
Chapter 2
The Ideal Gas

2.1 THE CLASSICAL IDEAL GAS
As an introduction to the methods of statistical mechanics we will investigate the properties of a simple but
very important system; the ideal gas. The ideal gas is defined as a collection of identical particles in which
the interparticle forces are negligible. It is a reasonably accurate model of a real gas at low density.

Although it will be assumed that the interparticle forces are weak enough to be neglected, one should
not picture the ideal gas as a system of particles with no interactions at all. Such a system would have
very peculiar physical properties. If it began in some highly exceptional state, such as one in which all
of the particles were moving with exactly the same speed but in various directions, then, because of the
complete absence of interparticle collisions, the velocity distribution would never change and approach a
more typical one in which the particles have a wide range of speeds. In short, such a system would never
come to equilibrium. When we say that the interparticle interactions are negligible we mean that we can
neglect the potential energy associated with them in comparison with the kinetic energy of the gas. However,
at the same time, it is necessary to assume that the particles do have frequent collisions that transfer energy
from one particle to another. In this and later chapters it will be demonstrated that these two assumptions
are not mutually inconsistent by showing that both of them are satisfied for many real gases over a wide
range of pressure and temperature.

Any gas in which the interaction potential is negligible is called an ideal gas. However, additional
simplifying assumptions will be made in order to reduce the mathematical complexity of the analysis. It will
be assumed that:
1. The particles have no internal degrees of freedom, such as rotation, vibration, or electronic excitation.

We will therefore treat the particles as point particles. At room temperature this is an excellent
approximation for all monatomic gases, particularly the noble gases (He, Ne, etc.), but not for diatomic
or other molecular gases.

2. Quantum effects are negligible. This also is an excellent approximation at ordinary temperatures and
pressures. Later in this chapter, we will carry out a quantum mechanical treatment of the ideal gas and
determine the range of validity of the classical analysis.

2.2 THE VELOCITY DISTRIBUTION
The focus of our study will be the velocity distribution function of an ideal gas (Fig. 2.1). It is defined by
saying that, when the gas is at equilibrium, the number of particles per unit volume that have velocities
within the velocity element d3v, centered at the velocity v, is given by f(v) d3v. Due to the repeated
scattering of the particles, the velocity distribution at equilibrium depends on the magnitude but not on the
direction of v.

In terms of the velocity distribution function it is a simple matter to calculate the pressure that would
be exerted by the gas on the walls of its container. We look at a small area dA on one of the walls and
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Fig. 2.1 The definition of the velocity distribution function for a two-dimensional gas.
The velocity components of each particle in a unit area are plotted as a dot in the two-
dimensional velocity space. When that is done, the density of dots at position (vx, vy) in
the velocity space is defined as f(vx, vy).

v d
t

v

v dtx

Fig. 2.2 Within the time interval dt, those particles with velocity v that lie in the
cylinder hit the shaded area on the wall. The density of particles with velocities within
the range d3v is f(v) d3v. The volume of the cylinder is vx dt dA.

assume that dA is perpendicular to the x axis with the inside of the container to the left. We consider only
those particles that have velocities within some range d3v, centered at a velocity v, and ask: “Of those
particles, how many will strike the area dA within some short time interval dt?” Unless the particles are
moving toward dA (that is, unless vx > 0) the answer is obviously zero. If vx > 0 then the answer to the
question is (see Fig. 2.2.)

dN = f(v) d3v vx dAdt (2.1)

It is assumed that each particle that strikes the wall rebounds elastically. The momentum delivered to the
wall by a single rebounding particle is equal to the negative of the change in the momentum of the particle.
That is, it is equal to 2mvx. Thus the total momentum delivered to the area dA during the time interval dt
by those particles within the velocity range d3v is

2mv2xf(v) d
3v dAdt (2.2)
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Since the force that one object exerts on another is defined as the rate at which the first object transfers
momentum to the second, we can calculate the force those particles exert on dA by dividing Eq. (2.2) by dt.
The pressure is obtained by dividing the force by dA. Finally, the pressure due to particles of all possible
velocities is obtained by integrating over all velocities that are aimed at the wall. A velocity is aimed at the
wall only if vx is positive.

p =

∫
vx>0

2mv2xf(v) d
3v (2.3)

Because the integrand is an even function of vx it will leave the value of p unchanged if we extend the
integration to all vx and drop the factor of 2. Also, since f(v) depends only on the magnitude of v, v2x can
be replaced by (v2x + v2y + v2z)/3. This gives

p =
1

3

∫
mv2f(v) d3v (2.4)

Recalling the definition of f(v), it is easy to see that the integral is equal to twice the kinetic energy per
unit volume. Since it has been assumed that the potential energy is negligible, Eq. (2.4) implies that

p = 2
3

E

V
, (2.5)

a result the reader has probably seen before.

“. . . the trial already made sufficiently proves the main thing, for which I here allege it; since by it, it is
evident that as common air, when reduced to half its wonted extent, obtained near about twice as forcible a
spring (i.e. pressure) as it had before; so this thus compressed air being further thrust into half this narrow
room, obtained thereby a spring about as strong again as that it last had, and consequently four times as
strong as that of the common air. ”

—— Robert Boyle, New Experiments Physico-Mechanical (1662)
Boyle had deduced his famous law, that the pressure of a gas is inversely proportional to its volume, by
capturing a quantity of air in the short closed end of a glass U tube, the other long open end of which
was gradually filled with increasing amounts of mercury. The pressure was determined by the difference in
the heights of the mercury columns, while the volume could be taken as proportional to the length of the
entrapped air column.

2.3 THE MAXWELL–BOLTZMANN DISTRIBUTION
Equation (2.5) has been obtained without using any details of the velocity distribution function other than
its angle independence. Therefore, the equation gives no information about f(v). In order to determine
f(v) one must go beyond mechanics alone and use methods derived from probability theory. The derivation
of the velocity distribution is a fairly intricate argument; so it will help if we first consider a simpler problem
that can be solved with exactly the same method that will be needed for that derivation. We consider three
students, A, B, and C, and three rooms, numbered 1, 2, and 3. Each of the students is told to pick one of
the rooms at random and go into it. We assume that the rooms are arranged symmetrically, so that there
is equal probability of a given student picking each of the three rooms. A microstate is defined by stating
which room each student has chosen. For example, “A is in Room 2, B is in Room 3, and C is in Room 2”
defines a microstate. Because each student has equal probability of entering each room, it is clear that every
microstate is equally probable. We now define a macrostate by saying how many students are in each of the
rooms. For example, “3 students are in Room 1, 0 students are in Room 2, and 0 students are in Room 3”
defines a macrostate. The information needed to define a microstate is enough to allow one to calculate the
corresponding macrostate but not vice versa. Thus, the microstates give more detailed information about
the system. We now ask: ‘What is the most probable macrostate?’ Since each microstate has the same
probability, the probability of any macrostate is proportional to the number of microstates that correspond
to it. For example, the macrostate “N1 = 3, N2 = 0, and N3 = 0” (Nn is the number of students in Room
n.) has only one corresponding microstate, namely “A is in Room 1, B is in Room 1, and C is in Room
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Fig. 2.3 The macrostate of the system is specified by giving the number of particles
in each phase-space box. In reality, the phase-space is a six-dimensional space although
it is shown here as two-dimensional.

