ

Δv
p v V v Δv

v
    (7a)

The mean value of the kinetic energy E of the j-particle is calculated by the equalities:

 
maxmax max

2 2 2 2
max

0 0 max max 0

1 1 1
2 2 2 6

μ μ

μ μ

vv v v v
μ

μ μ j μ μ μ
v v

Δv mE mv p v V v Δv m v v dv mv
v v

 

 

        
In the environment of the simulation, the value of the mean energy is an input parameter,
chosen by the user. Hence, the corresponding value of the parameter vmax is determined by the
equation:
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max
6Ev
m

 (7b)

The sequence of the experimental graphs
In the environment of the simulation, the particle-particle interactions cause a gradual variation
of the velocity distribution. The theoretical variation of the distribution function with time is
determined by equation 20 (see unit B2: How does the particles' velocity probability distribution
vary with time?). We can check the theoretical predictions by constructing a sequence of
experimental graphs depicting the evolution of the actual velocity distribution. To this end, in
the simulation program we have determined a sequence of time moments  10, ,...j Jt t t at

which the program counts the number  ; , 0,1... 1exp jN v t j J  of particles with velocity

magnitudes in the intervals:

  1 2 1 2x max
max0, , 0, ,... 0, , ...

M Mma
μ μ μ μ μ μv v v v v v V        (8a)

The set of values  1 2 max
max0, , ,...

Mμ μ μv v v V determines a partition of the velocity range max0,V :

   max

1 0 max

1

max max
0

0, , , 0,
k k M

M

μ μ μ μ
k

V v v v v V






    (8b)

As a result, we obtain a sequence of experimental graphs which depict in real time the
actual variation of the particles' velocity distribution. The max time tJ is determined in the
program of the simulation.

How do we have constructed partition (8b) in the program of the simulation?
First, we decide how many points Mmax will compose each experimental graph. Then, we define

the length of each interval 
1

,
k kμ μv v


 to be: max

max 1
V

Δv
M




Hence:
1 max, 0,1,... 1

k kμ μv v Δv k M

   

max
max

max

, 0,1,... 1
1kμ

V
v k k M

M
  


(8c)

For t=0, the graph  ;0expN v versus v is identical to the graph of the initial distribution the user

has chosen. As time runs, we see that the sequence of the experimental graphs converges with
an impressive way to the Maxwell-Boltzmann equilibrium distribution  MBN v according to the

predictions of the Boltzmann theoretical model:    lim ;exp MBt
N v t N v




How do we have chosen the maximum value maxV appearing in relations 8, in the program of
the simulation?
In the unit "D) Equilibrium of the system: The Maxwell-Boltzmann distribution" we shall see
that in the equilibrium state of a two-dimensional ideal gas, the particles' velocity distribution is
determined by the analytical expression (Maxwell-Boltzmann):

 
2

21
mvβ

MBN v N e
 

   
 

(9a)

Constant β is related to the mean energy Ε of the particles, according to 34: 1E
β



From 9a, we result that the fraction   /MBλ N v N of the particles with velocity magnitude less

than v equals
2

21 .
mvβ

e


 Conversely: the max value of the velocity magnitude corresponding
to a given value of λ is:
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 2 ln 1λv λ
βm

   (9b)

The graph of 9b, (in the simulation's system of units 1, 100)m E  is depicted in the following
figure.

We can see that for 999 /1000, 37.17λλ v  i.e. 999 in 1000 particles have velocity
magnitude less than 37.17 (simulation-units). Hence, it is a very good approximation to choose
the max value of the velocity magnitude Vmax in relations 8a-c from 9b, for 999 /1000.λ 

Return to the contents

B) The theoretical model of the 2-dimensional ideal gas

B1: How do the particles interact?
The virtual gas consists of N interacting particles. Each particle has a disk-shape of radius r and
mass m. The system is confined in a 2-dimensional orthogonal container of width L and height L.
The interactions between the particles and the walls of the container (p-w interactions) are
elastic collisions.
The particles interact with each-other by pairs (p-p interactions). In every p-p interaction, the
linear momentum and the total kinetic energy of the interacting particles are conserved. The
directions of the velocities just after every interaction are determined by the conservation-
principles and by a random variable (angle) which is independent of the velocities' directions
just before the interaction. Between two successive interactions, each particle moves with
constant velocity. Finally, the duration of any
interaction is negligible, compared with the time
between two successive interactions of any particle in
the system.

