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Plane oscillator: the relativistic and the Newtonian point of view  

K. Papamichalis Dr. of Theoretical Physics 

 

Synopsis  

In the context of the Newtonian Mechanics (NM), we consider a particle P moving in an inertial 

Cartesian reference frame (O,x,y,z), under the action of a force-field determined by the analytic 

expression: F kr= − ; the vector r  is the position vector of P and k a positive constant. This field 

defines a Newtonian oscillator with its equilibrium position at the origin O of the coordinate system. 

The trajectory of P lies on a plane determined by its initial position and velocity; the analytic 

expression of the trajectory is derived by the solution of a set of differential equations arising from 

Newton's 2nd law. 

The treatment of the same problem in the context of Einstein's Special Relativity Theory (ESR) follows 

the same pattern, but there are two major differences: a) one has to deduce the analytic expression 

of the Minkowski four-force acting on P which in the Newtonian limit is compatible with the mentioned 

form and b) the trajectory of P arises as a solution of the generalization of the 2nd Newton's law in 

the four-dimensional Minkowski space-time continuum.            

In the virtual environment of the application, the motion of the plane oscillator is simulated in the 

context of two models: the Newtonian and the relativistic. The comparison of the two viewpoints is 

accomplished for the same initial position and velocity of the oscillating particle.   

It is worth mentioning that the path of the relativistic oscillator, although plane and localized, it is 

not a closed curve like the corresponding path in the Newtonian model.   

 

Key-concepts 

The Minkowski space – The metric tensor – Inertial reference systems in Cartesian coordinates – 

World line of a moving particle – Proper-time – Four-velocity – Synchronization of clocks in a 

Minkowski space – World time – Four-momentum of a moving particle – The four-force and the 

equations of motion in a Minkowski space  

 

1. Synchronization of clocks in a Minkowski space (3,4) – The concept of the "world time"  

 

In Newtonian mechanics, the free parameter of the trajectory's parametric equations is the absolute 

time t. In relativity, time is not absolute; it is one of the coordinates expressing the parametric 

equations of a world line. Nevertheless, it is possible to demonstrate that if M is a Minkowski space, 

and (O,x) an inertial, Cartesian coordinate system, all the clocks measuring the time coordinate at 

any space point of M can be synchronized. This "global" time is called "world time" (for details, 

about the way one can synchronize two clocks placed at two different space points of the space-time 

continuum, see paragraph 3 of reference 4).  

In the virtual environment of the simulation, the chronometers are synchronized and measure the 

world time t. The world time is used as the free parameter in the analytic expressions of the particle's 

trajectories.  

 

2. The Minkowski force and the Minkowski equations of motion (1,2,3,4)  

The particles' equations of motion in a Minkowski space arise as a generalization of the 2nd Newton's 

law: the form of the equation of motion should be invariant under any coordinate transformation in 

M. We write:  

 or: 
μ

μDP DP
Κ Κ

Dτ Dτ
= =     (2.1) 

K is a four-vector, called "the Minkowski four-force", τ  the proper time of the moving particle, and 

P its four-momentum. Eq. 2.1 is called "the Minkowski equation of motion".  

 

The Minkowski force is always orthogonal to the four-velocity U of the particle:  
3

0

1

, , 0, 0j j

j

DP
U Κ U K c K v

Dτ =

= = − =     (2.2) 
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The solution of the differential equations 2.1, under constraint 2.2 determines the world line of the 

moving particle (see paragraph 4 of reference 4). The analytic form of the world line is expressed by 

using as a free parameter the world time t. From 2.1 we obtain:  

( ) ( )
1/2

0

2
, , 1j jd d v v

γ mγc K γ mγv K γ
dt dt c

−
 

= = = − 
 

   (2.3) 

The equation ( )
1j jd

mγv K
dt γ

=  converges to Newton's second law; for 
2

2
0

v

c
→  should be true that:  

( )
/ 0

1
lim j j

N
v c

Κ F
γ→

 
= 

 
 

 

How to create an acceptable form of the Minkowski force?  

Assume that in the Newtonian model the force field acting on the moving particle comes from the 

potential energy ( )V r :   

( ) ( )
j j
F r V r= −      (2.4) 

We create the analytic expression of the Minkowski force so that the following two requirements are 

fulfilled: a) its components satisfy the constraints 2.2 and b) in the Newtonian limit, it converges to 

the equation 2.4.  