1”. An easy calculation shows that the macrostate, “N1 = 0, N2 = 1, and N3 = 2” has 3 corresponding
microstates, while the macrostate, “N1 = N2 = N3 = 1” has 3! = 6 corresponding microstates and is thus the
most probable distribution of students among rooms. The reader will soon see that, if we replace “students”
by “particles” and “rooms” by “phase-space boxes” (soon to be defined), then the calculation to follow is
essentially identical to the one that has just been done.

It will not greatly increase the difficulty of calculating the velocity distribution function if the problem is
generalized to include an external potential field, U(r), such as would be produced by a gravitational force.
Thus, it is assumed that the energy of a particle of velocity v at location r is

E = 1
2mv

2 + U(r) (2.6)

(It should be mentioned that it definitely would greatly increase the difficulty of the problem to include an
interaction potential, that is, a potential function that depended on the distances between particles.) The
distribution function, which has the same meaning as before, will now depend on both r and v. Because
of the existence of a force field, which defines a special direction at each location, it is not at all obvious
that the distribution function f(r,v) will be independent of the direction of v (although the results of our
calculation will show that it is so).

We are considering a system of N particles in a cubic box of volume V . The total energy of the system is
E. By collisions, individual particles may change their energies, but the total energy remains fixed. The most
essential assumption in our analysis is that N is an extremely large number. We conceptually decompose the
volume into a very large number of little cubes, numbered 1 to K. The kth little cube is centered at rk and
has a volume we call ∆3r. We also separate the infinite space of possible velocities into an infinite number
of “velocity cubes”, each of volume ∆3v, labeled with an index l = 1, 2, . . .. The detailed dynamical state
of the system, which we will call the microstate of the system, is defined by specifying the exact position
and velocity of each of the N particles. That is, the microstate is specified by the 2N vector variables,
r1,v1, . . . , rN ,vN . If we permit a little bit of uncertainty in the definition of each particle’s position and
velocity, then the microstate of the system can be specified by giving the spatial and velocity box of each
particle, that is, by giving the 2N integer variables k1, l1, . . . , kN , lN . This step has the advantage of making
the set of microstates discrete. The combination of a spatial box and a velocity box is called a phase-space
box. It can be considered as a little box in a six-dimensional phase-space with coordinates (x, y, z, vx, vy, vz).
To calculate the distribution function associated with a given microstate it is quite unnecessary to know
which particles are in which phase-space boxes. It is sufficient to know only how many particles are in each
of the phase-space boxes. In fact, if, for a given microstate, the occupation number of the phase-space box
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specified by the integers k and l is called Nkl, then the distribution function at (rk,vl) is

f(rk,vl) = Nkl/∆
3r∆3v (2.7)

We will say that the set of occupation numbers Nkl defines the macrostate of the system (see Fig. 2.3).
Clearly, we are using the same definition of microstates and macrostates that we did previously in the
“student and room” discussion.

We now ask the question: “How many different microstates correspond to a given macrostate?” This
is just the question of how many ways there are of putting N distinguishable objects into boxes with a
specified number of objects in each box. It was answered in the last chapter [see Eq. (1.24)]. The number of
microstates corresponding to a given macrostate is

I =
N !∏

(k,l)Nkl!
(2.8)

where the symbol
∏

(k,l) means that a product is taken over all values of k and l. The product extends
over all phase-space boxes. However, since 0! = 1, and there are only a finite number of particles, only a
finite number of terms in the product are not equal to unity. But a factor of one can be ignored. Thus the
infinite product is actually a finite integer. Now that we know how many microstates correspond to any
given macrostate we would like to determine which of the possible macrostates has the greatest probability
of occurrence. From the principles of probability theory it is clearly impossible to do this without knowing
something about the relative probabilities of the various microstates that contribute to a given macrostate.
There are certain things that are known about the probability of finding the system in a given microstate.
1. A particle in the phase-space box (k, l) has an energy Ekl, given by

Ekl =
1
2mv

2
l + U(rk) (2.9)

Therefore a macrostate defined by the occupation numbers Nkl has a total energy

Etot =
∑
(k,l)

NklEkl (2.10)

Unless Etot is equal to the known system energy E, there is zero probability of finding the system in any
microstate that yields that macrostate.
2. Also, unless Ntot, the sum of the occupation numbers for a given macrostate, is equal to the actual number
of particles in the system N , there is no microstate that yields that macrostate.

Aside from these two restrictions, there is no obvious way of assigning probabilities to the vast number
of possible microstates available to a large system.*

At this point we will make a completely unjustified assumption that those microstates that are not
forbidden by the conditions on Etot and Ntot are all equally probable. This is called the assumption of equal
a priori probabilities. Much of Chapter 3 will be devoted to a careful analysis of this assumption. Here it will
be used simply as a working hypothesis that will allow us to proceed in our calculation of the equilibrium
distribution function f(r,v).

With the assumption of equal a priori probabilities for the allowed microstates, the probability of any
allowed macrostate is proportional to I, the number of microstates corresponding to that macrostate. The
most probable macrostate can be calculated by finding the maximum of I, considered as a function of the
occupation numbers, Nkl, with the restrictions that

∑
NklEkl = E and

∑
Nkl = N . It turns out to be more

convenient to calculate the maximum of the function

F = log I = log(N !)−
∑
k,l

log(Nkl!) (2.11)

*To get an idea of of the size of the number I in Eq. (2.8) when N = NA ≈ 6× 1023, as it is for one mole of gas, we

note that the dominant factor in Eq. (2.8) is the N !, which is of order NN for large N . Thus I ∼ 6× 1023× 6× 1023 .