Now, we shall derive the relations of the particles'
velocities just before and just after their interaction.
Consider that at time t, the j-particle interacts with
the k-particle. Let , , ,j j k kr v r v

   
be the positions and

the velocities of the particles just before their
interaction, in the inertial reference frame Oxy, which
is fixed to the container (figure 1).
In the virtual gas, the interaction of the j and k-
particle happens at any time t which is determined
by the following two conditions:
a) j kr r s r  

 
Figure 1
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(The parameter s is related with the max permitted distance of the particles' centers to get the
interaction triggering and is controlled by the user)

b)        0 or: 0j k j k j k j k
d r r r r v v r r
dt

        
       

(The two particles are moving so, that in the infinitesimal time interval ,t t Δt the distance
of their centers decreases)
Let jkK K be the center of mass of the j and k-particle at the time-moment t that their
interaction begins, and Kxy, their center-of-mass inertial reference frame (figure 1).
We implement the following steps:
1) Find the relations of the velocities in the frames Oxy and Kxy.
2) Calculate the velocities just after the interaction in the center of mass frame Kxy.
3) Calculate the velocities just after the interaction in the frame Oxy.

1) The particles have equal masses. Hence:

   1 1,
2 2j k K j kOK r r V v v   

    
(10a)

We symbolize KV


the center of mass velocity in Oxy. Let ,j ku u
 

be the velocities of the j and k-
particle, in the Kxy system.
According to figure 2, the following relations are true:

   1 1,
2 2j j j k k k k j js r OK r r s r OK r r s         

        
(10b)

   1 1,
2 2j j k k k j ju v v u v v u     

      
(10c)

,j j k kr s OK r s OK   
   

(10d)

,j j K k k Kv u V v u V   
    

(10e)

2) Just after the interaction of the j and k-particle, their velocities ,j ku u 
 

in the Kxy frame are
calculated from the linear momentum and energy conservation (figure 2):

0j k j ku u u u    
   

(11a)
2 2 2 2
j k j ku u u u    (11b)

From 11a and b we imply that:
2 2 2 2
j k j ku u u u    (11c)

We infer that ,j ku u 
 

have mutually opposite directions and
their magnitudes are the same with the magnitudes of the
velocities just before the interaction; but in general, their
directions are different from the direction of the velocities just
before the interaction. The directions of ,j ku u 

 
are determined

by a rotation angle θ forming with ,j ku u
 

respectively (figure
2). In our model, the value of θ is random; in the simulation, it
is determined by the JavaScript random values method.
With the help of figure 2, we find that the x and y-components
of ,j ku u 

 
are related with the x and y-components of the

velocities ,j ku u and the angle θ , according to the equations:

cos sincos sin
sin cos sin sin

jx jx jx jy

jy jy jx jy

u u u θ u θθ θ
u θ θ u u θ u θ

       
                     

(12a)

jxkx

ky jy

uu
u u

   
           

(12b)

Figure 2
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3) The velocities ,j kv v 
 

of the j and k-particle just after their interaction, in the Oxy reference
frame are calculated from 10e, 12a, and b:

,j j K k k Kv u V v u V      
    

(13)

Return to the contents

B2: How does the particles' velocity distribution vary with time?
A) We assume that every time moment, the range of the velocity magnitude for each particle is
a finite set:  1 20, , ,...V MΩ v v v

The values: 1 20, , ,... Mv v v are determined by a partition of the interval max0,v (paragraph A):

 
1

max 1 1 0 max
0

0, ,  where: , 0,
M

μ μ μ μ μ M
μ

v v v v v Δv v v v


 


     
The time moments are defined by the time sequence: 0, ,2 ,... ,...Dt Dt q Dt The time interval Dt
is determined in the simulation program; its value is selected so that it is much less than the
mean time between two successive interactions of any particle.