In the 4th paragraph of the "Notes on the general principles of Relativistic Mechanics" (reference 4), 

it is demonstrated that an acceptable form of the quested Minkowski force is determined by the 

analytic expressions (1):   

2 2

1 1
, ( ) ( )

μ
μ μ μν μ ν

μ ν

dU
K e Κ Κ V x V x g U U

c dτ c

 
= = − +  − 

 
   (2.5) 

From 2.5, we obtain the equations:  

( )

0
0 0 0

2 2

1 1 1
( ) ( ) ( ) ( )

1
( )

ν ν j

ν j

dU dγ
Κ V r V r g U U γ V r γ V r v

c dτ c c dt

d
γ γV r
c dt

   
= − +  − = − +  =   

   

= −

  (2.5a) 

( )2

1j jk j

k

d
K g V γ γV v

c dt
=  −      (2.5b) 

Hence, the equations of motion take the form:  

( ) ( )2 2 =constantγ mc V mc w w+ = +     (2.6a) 

2

1 j

j

d
γ m V γv V
dt c

  
+ = −  

  
     (2.6b) 

It easily confirmed that 2.6a and b converge to the corresponding Newtonian equations for: 

( )2

2 2
0 and 0

V rv

c mc
→ →    

 

3. Configuration of the differential equations of motion for the relativistic oscillator 

 

The potential energy of the oscillator in the Newtonian model is given by the expression:  

2 1 2 2 2 3 21
( ) , ( ) ( ) ( )

2
V r kr r r r x x x= =  = + +  

The Newtonian force F  acting on the moving particle P is: 

( )
( ) , 1,2,3

j
j

j j j

dV r x
F V r r kr kx j

dr r
= − = −  = − = − =  

The analytic expressions of the Cartesian coordinates for the corresponding Minkowski force are 

accomplished by 2.5a and b:  
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0 2

2

d k
Κ γ γ r

dt c

 
= −  

 
     (3.1a) 

( )
2

2 2

1

2

j j j j

j

d d kr
K V γ γV v kx γ γv

c dt dt c

 
= − − = − −  

 
   (3.1b) 

The equations of motion arise from 2.6a and b: 

2 2 21

2
γ mc kr mc w
 

+ = + 
 

     (3.2a) 

2

22

j jd k
γ m r γv kx
dt c

  
+ = −  

  
    (3.2b) 

The quantity w>0 is interpreted as the "external" mechanical energy of the particle, which is 

necessary for the implementation of the oscillation.  

 

Equations 3.2a and b concern the coordinate space 4R ; by solving them we determine a curve 
P
c  in 

4R  which depicts the trajectory of P in the space-time continuum M.  

From 3.2a and b we obtain the equations:  

2
1

j
jw dv k

m x
mc dt γ

 
+ = − 

 
 

2
1

dv k r

wdt γ
m

mc

= −
 

+ 
 

     (3.2c) 

From the form of 3.2c, we conclude that the quantity ( )L r mv=   is invariant along the curve :
P
c   

( ) ( )

2

0

1

dL dr d k
mv r mv mv v r r

wdt dt dt
γ

mc

=  +  =  −  =
 

+ 
 

 

L  could be viewed as the "angular momentum" of the particle P defined in the coordinate space 4R  

Hence, the curve 
P
c  lies on a fixed plane determined by the initial position and velocity of the particle 

P. In the simulation, we have assumed that the initial conditions are: 
0 0
ˆ ˆ(0) , (0)r r x v v y= = . The 

angular momentum is the constant vector: 

( ) ( )0 0 0 0
ˆ ˆ ˆL r x mv y mr v z=  =   

The plane of the curve 
P
c  is perpendicular to ẑ  and coincides with the ( )1 2Ox x  plane.   

To get the formalism easier, set: 1 2 3, ,x x x y x z    and 1 2 3, ,
x y z

v v v v v v    

Given that 
P
c  lies on the (Oxy) plane, for every t it holds 0 and 0

z
z v= = , and the equations of the 

motion are being simplified according to the relations:  

2

2 2
1 1

2

k w
γ r

mc mc

 
+ = + 

 
     (3.3a) 

2
1

x
dv k x

wdt γ
m

mc

= −
 

+ 
 

     (3.3b) 

2
1

y
dv k y

wdt γ
m

mc

= −
 

+ 
 

     (3.3c) 

 

We define the following parameters, which make the form of the differential equations as easier as 

possible, and will be proved useful in the composition of the program of the simulation:  
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a) The magnitude 0
v

b
c

=  of the initial velocity  

b) The ratio 
P
h  of the initial potential energy ( )0p

w V r=  over the rest energy 2mc : 

2

0 0

2 2

( )

2
p

V r kr
h

mc mc
= =  

The parameter 
P
h  takes values in the interval ( )0,1     

 

The other parameters appearing in equations 3.3 are determined as functions of 
P
h  and b: 

( )2 2

1
1 1 ( ) 1

1

p

p
def

hw
h h γ b

mc b

+
= = − = + −

−
    (3.4a) 