That number has more than 1025 zeros!
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(Note: All logarithms in this book are natural logarithms—The base 10 logarithm is as much of a historical
curiosity as a slide rule.) Because log I is a monotonically increasing function of I, the set of occupation
numbers that maximizes log I also gives the maximum of I. In Eq. (2.11) one can use Stirling’s approximation
(derived in the Mathematical Appendix), which states that logK! ≈ K(logK − 1) for K ≫ 1. Therefore,
the function that will actually be maximized is

F = N(logN − 1)−
∑
k,l

Nkl(logNkl − 1) (2.12)

Applying Lagrange’s method (also derived in the Mathematical Appendix) to this problem, one ignores the
constraints and maximizes the function

G = F − α
∑
k,l

Nkl − β
∑
k,l

NklEkl (2.13)

where α and β are two Lagrange parameters whose values will later be chosen so as to satisfy the constraints.
Setting ∂G/∂Nkl equal to zero gives

logNkl = −α− βEkl (2.14)

or
Nkl = Ce−βEkl (2.15)

where the constant C = exp(−α). Using Eq. (2.9) to write Ekl in terms of r and v and using Eq. (2.7) to
relate Nkl and f(rk,vl), it is seen that the most probable distribution function (that is, the one with the
greatest number of corresponding microstates) is of the form

f(r,v) = C exp[−β(mv2/2 + U(r))] (2.16)

This is the Maxwell–Boltzmann distribution. The constants C and β must be chosen to give the correct
values for the total number of particles and the total energy.

2.4 THE PARTICLE DENSITY
The density of particles, irrespective of velocity, is obtained by integrating f(r,v) over all velocities.

n(r) =

∫
f(r,v) d3v

= Ce−βU(r)

∫
e−mβv2/2 dvx dvy dvz

= Ce−βU(r)

[∫ ∞

−∞
e−mβv2

x/2 dvx

]3
= C

( 2π

mβ

)3/2
e−βU(r)

(2.17)

The final line in Eq. (2.17) makes use of the Table of Integrals in the Mathematical Appendix. The potential
function U(r) always includes an arbitrary constant in its definition. If U is defined to be zero at some
chosen location, ro, then

n(ro) = C
( 2π

mβ

)3/2
(2.18)

which allows us to write Eq. (2.17) in the form

n(r) = n(ro)e
−βU(r) (2.19)

If we assume that this most probable distribution is the experimentally observed equilibrium distribution,
then we see that, whenever the interaction potential energy can be neglected, the particle density at
equilibrium varies with the negative exponential of the external potential.
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2.5 THE EXPONENTIAL ATMOSPHERE
An important example of a system that exhibits a Maxwell–Boltzmann distribution is an ideal gas in a
uniform gravitational field g. In that case U(r) = mgz and n(z) = n(0) exp[−βmgz]. In the next section,
we will show that the Lagrange parameter, β, is equal to 1/kT , where k is Boltzmann’s constant and T is
the absolute temperature. Thus the density, as a function of z, has the form

n(z) = n(0)e−z/h (2.20)

with h = kT/mg. The scale height, h, is the altitude at which n(z) = n(0)/e. For nitrogen at room
temperature (300K) the scale height is 9 kilometers, which is reasonably descriptive of the earth’s atmosphere,
although the earth’s atmosphere is by no means at equilibrium. This number clearly illustrates the fact that
the variation in density due to the gravitational field would be difficult to detect in ordinary laboratory
experiments where the altitudes involved are about 1 meter and therefore n(z)/n(0) ≈ 1 − 1/9000. There
are, however, two ways of bringing h down to laboratory size. One method is by increasing the mass of the
particles, m. This can be easily overdone by choosing macroscopic objects as the “particles”. For m = 1g
the scale height is much less than the size of an atom and is again unobservable. To get a scale height of
about 10 cm at room temperature, we need m ≈ 4× 10−20 kg. This is the mass of a particle of 2.5× 107

atomic mass units, too large for a molecule but possible for the particles of a fine colloidal suspension. The
second method is to increase g by means of a centrifuge. A modern ultracentrifuge can create an acceleration
field of order 105 m/s2. In such a field a molecule of 10 atomic mass units has a scale height of 2.5 cm.

2.6 THE IDENTIFICATION OF β
f(r,v) d3r d3v is the number of particles within d3r that have velocities in the range d3v. If we divide this
by d3r, multiply by mv2/2, and integrate over v, we obtain the density of kinetic energy at position r. That
quantity will be written as εK . Thus

εK = Ce−βU(r)

∫
e−mβv2/2(mv2/2) dvx dvy dvz

= 3
2Ce

−βU(r)

∫
e−βmv2

x/2(mv2x) dvx

∫
e−βmv2

y/2 dvy

∫
e−βmv2

z/2 dvz

= 3
2Ce

−βU(r)
(√

2π/mβ3
)(√

2π/mβ
)2 (2.21)

The second line makes use of the fact that each of the three terms in v2 = v2x + v2y + v2z gives an equal
contribution to εK . The third line may require another look at the Table of Integrals. Equation (2.17) now
allows us to write εK in terms of the particle density.

εK = 3
2n(r)/β (2.22)

The first thing to notice is that the energy per particle, εK/n(r), is independent of position. Although,
at equilibrium, the density of particles varies from place to place as e−βU , their distribution with respect to
velocity is the same everywhere.

Equation (2.5), which relates the energy density to the pressure, and the ideal gas equation of state,
give the relation εK = 3

2p = 3
2n(r)kT . A comparison of this relation with Eq. (2.22) allows us to identify

the Lagrange parameter, β, with 1/kT .
β = 1/kT (2.23)

2.7 THE MAXWELL DISTRIBUTION
If no external force field exists, then U = 0 and the Maxwell–Boltzmann distribution becomes the simpler
Maxwell distribution, which depends on velocity alone.

f(v) = Ce−
1
2mv2/kT (2.24)

Using Eq. (2.17) with U = 0 and n equal to a constant, we can eliminate C and write the Maxwell distribution
in terms of n and T .

f(v) =
( m

2πkT

)3/2
ne−mv2/2kT (2.25)



THE IDEAL GAS 2.8 THE SPEED DISTRIBUTION 25

Because v2 = v2x + v2y + v2z , the distribution function factors into three uncorrelated probability functions
involving the three velocity components.

f(v) = nP (vx)P (vy)P (vz) (2.26)

where P (vx) dvx is the probability of finding a given particle with its x component of velocity in the range
dvx. Clearly, P (vx) is given explicitly as

P (vx) =
( m

2πkT

)1/2
e−mv2

x/2kT (2.27)

Although it may seem slightly surprising, Eq. (2.26) shows that the fact that a particular particle has a large
x component of velocity in no way affects the probability of its having large y or z components.
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Fig. 2.4 The Maxwell speed distribution. The ratio of P (v) to P (vo) is plotted as a

function of v/vo, where vo =
√

2kT/m is the most probable speed.