Let  ;jp t v be the probability of the event: "At time t, the velocity magnitude of the j-particle

equals v, where: ".Vv Ω We call  ;jp t v "velocity probability function".
It is obvious that:

 ; 1
V

j
v Ω

p t v




In our model, the analytic expression of the probability  ;jp t v is independent of j: the

probabilities  ;jp t v are the same for all particles. Hence, we can write:

   ; ;  for any 0,1,...jp t v p t v j N  (14a)

Consequently, if we symbolize  ;n t v the number of particles that at time t have velocities with
magnitude v, we imply that:

     
1

0
; ; ;

N

j
n t v p t v Np t v





  (14b)

As the system evolves from its initial state to the equilibrium state, the probability  ;p t v and

the particles' number  ;n t v change with time; this is caused by the p-p interactions.
Let us see how the variation of these functions is expressed mathematically (1,2).

B) Assume two neighboring time moments t and t+Dt. The variation of  ;n t v in the time

interval ,t t Dt is caused by the following reasons:

a)  ;n t v increases by the number of particles that their velocity magnitude at time t was
different of v and, because of their interactions, at time t+Dt they emerge with velocity
magnitude V=v
b)  ;n t v decreases by the number of particles that their velocity magnitude at time t was v
and, because of their interactions, at time t+Dt they emerge with velocity magnitude V v

We define the compound event  ', ' , :t t DtΓ v u v u   "At time t, two particles P1 and P2 have
velocities with magnitudes v' and u', respectively – P1 and P2 interact in the time interval

,t t Dt and at time t+Dt they emerge with velocity magnitudes v, u."

The event  ', ' ,t t DtΓ v u v u   is composed by the following independent events 1 and 2 :Γ Γ
1:Γ "At time t, the velocity magnitudes of P1 is v' and of P2 is u' "
2:Γ "P1 and P2 interact in the time interval ,t t Dt and at time t+Dt they emerge with

velocities of magnitude v and u, respectively"
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Let  ', ' ,t t Dtp u v u v   be the probability of  ', ' ,t t DtΓ v u u v   and    1 , 2 ,p Γ p Γ the
probabilities of 1 and 2,Γ Γ respectively. Then it holds:

     ', ' , 1 2t t Dtp u v u v p Γ p Γ    (15a)
In our model, the events: "The velocity magnitude of P1 at t is v" and "The velocity magnitude
of P2 at t is u" are independent; hence, we can write (see 14a, b):
     1 , ' , 'p Γ p t v p t u (15b)

The probability  2p Γ of the event 2Γ is called "transition probability". In our model we

have assumed that  2p Γ is independent of the time moment t; it is proportional to the time
length Dt. We write:
   2 ', ' ,p Γ Dt σ v u u v  (16)

The quantity  ', ' ,σ v u v u is a function of the initial and the final mechanical state of the
interacting particles. Its analytic expression depends on the type of the p-p interactions.
Nevertheless, there are some general properties satisfied by  ', ' ,σ v u v u derived by the
symmetries we have imposed to our model:
a) The mechanism of the p-p interaction is invertible, i.e. the probabilities of the transitions:

   ', ' ,v u v u and    , ', 'v u v u in the same time interval Dt are equal (see paragraph:
"How do the particles interact?"):

   ', ' , , ', 'σ v u v u σ v u v u   (17)
b) The gas is homogeneous and isotropic. Then, in combination with 17, we infer that:
       ', ' , , ', ' ', ' , ', ' ,σ v u v u σ v u v u σ u v v u σ v u u v       (18)