2

2

0

2
p

mc
k h

r
=       (3.4b) 

Equations 3.3 are expressed in the equivalent forms:  

( )
2

1 2 2

2

0

1 1 ( ),
p x y

r
h h γ v v v v
r

−+ = + = +    (3.5a) 

( )

2

1

2

0

2
( )

1

px
c hdv

γ v x
dt h r

−= −
+

    (3.5b) 

( )

2

1

2

0

2
( )

1

y p
dv c h

γ v y
dt h r

−= −
+

    (3.5c) 

 

4. Description of the Newtonian oscillator with the same initial conditions  

 

The Newtonian equations of motion arise from 4.4a-c, for 
2

2 2
1 and 1

v w

c mc
  We come to the 

following result:  

2 21

2 2

k
r mv w+ =      (4.1a) 

x
dv k

x
dt m

= −       (4.1b) 

y
dv k

y
dt m

= −       (4.1c) 

The solutions of 4.1a to c, are:  

( ) ( )0 1
cos , sin

N rad N rad
x r f t y r f t= =     (4.2a) 

( ) ( )0 1
sin , cos

Nx rad rad Ny rad rad
v r f f t v r f f t= − =    (4.2b) 

rad

k
f

m
=      (4.2c) 

The parameters w, k, frad and the semi-axis r1 can be expressed with respect to 
P
h  and b:  

2
2 2

0 0

1 1
,

2 2 2
p

b
w mv kr h h= + = +     (4.3) 

2 2 2

0 2

0

21
,

2

p

p

h
kr h mc k mc

r
= =      (4.4) 

( )
1/22

2

0 0

2 2p

rad p

hk c
f c h

m r r
= = =       (4.5) 

0
1 0 1 0

,
2

rad

rad p

v b
r f v r r

f h
= = =      (4.6) 
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From 4.2a we derive the equation of the elliptic path for the Newtonian plane oscillator: 
2 2

2 2

0 1

1N N
x y

r r
+ =       (4.7) 

 

The Newtonian oscillator in polar coordinates  

In polar coordinates the following equations are valid:  

cos , sinx r θ y r θ= =  

cos sin , sin cos
x y
v r θ rθ θ v r θ rθ θ= − = +  

2 2 2 2 , ,
dr dθ

v r r θ r θ
dt dt

= + = =  

( )0

1

tan tan
Ν rad

r
θ f t

r
=   

( ) ( )( )
1/2

2 2 2 2

0 1
cos sin

N rad rad
r r f t r f t= +  

1

2
21

2

0

1 1 cos

N

Ν

r
r

r
θ

r

=
 

− − 
 

 

For 
2
rad

π
t

f
= , the distance from O is 

1N
r r=  and the corresponding angular displacement from the 

initial position is: 

1 0

1

tan tan
2 2

Ν rad

rad

r π π
θ f

r f

−
  

= =   
  

 

We derive the differential equations of motion by using the two invariant quantities: the angular-

momentum and the mechanical energy: 

( )2 2 2 21 1

2 2
w m r r θ kr= + +  

2

0 0
L mr v mr θ= =  

Define 0
/

def
q r r= , then from the previous equations we obtain:   

( )
2

2

2

0

1 2
p

c b
q q h
r q

 
= − − 

 
     (4.8a) 

0

2 2

0 0

1vdθ c b

dt r q r q
= =       (4.8b) 

( )
2

2 2

2

1
1 2

p

dq b
q q h

dθ b q

 
= − − 

 
    (4.8c) 

According to the explicit form of the solution we have already derived in the Cartesian coordinate 

system, we imply that:  

( )
1 0

1/2/ 2
2

1 0 2 2

1

1
( ) ( ) 1 2

2

q r r

p

q

b π
θ r θ r b dq q h

q q

−=

=

  
− = − − =   

  
   (4.8d) 

 

5. The relativistic oscillator's equations of motion in polar coordinates – Extrema of the 

path – Angular displacement of the extreme points of the path  

 

In the relativistic model, we follow the same steps as in the Newtonian model. We result that:  

Energy conservation (see 3.2a):  
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( ) ( )
2

2
2 2 2 2

2 2

0

1
1 1 1

p

r
h h r r θ
r c

   
+ = + − +   

  
    (5.1) 

Angular-momentum conservation: 
2

0 0
L mr v mr θ= =  

0 0

2

r vdθ

dt r
=        (5.2) 

From 5.1 and 2 we obtain the differential equation:   

( )
2

2 22
2 2 0 0

2 2 2

0

1
1 1 1

p

r vr
h h r
r c r

    
+ = + − +     

    

   (5.3a) 