2.8 THE SPEED DISTRIBUTION
We define F (v) dv as the density of particles with speeds within the range v to v+ dv (see Fig. 2.4). F (v) dv
is equal to f(v) times 4πv2dv, where the second factor is just the volume of the region in velocity space
corresponding to the given speed range. Therefore,

F (v) = 4πv2n
( m

2πkT

)3/2
e−mv2/2kT (2.28)

The average speed of the particles of a gas at temperature T is given by

v̄ =
1

n

∫ ∞

o

F (v)v dv (2.29)

The integration is straightforward and gives

v̄ =
(8kT
πm

)1/2
(2.30)

In order to get an idea of the typical velocities involved in thermal motion, we evaluate v̄ for helium and
radon at T = 300K.

(He) v̄ = 1.26× 103 m/s; (Rn) v̄ = 2.72× 102 m/s (2.31)
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The root-mean-square velocity is defined as vrms =
(
v2
)1/2

. It can easily be calculated by making us of

the fact that the average kinetic energy per particle is 3
2kT . That is

1
2mv

2 = 3
2kT (2.32)

which gives
vrms = (3kT/m)1/2 (2.33)

2.9 THE VERY DILUTE GAS
In an ideal gas, there is a length ℓ, called the mean free path, that is defined as the average distance that
a gas particle travels between collisions with the other gas particles. In Exercise 2.17 it is shown that, for
particles of diameter D, the mean free path is given by the formula ℓ = 1/(

√
2πD2n), where n is the gas

density. For argon, a typical noble gas, at standard temperature and pressure (STP), the mean free path
is about 10−5 m. This is much larger than the typical distance between a particle and its nearest neighbor,
which, for the same system, is about 10−9 m.

In the problems and exercises, there are a number of calculations involving the flow of particles from
an ideal gas through a small hole in the container wall. These calculations involve a geometrical length a,
namely, the size of the hole. Although the mean free path is much larger than the nearest neighbor distance,
it is usually much smaller than the geometrical distance a. This means that a particle that is destined to
pass through the hole will usually collide many times with other particles on its way out. When this is so
(that is, when a≫ ℓ), the calculation of flow through the hole is very complicated and will not be attempted
in this book. Here we will restrict ourselves to making calculations in the opposite limit, in which a ≪ ℓ.
Because ℓ is proportional to 1/n, this case occurs only in a very dilute ideal gas. Thus, when it is stated
that an ideal gas is very dilute, what is meant is that the mean free path is much larger than any geometrical
lengths that appear in the problem.

“The modern atomists have therefore adopted a method which is, I believe, new in the department of
mathematical physics, though it has long been in use in the section of Statistics. When the working members
of Section F get hold of a report of the Census, or any other document containing the numerical data of
Economic and Social Science, they begin by distributing the whole population into groups, according to
age, income-tax, education, religious belief, or criminal convictions. The number of individuals is far too
great to allow of their tracing the history of each separately, so that, in order to reduce their labour within
human limits, they concentrate their attention on a small number of artificial groups. The varying number
of individuals in each group, and not the varying state of each individual, is the primary datum from which
they work.”

—— J. C. Maxwell (in Nature, 1873)

2.10 IDEAL QUANTUM SYSTEMS
The method that was used to derive the Maxwell–Boltzmann distribution for a classical system can be
applied, with only minor modifications, to calculate the equilibrium properties of a quantum-mechanical
system of noninteracting particles in an external potential. First, we will have to review the quantum
mechanics of systems of many identical particles. The reader who is already familiar with this material or
who is willing to accept the results of the analysis “on faith” can jump to Section 2.13.

A single particle in a potential field U(r) is described by the Schrödinger equation

(
− h̄2

2m
∇2 + U(r)

)
ψ(r) = Eψ(r) (2.34)

Therefore, its Hamiltonian operator is

H = − h̄2

2m
∇2 + U(r) (2.35)
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A system of two identical particles in a potential field U(r) has a Schrödinger equation

(
− h̄2

2m
∇2

1 + U(r1)
)
ψ(r1, r2) +

(
− h̄2

2m
∇2

2 + U(r2)
)
ψ(r1, r2) = Eψ(r1, r2) (2.36)

where ∇2
1 = ∂2/∂x21 + ∂2/∂y21 + ∂2/∂z21 with a corresponding equation for ∇2

2. The Hamiltonian operator
for that system is thus

H = − h̄2

2m
∇2

1 + U(r1)−
h̄2

2m
∇2

2 + U(r2) (2.37)

The generalization is obvious; a system of N identical particles in an external potential U(r) is described by
the Hamiltonian operator

HN =

N∑
j=1

(
− h̄2

2m
∇2

j + U(rj)
)

(2.38)

To calculate the N -particle energy eigenstates of this system it is only necessary to solve the following
single-particle Schrödinger equation.

(
− h̄2

2m
∇2 + U(r)

)
un(r) = Enun(r) (2.39)

The problem of actually solving this equation for particular potential functions will not be discussed here.
It will simply be assumed that it has been done and that the complete set of single-particle eigenfunctions
un(r) and eigenvalues En is known.

A complete set of eigenfunctions for the N -particle problem can now be constructed simply by taking
arbitrary products of the single-particle eigenfunctions. For example, for N = 3, the function

ψ(r1, r2, r3) = u1(r1)u1(r2)u4(r3) (2.40)

satisfies the Schrödinger equation
3∑
1

(
− h̄2

2m
∇2

j + U(rj)
)
ψ = Eψ (2.41)

with the eigenvalue E = 2E1 + E4.

2.11 WAVE FUNCTION SYMMETRIES—BOSONS
Even though the wave function ψ(r1, r2, r3), given above, is a solution of the Schrödinger equation for a
three-particle system, it is not an acceptable wave function for a real system of three identical particles. The
wave function of any system of identical particles must satisfy a symmetry condition when the coordinates
of any two particles are interchanged. The detailed form of the symmetry condition depends on the type of
particle. There are two possibilities. Bose–Einstein particles are particles with integer values for their total
angular momentum (measured in units of h̄). Fermi–Dirac particles have half-integer ( 12 ,

3
2 , etc.) values for

their total angular momentum. A system of Bose–Einstein particles (also called bosons) must have a wave
function whose value is unchanged whenever the coordinates of any pair of particles are interchanged. That
is, for a three-boson system,

ψ(r1, r2, r3) = ψ(r2, r1, r3) = ψ(r1, r3, r2), etc. (2.42)

The unsymmetric wave function of Eq. (2.40) may be converted to a properly symmetrized Bose–Einstein
wave function by taking an equally weighted average over all permutations of the particle coordinates, r1, r2,
and r3.