According to 15-18, we deduce the following equations:
       ', ' , ; ' ; ' ', ' ,t t Dtp v u v u Dt p t v p t u σ v u v u     (19a)

       
     

, ', ' ; ; , ', '

; ; ', ' ,
t t Dtp v u v u Dt p t v p t u σ v u v u

Dt p t v p t u σ v u v u
     

 
(19b)

C) Variation of the particles' number with velocity magnitude v with time
Let us first see how the probabilities  ,p v t change with time. According to the arguments of

paragraph (B), the variation of  ,p v t in the time interval ,t t Dt is given by the subsequent
equations:
       

            

; ; ', ' , , ', '

; ', ' , ; ' ; ' ; ;

t t Dt t t Dt
u u

u

p t Dt v p t v p v u u v p v u u v

p t v Dt σ v u v u p t v p t u p t v p t u

         

   

 


(19c)

            ;
Or: ', ' , ; ' ; ' ; ;

u

p t v
σ v u v u p t v p t u p t v p t u

t


  
  (20)

By using 20 and 14b, we derive the "master" equation:
            ;

', ' , ; ' ; ' ; ;
u

n t v
N σ v u v u p t v p t u p t v p t u

t


  
  (21)

In 20 and 21, the summations include terms corresponding to any possible transition
   ', ' ,v u v u
   

that is compatible with the linear momentum and energy conservation.
It is worth noticing that 20 or 21 describe the variation of the velocity magnitude distribution of
the gas, given that the p-p interaction is determined by the quantity  ', ' , .σ v u v u In the

case that the particles do not interact, it holds  ', ' , 0σ v u v u  for any value of the velocity
magnitudes. Then, the initial velocity distribution of the particles is not changing with time.
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Return to the contents

C) The Boltzmann H-theorem (7)

In our model, the evolution of the state of the system is described by equation 20 or 21. A
steady state of the gas is obtained by any probability function which is independent of time:

 ;
0

p t v
t





(22)

We call it "Maxwell-Boltzmann probability function" (MB-probability function); symbolize: ( )MBp v
and the particles' velocity distribution determined by this, is called "MB-velocity distribution".
From equations 20-22, we imply that ( )MBp v must fulfill the condition:

       ' 'MB MB MB MBp v p u p v p u (23)

In the context of our model, we formulate and demonstrate Boltzmann H-theorem (1,2,7) as
follows:
Assume that the macro-state of an isolated ideal gas is determined by a certain initial
velocity distribution. The gas passes through a sequence of velocity-distributions
which converges to the MB-distribution, independently of its initial distribution. This
is due to the p-p interactions that obey conditions 18.

The variation of the probability function  ;p t v with time is given by equation 20.
Define the functional:

      ; ln ; , ( ) ;t tdef v
H p p t v p t v p v p t v     (24)

We shall show that tH p   satisfies the conditions of a Lyapunov function(3) for the dynamical

system described by equation 20. I.e. for any family of distribution functions    ;tp v p t v

determined by equation 20, the following relations are true:
0tH p    (25a)

0tdH p
dt
    (25b)

0MBdH p
dt
    (25c)

Steps to the proof

a) From relations 14a, b, it is true that:    ;
0 ; 1

n t v
p t v

N
  

From this, we imply that:   ln ; 0p t v  Hence, 25a is true for any probability function

   ;tp v p t v

b) From 24, we obtain the equation:
    ;

ln ; 1t

v

dH p p t v
p t v

dt t
       (26)

From 20, 26 and the symmetry relations 18, we derive the subsequent equations:

             ', ' , ; ' ; ' ; ; ln ; 1t

v u

dH p
σ v u v u p t v p t u p t v p t u p t v

dt
        

             ', ' , ; ' ; ' ; ; ln ; 1t

v u

dH p
σ v u v u p t v p t u p t v p t u p t u

dt
        

Adding these equations by parts, and using again the symmetry properties of  ', ' , ,σ v u v u

we obtain:
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                2 ', ' , ; ' ; ' ; ; ln ; ln ; 2t

v u

dH p
σ v u v u p t v p t u p t v p t u p t v p t u

dt
         

                2 ', ' , ; ' ; ' ; ; ln ; ' ln ; ' 2t

v u

dH p
σ v u v u p t v p t u p t v p t u p t v p t u

dt
          

Adding by parts:

