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Abstract 

In this work, we study, simulate and compare the constrained motion of a particle within two 

theoretical models: a relativistic and a Newtonian. The main objective is to get the user 

acquainted with the differences emerging in the treatment of the same mechanical system 

within the frames of Newtonian and the relativistic point of view. In the virtual environment of 

the simulation, the user can change the initial state of the moving particle and the gravity field 

within which it moves; so he can notice the resulting variations in the motion of the system.  

To achieve the objectives we have set, the subsequent issues have been implemented:  

a) In the context of Newtonian Mechanics, determine and study a mechanical system consisted 

of a particle moving on a surface or curve of the three-dimensional Euclidean space, in the 

presence of a homogeneous gravitational field. In particular, we have considered the motion 

of a bead along a vertical circular wire. The cause for that choice is that in the Newtonian 

context, the motion of the bead is identical with the motion of a particle tied at the free end 

of a simple pendulum; although the simple pendulum is not possible to be realized in the 

context of the relativity theory, the bead moving along a predefined path does not present 

insuperable problems. Hence we are in the position to compare the predictions obtained by 

the Newtonian and the relativistic model for the evolution of a well-known mechanical 

system.  

b) Study the same mechanical system in the context of the General Theory of Relativity.   

c) Simulate the motion of the particle according to the Newtonian and the relativistic model 

and compare their predictions.  

The simulation has been compiled in JavaScript language on the Easy JavaScript Simulations 

platform. 

 

1) Determination of the mechanical system - The 

Newtonian model   

 

Let us consider an inertial reference frame in 

Cartesian coordinates Ox1x2x3 and a homogeneous 

gravitational field g directed along the negative semi-

axes x2. A bead B of mass m is constrained to be 

moving without friction, along a given curve c lying on 

the plane Ox1x2 (figure 1). Assume that the analytic 

expression of curve c in polar coordinates is:  

( )r f θ   (1.1)  

The form of the function ( )f θ  is known.  

From Newton's 2nd low we obtain the equations:  

 1
c

x F F
m

   (1.2) 

We have symbolized  1 2, ,0x x x  the position vector of the bead, in Cartesian coordinates. The 

external force on B is symbolized by F  and c
F  is the force acted on it by the constraint. The 

constraint's force is perpendicular to the infinitesimal displacement Δx  of the bead at any 

position of B on curve c. Hence:  

0, or: 0, 0
c c c
F Δx F xΔt F x       (1.3) 

From 1.2 and 1.3 we eliminate c
F  and we obtain the equation:  

1
x Δx F Δx

m
       (1.4a) 

The external force F  comes from the gravitational potential:  

  2 ( )cosV x gx gr θ θ       (1.4b) 

 
 

Figure 1 

http://users.sch.gr/kostaspapamichalis/ejss_model_constrMotion/index.html
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 1 1 1 2
ˆ ˆF m x V x V       

Equation 1.4a takes the form:  

 21
0

2

d
x V x

dt

 
  

 
 (1.5a) 

Or: 

 21

2

E
x V x

m
   (1.5b)  

E is the constant energy of the bead along its trajectory.   

We combine the constraint-equation 1.1 with 1.5b; in polar coordinates, we derive the 

differential equation of the bead-motion along c: 

   2 2 21
,

2

Ε
mθ f f V r θ

m
     (1.5c) 

( )
( )

def

df θ
f θ

dθ
   

Assume that curve c is circular with radius L (figure 2). 

Then from equation 1.5c, we imply the following:  

2 21
cos

2

E
L θ gL θ

m
     (1.6a) 

Or: 

sin 0
g

θ θ θ
L

 
  

 
   (1.6b) 

From 1.6b, for the case that the bead is not at rest in an equilibrium state, we result in the 

differential equation of motion:  

sin 0
g

θ θ
L

      (1.6c) 

Equation 1.6c is identical to a simple pendulum equation of motion, with rod-length equal to L.  

In the next paragraph, we describe the same mechanical system in the context of General 

relativity. We simulate each model and compare its predictions.     

 

2) The relativistic model (1,2,3,7,12) 

 

The equation of motion of a particle in a space-time continuum with no constraints 

In the General Relativity context, a particle P of mass m moving in a gravitational field is 

described as a free particle (9) moving in a space-time continuum M4. The metric tensor of M4 is 

determined by the specific gravitational field in the chosen coordinate system. For the case of a 

homogeneous gravitational field with potential    1 2 3, , ,V x x x x x  corresponding to the 

Newtonian model described in paragraph 1, in Cartesian coordinates the metric tensor is 

determined by the matrix (1,2,12):  

2

2
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

μν

V

c

g

 
 

 
     

 


 
  

  (2.1) 

The analytic expression of the scalar potential V is given by 1.4b.  

It is necessary to notice that the space-time continuum M4 equipped with the metric tensor 2.1 

has the following properties:  

a) Each point X of the space-time continuum M4 is uniquely determined by a set of 

Cartesian coordinates(2,4,10,12):  0 1 2 3 4, , ,x x x x x R   I.e. the space-time continuum M4 is 

determined by a one-to-one differentiable function(8) of R4 to R4:  

 4 4 4 4

4
( ) ,

def
R x X Φ x R Φ R M R       

The x0 is called "time-coordinate" and the other three "spatial-coordinates".  