ψ(r1, r2, r3) = C
∑
perm

u1(rα1
)u1(rα2

)u4(rα3
) (2.43)

where (α1, α2, α3) is a permutation of (1, 2, 3), C is a normalization constant, and the sum is over all 3!
permutations. The reader can easily verify that this wave function is properly symmetric and that it is
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still an eigenfunction of the Schrödinger equation with the same eigenvalue as before. This symmetrization
procedure can be generalized as follows.

For a system of N bosons, we choose any finite sequence of nonnegative integers, N1, N2, · · · , NK that
satisfy the condition N1 + . . .+NK = N . We call them occupation numbers. Some of the Njs may be zero.
We then construct the function

ψ(r1, . . . , rN ) = C
∑
perm

u1(rα1) · · ·u1︸ ︷︷ ︸
N1 factors

u2 · · ·u2︸ ︷︷ ︸
N2 factors

· · ·uK · · ·uK(rαN
)︸ ︷︷ ︸

NK factors

(2.44)

where, in this case, (α1, . . . , αN ) is a permutation of (1, . . . , N) and the sum is over all N ! permutations.
It is obvious that the function ψ is symmetric in its arguments. It is also an eigenfunction of HN with an
energy eigenvalue equal to

E = N1E1 + · · ·+NKEK (2.45)

For an N -particle Bose–Einstein system, there is one such energy eigenfunction for each distinct set of
occupation numbers satisfying the constraint

N1 + · · ·+NK = N (2.46)

2.12 FERMIONS
For a system of Fermi–Dirac particles, the wave function must be completely antisymmetric, rather than
symmetric. That is, it must satisfy the condition (we give an example with N = 3)

ψ(r1, r2, r3) = −ψ(r2, r1, r3) = −ψ(r1, r3, r2) (2.47)

In this case the N -particle wave functions are constructed somewhat differently. Since all fundamental
fermions are spin- 12 particles, we will only consider that case.* We have to introduce variables to describe
the spin degrees of freedom of the particle. The state of a spin-12 particle can be defined by a combination
of a position vector r that says where the particle is and a spin variable σ, whose only possible values are
+1 or −1. The value of σ gives the z component of the spin angular momentum, divided by h̄/2. We will
use a single symbol, xj , for the combination of the spatial variable and the spin variable of the jth particle.

xj = (rj , σj) (2.48)

As before, we first solve the single-particle Schrödinger equation for the sequence of single-particle eigen-
functions and eigenvalues (

− h̄2

2m
∇2 + U(x)

)
un(x) = Enun(x) (2.49)

We now choose any sequence of N single-particle eigenfunctions, uK1 , . . . , uKN
, and construct the N -particle

wave function
ψ(x1, . . . , xN ) = C

∑
perm

(−1)PuK1(xα1) · · ·uKN
(xαN

) (2.50)

where, as for the boson case, the sum is taken over all N ! permutations of the variables x1, . . . , xN and where
(−1)P is +1 for an even permutation and −1 for an odd permutation. A more compact way of writing Eq.
(2.50) is to use the definition of a determinant and write ψ as (again we take N = 3)

ψ(x1, x2, x3) = C

∣∣∣∣∣∣
uK1(x1) uK1(x2) uK1(x3)
uK2(x1) uK2(x2) uK2(x3)
uK3(x1) uK3(x2) uK3(x3)

∣∣∣∣∣∣ (2.51)

Permuting the variables x1 and x2 in this equation merely results in a permutation of the first two columns
of the determinant, which has the effect of changing its sign. Therefore, ψ has the necessary antisymmetry

*Nuclei of spin 3/2, 5/2, etc. may also be treated as single Fermi–Dirac particles by a trivial modification of the

formalism given here.
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properties. If, in Eq. (2.51), any two of the indicesK1,K2, andK3 are equal, then two rows of the determinant
will be identical and therefore the determinant will vanish, yielding the unacceptable wave function ψ = 0.
Thus, in choosing the functions uK1 , . . . , uKN , one must choose N different eigenfunctions. It is not difficult
to verify that the function ψ(x1, . . . , xN ) defined by Eq. (2.50) is a solution of the N -particle Schrödinger
equation

N∑
i=1

(
− h̄2

2m
∇2

i + U(xi)
)
ψ = Eψ (2.52)

with

E =
N∑
i=1

EKi (2.53)

For Fermi–Dirac systems, one can also describe the N -particle eigenfunctions by a set of occupation
numbers, N1, N2, . . . as follows. We define

NK =

{
1, if K ∈ {K1, . . . ,KN}
0, otherwise

(2.54)

With this definition Eqs. (2.45) and (2.46) are still valid. However, whereas for boson systems there was
one N -particle energy eigenstate for every distinct set of nonnegative integers summing to N , for fermions
those integers are restricted to the values 0 and 1. This restriction is the Pauli exclusion principle.

2.13 MICROSTATES AND MACROSTATES
Having reviewed these aspects of many-particle wave functions, we are ready to apply the procedure used on
the classical ideal gas to ideal quantum systems. The basic idea is to define a microstate and a macrostate
and then to calculate the number of microstates corresponding to each macrostate. Assuming that the
microstates have equal probabilities, one then calculates the most probable macrostate and identifies it with
the macrostate of the system at equilibrium.

We have seen that, for a system of identical particles, the wave function is uniquely defined by specifying
the set of quantum state occupation numbers, N1, N2, N3, . . ., where Nk gives the number of particles in the
kth single-particle quantum state, which has energy Ek. If the particles are Bose–Einstein particles, then
each Nk can be any nonnegative integer, but if the particles are Fermi–Dirac particles, then each Nk can
only be either 0 or 1.

The identification of the microstates of the system seems fairly straightforward. The microstate of
a system is the detailed dynamical state of the system. But one cannot specify more about a quantum-
mechanical system than its wave function. Therefore we will identify the microstate of the system with the
wave function of the system. If the system is known to have N particles and the system energy is known to
be E, then any set of occupation numbers satisfying the conditions∑

k

Nk = N (2.55)

and ∑
k

NkEk = E (2.56)

will define a possible microstate.
The definition of a macrostate is not quite so simple. Looking at the definition of a macrostate that was

used in the classical analysis would strongly suggest that the macrostate also should be defined as the set
of occupation numbers, Nk, since that gives the number of particles in each single-particle state. Such an
identification of the system macrostates leads to very undesirable results. There is then exactly one microstate
for each macrostate. Making an assumption of equal a priori probabilities for the microstates would trivially
imply that the macrostates were also equally probable, eliminating any possibility of calculating a “most
probable” macrostate.