                    

4

', ' , ; ' ; ' ; ; ln ; ' ; ' ln ; ;

t

v u

dH p
dt

σ v u v u p t v p t u p t v p t u p t v p t u p t v p t u

   

      
The logarithm is a monotonically increasing function; hence for any x,y>0 it holds:
   ln ln 0x y x y  

Besides, the transition probability is a positive quantity. We imply that for any probability
function, it is true that:

0tdH p
dt
   

c) The MB probability function is a stable solution of equation 20; it is determined by 22 and 23.
Hence, by using 26, relation 25c is derived.

tH p   takes its extreme value for ( ) ( )t MBp v p v (see 26). Hence, by following 25a-c, we infer

that it is bounded: 0 0MB tH p H p H p            (p0 is the initial probability function).

For t   the function tH p   is strictly decreasing with time and has a greatest lower bound

MBH p   ; we conclude that it converges to MBH p   and that lim ( ) ( )t MBt
p v p v


 independently of

the form of the initial probability function p0.

Any sequence of probability functions  ( ) ; , 0,1,...k def
p v p k Dt v k   determined by the analytic

expression 19c converges to the Maxwell-Boltzmann probability function, independently of the
initial probability function 0( )p v . That is:

   1( ) ( ) ', ' , ( ') ( ') ( ) ( )k k k k k k
u

p v p v Dt σ v u v u p v p u p v p u     (27a)

lim ( ) ( )k MBk
p v p v


 (27b)

When the system reaches the Maxwell-Boltzmann probability function, it does not escape from
this: it is in a stable equilibrium state.

Return to the contents

D) Equilibrium of the system: The Maxwell-Boltzmann distribution for a 2-dimensional
ideal gas

Which is the analytic expression of the velocity distribution, in the equilibrium state of the two-
dimensional gas?
The analytic expression of the probability function ( )MBp v is derived from condition 23 and the
conservation principles characterizing the p-p interactions. For the case of our two-dimensional
gas, linear momentum and kinetic energy are conserved for any p-p interaction. Keeping the
formalism of the previous paragraphs, we have:

2 2 2 2' '
2 2 2 2

mv mu mv mu
   (28)

The primed quantities indicate the state of the interacting particles just before their interaction,
and the non-primed, just after.
We assume that 28 expresses the only additive scalar conservation principle.
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The equilibrium condition 23 implies another relation connecting the states of the interacting
particles before and after their interaction:

       ' 'MB MB MB MBp v p u p v p u

       Or: ln ' ln ' ln lnMB MB MB MBp v p u p v p u   (29)
Condition 29 indicates a new additive scalar conservation principle concerning the velocity
magnitudes of the particles before and after their interaction. We presume that 29 must be
reduced to 28; i.e.:

2

ln ( ) .
2MB
vp v m const 

Hence, we can write:

 
2

2
mvβ

MBp v e


 (30)
The constant quantity β is to be specified.

To accomplish our calculations, let us consider that the particles' velocity magnitude is a
continuous random variable, taking values in the interval 0, .
In our two-dimensional system, the number  Δn v of particles with velocities in the interval:

, , 0v v Δv Δv  is proportional to the velocity probability  MBp v and to the number of
particles with velocities in the infinitesimal ring with radius v and width .Δv We write:

   
2

2 2
mvβ

Δn v n v V v Δv NAe πvΔv


     (31)
Where, A is a constant.