Define: 
0

def

r
q

r
=  Then, 5.3a takes the form:  

( ) ( )
( )

( )
( )

2
2 2

2

2 2

0

1
 where: 1 1

1

p

rel rel
def

p

h qc b
q F q F q b
r qh

+
= = − − −

+
   (5.3b) 

( )21
rel

dq
q F q

dθ b
=      (5.3c) 

The extreme values of r satisfy the condition 0q = ; hence from 5.3b we imply that the extreme 

values of r are roots of the equation:  

( )
( )

( )
( )

2
2 2

2

2 2

1
0 or: 1 1 0

1

p

rel

p

h q b
F q b

qh

+
= − − − =

+
   (5.4) 

It is noticed that:  

( ) ( )
0 0 0

1 1
0 0 0

x y

t t

dr
xv yv

dt r r
= =

= + = + =  

…meaning that 
0
 or: 1r r q= =  must be a root of 5.4, which is immediately confirmed.   

The roots of 5.4 that are different from 1 are roots of the equation:  

( ) ( ) ( )2 2 2 2 4 2 2 2 2 22 1 2 1 0
p p p p

b h q b h q q b h h q q− + + + + − + =    (5.5) 

We approximate the left part of 5.5 by keeping terms up to the first order of 2 and 
p
h b   

We result in the expression:    
2

2

1
2

p

b
q

h
       (5.6) 

which agrees with the length r1 of the second semi-axis obtained in the context of the Newtonian 

model (relation 4.6).  

 

The angular displacement of the oscillator between two positions corresponding to successive 

extrema of r is calculated by the equation:   

( )
1 0/

1

2

1

1
, ,

q r r

rel p

q

Θ b dq F q h h
q

=
−

=

=      (5.7) 

In the virtual environment of the simulation, the user can estimate Θ  by making measurements on 

the virtual path, or the real-time graphs, and compare the resulted values.   

 

4. Description of the virtual environment – Units, Input, and Output-Tools     

 

In the virtual environment of the simulation, the physical quantities are measured in atomic units 

(au). It is given that: c=1au, m=2000au and r0=10au.  

 

The particle's initial position and velocity are determined by the conditions:  
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0 0
(0) 10au, (0) 0, (0) 0, (0)

x y
x r y v v v= = = = =   

The user controls the parameters:  

a) The initial velocity 0
0.1 ,0.99v c c      

b) The ratio 
P
h  of the initial potential energy ( )0p

w V r=  over the rest energy 2mc : 

2

0 0

2 2

( )

2
p

V r kr
h

mc mc
= =  

The parameter 
P
h  takes values in the interval 0.02,2       

 

Activities in the virtual environment of the simulation 

 

Activity 1  

Prove that if we know the initial values h and p
h  then, the magnitude 

0
v  of the initial velocity should 

have the value: 

2

0

1
1

1

p
h

v c
h

+ 
= −  

+ 
 

Set 2 and 0.8
p

h h= =  and run the simulation.  

A) By using the graphs and the available tools, calculate and write down the extreme values of the 

length r of the position vector r  for each oscillator.  

B) Calculate the time lapse between two successive extrema of the length r for each oscillator.  

C) Calculate the period of the Newtonian oscillator.  

D) Calculate the angle formed by the position vectors of the relativistic oscillator corresponding to 

the first and third points of the path with the maximum distance from O.    

 

Activity 2  

Prove that a sufficient condition for the Newtonian oscillator to draw a circular path with initial velocity 

( )0
0, ,0v  and position ( )0

,0,0r  is given by the relation:  

2

0

22
p

v
h

c
=  

Check this condition in the virtual environment of the simulation for a) 
0

0.2auv =  and b) 
0

0.8auv =  

For case (a), is the shape of the relativistic oscillator's path anticipated? Explain.  

For case (b): Calculate the angular displacement of the greater extremum of the distance r from the 

origin O (see activity 1D).  

 

Activity 3  

Set 0
0.99au, 0.8au

p
v h= = . By using the graphs and the available measurement tools, calculate the 

angular displacement of the max extremum of each oscillator (see activity 1D).  

Repeat for: 0 0
0.6au, 0.2au and: 0.6au, 2au

p p
v h v h= = = =  

 

Activity 4  

Prove that the condition for the relativistic oscillator to follow a circular path with radius 
0
r  and 

velocity of magnitude 
0
v  is given by the relation (hint: use relation 5.5):  

2

0

2
 where: 

2 3
p

vb
h b

b c
= =

−
 

Check the previous condition in the virtual environment of the simulation for 0
0.6au, 0.39au

p
v h= =  

In that case, calculate the length of the small and the great semi-axis of the Newtonian oscillator, its 

period, and the constant k of the restoring force.   
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