Although defining the macrostate of the system as the set of occupation numbers has a great formal
similarity to what was done before, it does not really stand up to close scrutiny. The macrostate is meant to
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be the realistically observable state of the system. However, for a macroscopic system, the spacing between
adjacent discrete single-particle energy levels is so small that the detection of individual levels is many orders
of magnitude beyond realistic measurement. For example, for particles of one atomic mass in a container
of one cubic meter, the level spacing depends upon the energy and, at the energy value of E = kT with
T = 300K, the spacing between adjacent levels is 3.7× 10−51 J (see Problem 2.21). To get some idea of
what this energy spacing means, we might note that, for a particle of typical thermal velocity (∼ 103 m/s),
it would correspond to a change in velocity of ∆v = 2.2× 10−27 m/s. Such a change would be far beyond
any practical experimental detection.

What we will do to define a meaningful macrostate of the system is to group the almost continuous
energy spectrum into a large number of narrow energy ranges that we will call energy bins. In the case
mentioned, if we choose 1012 bins within the range 0 < E < kT , then each one would contain about 1019

discrete levels and have an energy range of about 10−33 J. The levels in the kth energy bin have an average
energy of εk, which will be assigned to all the levels in that bin. The kth bin contains a large number Kk of
discrete energy states. We now describe a macrostate of the system by specifying the number of particles,
call it νk, within the states of the kth energy bin for all k.

2.14 QUANTUM DISTRIBUTION FUNCTIONS
We first want to calculate I(Kk, νk), the number of ways of distributing the νk indistinguishable particles
within the Kk energy states of the kth bin. For the case of bosons, in which any number of particles can be
put into a single state, that calculation is equivalent to determining how many ways there are of choosing
Kk occupation numbers Ni satisfying the restriction,

∑
Ni = νk. This is left as a problem for the reader.

The result is

I(Kk, νk) =
(Kk + νk − 1)!

(Kk − 1)!νk!
(bosons) (2.57)

For fermions, where the Ni can only be 0 or 1, we can interpret the Kk quantum states as Kk coins, of
which the filled ones are heads and the empty ones tails. The problem is then equivalent to the problem of
determining the number of ways of arranging Kk coins to get νk heads. That was solved in the last chapter.
The answer is just the binomial coefficient

I(Kk, νk) =
Kk!

(Kk − νk)!νk!
(fermions) (2.58)

The total number of microstates corresponding to a given macrostate is obtained by multiplying the
I(Kk, νk) for all k. That is,

I =
∏
k

I(Kk, νk) (2.59)

As before, the most probable macrostate will be determined by maximizing log I−αN −βE, where α and β
are Lagrange parameters that have been introduced to take into account the restriction to fixed total particle
number and fixed energy. The fermion case will be done explicitly, and the boson case left as an exercise.
The function that must be maximized is

F = log

(∏
k

Kk!

(Kk − νk)!νk!

)
− α

∑
k

νk − β
∑
k

νkεk

=
∑
k

[
Kk(logKk − 1)− (Kk − νk)(log(Kk − νk)− 1)

− νk(log νk − 1)− ανk − βεkνk

]
(2.60)

The use of Stirling’s approximation is valid when applied to the bin occupation numbers νk. Note, however,
that it would be quite invalid if used for the individual state occupation numbers Ni. Setting ∂F/∂νk = 0,
we get the following equation for the bin occupation numbers of the most probable macrostate.

log[(Kk − νk)/νk] = α+ βεk (2.61)
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which gives

νk =
Kk

eα+βεk + 1
(2.62)

Since the energy differences of the states in the kth bin are negligible, Eq. (2.62) clearly implies that
the average occupation of any individual state in that bin is νk/Kk = 1/(eα+βεk +1). Thus, at equilibrium,
the average occupation number of the nth single-particle state, of energy εn, is given by the well-known
Fermi–Dirac distribution function

N̄n = fFD(εn) =
1

eα+βεn + 1
(2.63)

For bosons, the equivalent result is

N̄n = fBE(εn) =
1

eα+βεn − 1
(2.64)

The Lagrange parameter, β, has the same relationship to the absolute temperature as it had in the
classical distribution. That is, β = 1/kT . The Lagrange parameter α, called the affinity, is essentially a
normalization constant that must be adjusted so that the sum of N̄n over all quantum states is equal to the
number of particles in the system.

2.15 THE QUANTUM MECHANICAL IDEAL GAS
In order to understand the relationship between the quantum-mechanical distribution functions that we have
just derived and the Maxwell distribution for a classical ideal gas, we will consider a quantum mechanical
ideal gas, that is, a system of noninteracting bosons or fermions with no external potential. If the external
potential U(r) is taken to be zero, then the single-particle Schrödinger equation is

− h̄2

2m
∇2u(r) = Eu(r) (2.65)

If this equation is solved within a cube of volume L3, using periodic boundary conditions,

u(x, y, z) = u(x+ L, y, z) = u(x, y + L, z) = u(x, y, z + L) (2.66)

then the single-particle eigenstates are plane waves

u(r) = L−3/2eip·r/h̄ (2.67)

of momentum

(px, py, pz) =
h

L
(Kx,Ky,Kz) (2.68)

where h = 2πh̄ and Kx, Ky, and Kz are integers. If the momentum eigenvalues are plotted in a three-
dimensional momentum space, they form a cubic lattice in which the distance between neighboring points
(the lattice constant) is h/L (see Fig. 2.5). The corresponding energy eigenvalues are Ep = p2/2m. The
average occupation of one of the momentum eigenstates is

N̄p =
1

eα+p2/2mkT ± 1
(2.69)

where the + sign is taken for fermions and the − sign for bosons. This must be compared with the Maxwell
distribution, which, in momentum variables, is

f(p) = Ce−p2/2mkT (2.70)

2.16 THE CLASSICAL LIMIT
If eα ≫ 1, then the second term in the denominator of Eq. (2.69) will be negligible, giving

N̄p ≈ e−αe−p2/2mkT (2.71)
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Fig. 2.5 The possible values of the momentum of a particle in a periodic box form
a lattice in momentum space. The picture shown would be appropriate for a particle
in two dimensions. Along each axis, the spacing between allowed values is h/L. For a
three-dimensional system the density of momentum eigenvalues is (L/h)3.

and the quantum-mechanical distributions will reduce to the Maxwell distribution. One way of interpreting
the criterion eα ≫ 1 is to note that it implies that the average occupation of every momentum state is much
less than one.