By integrating 31 in the range 0,  of the velocity magnitude, we obtain:
2
mβA
π



Hence, 31 takes the form:

   
2

2
mvβ

Δn v n v V v Δv Nmβe vΔv


     (32a)
From 32a we can define "the probability density" by the equation:

  1 ( ) , 0
def

Δn vf v Δv
Ν Δv

 

In the equilibrium state, for the two-dimensional gas, the probability density takes the analytic
expression:

    2

21 mvβ

MB

Δn v
f v mβe v

Ν Δv


  (32b)

The number of particles with velocity magnitude less than a given value v -i.e. the particles'
velocity distribution- in the equilibrium state, is calculated by 32b:

   
0

v

v

N v N f v dv


  
We find:

 
2

21
mvβ

MBN v N e
 

   
 

(33a)

The velocity distribution function is calculated by the relationship:    1F v N v
N



Hence:

 
2

21
mvβ

MBF v e
 

   
 

(33b)

The constant β is related to the mean kinetic energy of the gas particles:
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2

2 2 2

0

1 1 1
2 2

mvβ
E mV dv mv mβe v

β




   (34)

In the environment of the simulation, the constant mean energy of the system is calculated
from the initial velocities of the particles, according to the relation:

1
2

0

1 1
2

N

j
j

Ε mv
Ν





  (35)

In the equilibrium state, we find:

 
21

2 2 2 2

0 0 0

2
2 2 2

0 0 0

1 1 1 1 1
2 2 2

1
4 2 2

mvN v β

j
j v v

mζ mζ mζβ β β

ζ ζ ζ

Ε mv mV Δn v V v Δv dv mv mβe v
Ν Ν

m m mβ dζζe ζde dζe
β

  

  

  
  

  

      

   
          

   

  

  
Hence:

11
2

0

1 1 1
2

N

j
j

β mv
ΝE






 
   

 
 (36)

Return to the contents

E) The items, the graphs, and the tools of the simulation

Open the simulation here: The evolution of a 2-dimensional ideal gas toward the
equilibrium state. The Boltzmann H-theorem

[The system of units is determined in the program of the simulation]

The simulation window: Here, the user can see the motion of N=300 interacting particles of a
2D-gas, in a plane container. Each particle is a disk of radius r=0.1 length-unit and mass m=1
mass-unit. The container is an orthogonal of dimensions LxL, with L=20 length-unit.
One of the particles has been colored red and its path is depicted in the virtual environment of
the simulation. So, the user can watch the successive interactions of this specific particle with
the other particles and the walls of the container.

The initial position-distribution of the particles is random. The directions of the initial velocities
are random too, but the user can select one of three possible initial velocity magnitude
distributions:
1st choice, "step_function_1": All particles have the same velocity magnitude.
2nd choice, "step_function_2": Half particles have zero velocity and the rest have the same
velocity magnitude.
3d choice, "chaotic": The initial velocity magnitude of each particle is calculated by a random
process, but the total energy of the particles is controlled by the user.

The mean energy of the particles is controlled by the user. Hence, the value of β -which has
been renamed to "b"- is changed under any specific selection of mean energy.
The user can also control the value of a quantity called "the strength" of the interaction. This
quantity is related to the transition probability  ', ' ,Dt σ v u v u  discussed in the paragraph
"How does the particles' velocity probability function vary with time". In our model, the
transition probability is an increasing function of the least distance which is necessary for two
particles to interact. So, the "strength" coefficient, by taking values between 0 and 1.5 controls
the least necessary distance for the p-p interaction. For strength=0, there is no interaction
between the particles, and the user can see that the initial magnitude-velocity distribution is not
changing with time.

http://users.sch.gr/kostaspapamichalis/ejss_model_approachingEquilibrium_a/index.html
http://users.sch.gr/kostaspapamichalis/ejss_model_approachingEquilibrium_a/index.html
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The graph-windows: In the "Velocity-Distribution" graph, the user can watch in real-time, the
experimental evolution of the particles' velocity distribution caused by the particles'
interactions (blue points), and its convergence to the Maxwell-Boltzmann distribution predicted
by the theoretical model (red curve). In the "Boltzmann H-functional" graph, the user watches
in real-time, the experimental variation of the Boltzmann H-functional with time. In the
"Measurement of the total energy" graph, the program measures the total energy of the
particles at a sequence of time moments, and the user checks the conservation of the energy
along the evolution of the system of the interacting particles, which is the basic prerequisite for
the Boltzmann H-theorem.