In order to express the condition eα ≫ 1 in terms of the macroscopic parameters of the system, let us
assume that it is valid and evaluate the normalization sum for the quantum-mechanical distribution.∑

p

N̄p =
∑
p

e−α−p2/2mkT = N (2.72)

whereN is the number of particles in the system and the sum is taken over all allowed momentum eigenvalues.
Using the fact that the density of momentum eigenvalues in momentum space is (L/h)3 = V/h3, where V
is the volume of the system, the sum over the discrete values of p may be converted to an integral over a
continuous vector variable

V e−α

h3

∫
e−p2/2mkT d3p = N (2.73)

The integral can be evaluated in terms of the standard Gaussian integral, given in the Table of Integrals.∫
e−p2/2mkT d3p =

(∫ ∞

−∞
e−p2

x/2mkT dpx

)3
= (2πmkT )3/2 (2.74)

If we define a thermal de Broglie wavelength λ by

λ ≡ h√
2πmkT

(2.75)

then the normalization condition gives
e−α = (N/V )λ3 (2.76)

Therefore, e−α is equal to the average number of particles in a volume λ3. If that number is much less than
one, then the classical approximation is justified. λ is the de Broglie wavelength of a particle with energy
πkT , which is about twice the average energy of the particles in a gas at temperature T .

It is important to make clear what aspect of quantum mechanics is responsible for making the quantum
distributions differ from the classical momentum distribution. It is not the discreteness of the quantum
states, which is completely undetectable for a macroscopic system. Rather, it is the symmetry requirements
on the many-particle wave functions. One way to see how the symmetry requirements affect the momentum
distribution is to consider the mapping between classically described N -particle momentum states and
quantum-mechanical ones. In order to simplify the analysis, we will artificially discretize the classical states
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so that the single-particle momentum states are mapped one-to-one. A classical N -particle momentum state
is defined by giving the momentum values of the N distinguishable particles, (p1,p2, . . . ,pN ). If all N
momentum values are different, then there are N ! classical states that map into a single Bose–Einstein or
Fermi–Dirac N -particle quantum state. If we could ignore the probability of multiple occupancy of a single
momentum state, then, averaging some quantity, such as the momentum distribution, over all classical N -
particle states with total energy E, would be equivalent to averaging overN ! copies of theN -particle quantum
states with the same energy and would therefore yield the same result. To see the effects of the quantum
symmetry requirements, let us consider the mapping of a classical state in which p1 = p2. Then there are
only 1

2N ! classical states that are mapped into a single Bose–Einstein quantum state. Thus an average over
the classical states would deemphasize this double-occupancy state by a factor of two in comparison with an
average over Bose–Einstein N -particle states. That is, the Bose–Einstein symmetry requirement increases
the probability of double occupancy in comparison with the classical system. In contrast, for a Fermi–Dirac
system, there is no N -particle quantum state corresponding to the 1

2N ! classical states. The Fermi–Dirac
symmetry requirement prohibits double occupancy entirely. From this point of view, it is clear why the
criterion for the validity of the classical approximation is that the average occupation of any single-particle
quantum state be much less than one.

2.17 A CRITICAL EVALUATION
What are the deficiencies of the general calculational method used in this chapter? The major weaknesses
of the technique are the following:
1. There is an obvious lack of logical precision and general principles in choosing our definitions of

microstates and macrostates. It is not at all clear that our results do not depend on these somewhat
arbitrary choices.

2. No justification, other than convenience, has been given for the assumption of equal a priori probabilities
of all allowed microstates. Since that assumption is at the base of all the calculations, the whole logical
structure is built upon sand.

3. There is no obvious way of applying the method to systems with interactions that cannot be neglected.
For such systems, the energy cannot be written as a sum involving independent occupation numbers
of any kind, nor is there any way of defining microstates and macrostates in terms of such occupation
numbers.

4. In general, there is no logical “room” for adding extra assumptions, such as equal a priori probability.
The time evolution of an actual system is determined by the laws of mechanics (or quantum mechanics).
If the results of using any extra assumptions always agree with those of mechanics, then they are a logical
consequence of the laws of mechanics, and it should be possible to show that fact. If they do not agree
with the laws of mechanics, then the extra assumptions are wrong.
Although the method introduced in this chapter is very useful for calculating the properties of a wide

variety of physical systems, it cannot really serve as a general logical foundation for statistical mechanics. In
the next chapter we will sketch the outlines of such a general logical foundation, and, throughout the book,
we will periodically return to the question of foundations to fill in more of the details.

PROBLEMS

2.1 (a) Make some reasonable estimate for the size of a cube containing 1000 grains of sand. (b) Using the
above estimate, calculate the dimensions of a cube containing 1024 grains of sand.

2.2 For a relativistic particle, the relationships between velocity, momentum, and energy are p = mv/
√

1− (v/c)2

and E = mc2/
√

1− (v/c)2. For an ideal gas of relativistic particles, determine whether the pressure is a
function of the energy density, E/V , independent of the details of the velocity distribution? (Note that the
relativistic energy defined here includes the rest energy, mc2.)

2.3 For an extremely relativistic gas, v ≈ c for most of the particles. Show that, for such a system, the
pressure is related to the energy density by p = 1

3E/V .

2.4 If, from an ideal gas at temperature T , we choose two particles at random, then the velocities of the
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two particles are statistically independent. What are the probability distributions for their center-of-mass
and relative velocities? Are those two random variables statistically correlated?

2.5 A container of volume V contains a very dilute ideal gas at density n and temperature T . The container
is surrounded by vacuum and has a small hole of area A. At what rate do particles pass through the hole?

2.6 For the system described in Problem 2.5, calculate the rate at which the gas loses energy and calculate
the temperature of the remaining gas as a function of time. Assume that the rate of leakage is small enough
that the remaining gas is always uniform and at equilibrium.

2.7 For a classical ideal gas at temperature T , calculate the average value of
√

|p|, where p is the momentum
of a gas particle.

2.8 The law of partial pressures states that the pressure exerted by a mixture of ideal gases is equal to the
sum of the pressures that would be exerted by each of the gases separately at the same temperature. Derive
the law of partial pressures.

2.9 For the system described in Problem 2.5, assume that the wall is infinitely thin, so that a particle
that enters the hole always exits the container without colliding with the side of the hole. Assume that, of
the particles that leave during some time interval ∆t, a fraction ϕ(v) dv have speed within the range dv.
Calculate the speed distribution ϕ(v) and explain why it does not agree with Eq. (2.28).

2.10 The purpose of this problem is to estimate the average distance that a particle in a gas travels between
collisions. That distance is called themean free path. Take as a model of the gas a set of hard spheres of radius
a. To simplify the calculation, assume that the spheres are frozen in their random locations. Assume that
the average volume per particle is much larger than the hard sphere volume [V/N ≫ (4π/3)a3]. Consider a
hard sphere moving through this set of fixed scatterers. (a) Calculate the probability ∆P that it will be
scattered within a short distance ∆x. (b) Using that result, calculate the probability P (x) that it will travel
a distance x, without being scattered. (c) Calculate the average distance that the particle will move before
being scattered. Compare your result with the exact formula given in Exercise 2.17. (d) Estimate the mean
free path for neon at a temperature of 300K and a pressure of 1 atmosphere, taking a = 1.3 Å.