For the composition of the experimental velocity distribution graphs, at the time-moments:
0, ,2 ,...t Δt Δt J Δt  , the program counts the number  ,N t v of particles with velocities in a

sequence of intervals:

  1 2 1 2x max
max0, , 0, ,... 0, , ...

M Mma
μ μ μ μ μ μv v v v v v V       

[See relations 8a-c, paragraph "The sequence of the experimental graphs"]
For each , 0,1,...jt j Δt j J   the program plots the points    max, , , 1,2,...

k kμ j μv N t v k Μ in a

system of axes v-N, and the corresponding experimental graph is accomplished. Every graph
 , , 1,2,...j jN N t v j J  appears at the moment jt and disappears at the moment 1jt  of the

next set of measurements.

How the experimental graph of the Boltzmann H-functional versus time has been achieved?
H is a functional of the probability function  ;p t v Hence, we must evaluate the experimental

values of  ;p t v every time 0, ,2 ,...t Δt Δt J Δt  at the array of magnitude velocity values:

1 2 max
, ,...

Μμ μ μv v v 
 
Every time moment jt the program counts the number of particles   max, 0,1,...

kμ jΔn t k M with

velocities in the intervals (see relation 8c):

 max
max

max

, , 0,1,... 1,
1k kμ μ

Vv v Δv k Μ Δv
M

     

The experimental values of the probability function    ,
k kμ j j μp t p t v are calculated by the

relations:

   
k

k

μ j
μ j

Δn t
p t

N


It is noticed that some of the calculated values  
kμ jp t should be zero, whence the logarithm of

 
kμ jp t is not possible to be calculated. To confront these cases, we choose a small quantity

0 1ε  and calculate the experimental value of H by the expression:

       
1

ln
Μ

j μ j μ j
μ

H t ε p t ε p t


   (37)

[Notice that:  
0

lim log 0
x

x x


 ]

Return to the contents

F) Activities implemented in the virtual environment of the simulation

1. Select the initial distribution "step_function_1" and run the simulation successively by
choosing the values:

200, 1 400, 1 400, 0Ε strength Ε strength Ε strength                 

300, 0.5 300, 1.5Ε strength Ε strength          
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a. Watch the motion of the particles and think if it appears to agree with the related
descriptions of the theoretical model. Write down your comments.

b. Write down the variations of the theoretical curves you notice when you vary the
quantities Ε and "strength", and explain them by using the theoretical model.

c. Watch the sequence of the experimental distribution graphs and check if it converges to
the Maxwell-Boltzmann distribution, according to the prediction of the Boltzmann H-
theorem. How this is related with the energy-graph shown in the environment of the
simulation?

d. Estimate the time needed for the system to reach the equilibrium state. How the
variation of the quantities Ε and "strength" appear to affect the transition time?

e. Repeat actions a-d, for each of the mentioned selection of the quantity "strength" but
choosing successively the initial distributions "step_function_2" and "chaotic".

2. Select the initial distribution "step_function_1". Run the simulation by selecting successively
the values: 200, 1 ,Ε strength    200, 1.5Ε strength    and 400, 1 .Ε strength   
For every case, watch the variation of the Boltzmann H-functional and estimate the time
needed to reach its steady value. Write down your conclusions. Compare the results of these
activities with the results of the activities 1.

3. Repeat activities 2, by selecting the initial distributions "step_function_2" and "chaotic",
successively. Compare the transition times of the system from its initial state to the
equilibrium state, by keeping the value of the mean energy constant. Write down your
conclusions.

Return to the contents
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