2.11 Given 30 students to distribute in 3 rooms, calculate the number of microstates that correspond to
the macrostate “10 students are in each room.”

2.12 A circular cylinder, with a radius of 10 cm, contains a nitrogen gas at a pressure of one atmosphere and
a temperature of 300K. If the cylinder is rotated about its axis, the centrifugal force increases the density
at the periphery relative to that at the center. At what angular velocity would the ratio of the two densities
be equal to 2?

2.13 The Maxwell distribution does not guarantee that the total energy is exactly E, but only that that
is its average value. For one mole of ideal gas at 300K, calculate the fractional uncertainty in the energy,
∆E/E. (Hint: Assume that the velocities of the particles are N statistically independent random variables.)

0 LFig. 2.6

2.14 At t = 0, a one-dimensional classical ideal gas is contained in the region 0 < x < L (Fig. 2.6). The
gas has an initial temperature To and a density no. The gas particles have mass m. The wall at x = 0
reflects all particles that hit it. The wall at x = L allows any particle that hits it to pass through with a
probability ϵ, that is much less than one and is independent of the particle’s energy. Otherwise the particle is
reflected with no change in its energy. (a) Calculate the rate at which the system loses particles and energy
at t = 0. (b) Assuming that the particles remaining always have a Maxwell distribution, but with slowly
varying density and temperature, derive and solve a differential equation for T (t).

2.15 Generalize the derivation leading to the Maxwell–Boltzmann distribution to the case of an ideal gas
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containing two types of particles, A and B. Assume that there are NA A particles and NB B particles
with masses mA and mB , respectively. Since they may interact differently with external force fields, they
may, in general, experience different potentials, UA(r) and UB(r). The result should be that fi(r,v) =
ni(rio)(mi/2πkT )

3/2 exp[−(miv
2/2 + Ui(r))/kT ], where i = A or B and Ui(rio) = 0.

2.16 Use the results of Problem 2.15 to show that, in a mixed ideal gas, the average kinetic energy per
particle of the A particles is the same as that of the B particles. This is a restricted form of what is called
the equipartition theorem. The general form will be derived later.

2.17 A system is composed of a large numberN of elementary subsystems (one might picture the subsystems
as atoms in a crystal lattice). Each subsystem can exist in one of three quantum states, with energies 0,
1, or 2 electron volts. Determine the number of microstates of the total system such that N1 subsystems
have energy ε1 = 0 eV, N2 subsystems have energy ε2 = 1 eV, and N3 subsystems have energy ε3 = 2 eV.
Assuming that each possible microstate has equal probability, determine the most probable values of N1,
N2, and N3, given that the total energy is E = 0.5N eV.

2.18 Consider an ideal gas, composed of atoms that have K discrete possible internal energy states, of
energy, εk (k = 1, . . . ,K). Using an analysis similar to that which led to the Maxwell–Boltzmann distribution,
derive the distribution function f(k,v), where f(k,v) d3v is the number of particles per unit volume in
internal energy state k with velocity in d3v.

2.19 Using Lagrange’s method, find the minimum of the function x2 + 2y2, subject to the constraint
x3 + y3 = 1.

2.20 In 1876, J. Loschmidt argued that the Maxwell–Boltzmann distribution must be wrong. He said
that, at equilibrium in a uniform gravitational field, an ideal gas should be warmer at the bottom than
at the top because of the facts that every particle that moves from the bottom to the top slows down in
the field and every particle that moves from the top to the bottom speeds up. Thus, in order to have the
exchange of particles between bottom and top not change the distribution, it is necessary that the average
speed of the particles at the bottom be larger than the average speed of the particles at the top. Explain
why Loschmidt was wrong. Take the special case of a purely one-dimensional gas (in the z direction) of
completely noninteracting particles in a constant gravitational field.

2.21 A globular cluster is a large collection of stars that is gravitationally held together in a more or less
spherically symmetric distribution. Treat such a cluster as a gas of noninteracting, equal-mass stars in a
gravitational potential U(r). The gravitational potential must be determined self-consistently, using the

Poisson equation, which can be written as dU/dR = GM(R)/R2, where M(R) = 4πm
∫ R

o
n(r)r2 dr is the

mass of all the stars within a radius R. Choosing U(0) = 0 and using Eq. (2.19) for n(r), show that no
equilibrium solution exists for a single globular cluster in empty space. This shows that globular clusters
are never truly at equilibrium. They very gradually “boil off” stars, causing the cluster to steadily, but very
slowly, diminish in size. [Hint: For an isolated globular cluster, n(r) → 0 as r → ∞.]

2.22 At very high temperatures a hydrogen gas becomes completely ionized and may be viewed as a mixed
ideal gas of protons and electrons. One can assume that relativistic effects become important when the rms
velocity of the electrons is larger than .1 c. At what temperature would that occur?

2.23 Consider a quantum-mechanical system of four particles in a one-dimensional harmonic oscillator
potential. The one-particle energy eigenvalues are (n + 1

2 )h̄ω and are nondegenerate. For Bose–Einstein
particles and Fermi–Dirac particles, determine the number of four-particle quantum states with an energy of
8h̄ω. Assume that the Fermi–Dirac particles have zero spin, although that can be shown to be impossible.

2.24 Derive Eq. (2.57) for the number of ways of distributing ν bosons within K states. Hint: The diagrams
in Fig. 2.7 show three ways of distributing five particles among three states. How many such diagrams are
there?

Fig. 2.7
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2.25 Consider a spinless particle of mass m, in a cubic periodic box of side L. (a) Calculate N(E), the
number of energy eigenfunctions with energies less than or equal to E. (b) dN(E)/dE gives the number of
eigenstates per unit energy interval. Its inverse is the average spacing between energy eigenvalues. Show
that, for m equal to one atomic mass unit, L = 1m, and E/k = 300K, the estimate given in Section 2.13
for the energy spacing is correct.

2.26 Consider a system of spinless one-dimensional particles in a harmonic oscillator potential of angular
frequency ω. The energy spectrum is then εn = (n + 1

2 )h̄ω. Using Eqs. (2.63) and (2.64), evaluate the
number of particles in the system as a function of the affinity α and the temperature T for the case α ≫ 1
for both fermions and bosons. (Hint: the infinite sum may be easily evaluated.)