At each point 
4

Χ Μ  is defined a tangent vector space TxM4 spanned by the linearly 

independent basis-vectors:  

 
 
Figure 2 
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( ) ( ), 0,1,2,3
μ μ
e x Φ x μ     

The metric tensor defines on every tangent space TxM4 an inner product according to the 

equalities:   

( ), ( ) ( ), , 0,1,2,3
μ ν μν
e x e x g x μ ν   

The "interval" Δs  between two infinitesimally close points X and X ΔX  of M4 is 

calculated by the relationships:  

4
( ), ( )X Φ x X ΔX Φ x Δx M      

( ) ( )μ μ

μ μ
ΔX Φ x Δx e x Δx    

2 , ( ), ( ) μ ν

μ ν
Δs ΔΧ ΔΧ e x e x Δx Δx   

b) The gravitational field determined by the metric tensor 2.1 is static(1). Hence we can 

synchronize the clocks set at every spatial point of the space-time continuum.  

c) The spatial geometry (or: every "rest-space"(2)) of the space-time continuum is 

Euclidean(1,2). That means the snapshot of M4 at any instant of time, is a three-

dimensional Euclidean space(1,2,12).    

According to property b, we can study the motion of any particle in M4 by choosing as "free 

parameter" the "world time"(1) t measured by an observer placed at the spatial origin O of the 

Cartesian coordinate system.  

 

The world line of a particle P moving in M4 is a geodetic of M4, i.e. a solution of the differential 

equation(1,2,10,12):  

 

 

0

where: 

ΔX
D U s

ΔX U s Δs




   (2.2a) 

Parameter s is the interval along the geodetic.  

With the symbol:  ΔX
D U s  we symbolize the covariant differential of the particle's four-velocity 

U(s) along the infinitesimal displacement ΔX on its world-line(1,2,4,10,12).   

The four-velocity and the infinitesimal displacement are vector fields defined on the "tangent 

bundle"(2,12) of the space-time continuum M4. The following identities are satisfied:    

 , ,  
μ

μ μ

μ

dX dx
U U e x u u

ds ds
    

00 2

1
def

v v
Δs cΔt g cΔt

γc


     

 
1/2

1 2 3 1 2 2 2 3 2

00 002 2

2
Where: 1 , , , , , ( ) ( ) ( )

V d v v
g v x x x γ g v v v v v

dtc c


 

         
 

 

Covariant differentiation is determined through the concepts of the "parallel displacement" and 

the "connection" defined on the tangent bundle of the space-time continuum M4
(1,2,4,10,12). The 

connection we usually consider is compatible with the metric tensor of M4; it is determined by 

the "Christoffel symbols" which are functions of the metric tensor's derivatives(1,2,12). In 

particular, one can verify the following identities:    
μ μ μ ν κ

ΔX νκ
D U Δu Γ u Δx    (2.2b) 

The Christoffel μ

νκ
Γ  symbols are calculated by the equations:  

 
1

2
μνρ μ νρ ρ μν ν ρμ

μ μκ

νρ κνρ

Γ g g g

Γ g Γ

     



 (2.2c) 

We combine relations 2.2a-c and we result in the differential equations of motion for a free 

particle in M4:  

0μ μ ν κ

νκ
Δu Γ u Δx   

0
μ

μ ν κ

νκ

du
Γ u u

ds
     (2.2d) 

Or:  

0
μ ν κ

μ

νκ

d dx dx dx
γ γΓ

dt dt dt dt

 
  

 
 (2.2e) 
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Where:  
1/2

00 2
,

cdt v v
ds γ g

γ c


 

   
 

 

 

The equation of motion of a particle sliding along a circular curve  

Consider a particle P of mass m in the space-time 

continuum M4 which is constrained to slide along a 

circular curve, like the bead we have studied in 

paragraph 1. M4 is endowed with the metric tensor given 

by 2.1 and, as we have already mentioned, its spatial 

geometry is Euclidean. That means, a circular curve of 

radius L centered at the spatial origin O, lying on the 

spatial plane Ox1x2 of M4, is determined by the analytic 

expression:  

   
2 2

1 2 2

3

0

0

x x L

x

  



   (2.3) 

Hence, our particle P is confined to move in a sub-

manifold PL of the space-time continuum M4 determined 

by 2.3. In this sub-manifold, P is moving as a free particle. That is, P moves along some 

geodetic of sub-manifold PL. To derive the motion-differential equations, we have to find the 

induced metric tensor in PL and the corresponding connection.   

According to 2.3, we'll make our job easier if we jump to polar coordinates in M4, by considering 

the following transformation (figure 3):   

 0 0 1 2 3, sin , cos ,x x ct x r θ x r θ x z       (2.4) 

The coordinates of the tangent vectors transform according to the linear transformation: 
0Δx cΔt     (2.4a) 
1 cos sinΔx rΔθ θ Δr θ    (2.4b) 
2 sin cosΔx rΔθ θ Δr θ    (2.4c) 
3Δx Δz     (2.4d) 

Or:  

   0 1 2 3 0

1 0 0 0

0 cos sin 0
, , , , , ,

0 sin cos 0

0 0 0 1

r θ r θ
Δx Δx Δx Δx Δx Δθ Δr Δz

θ θ

 
 
 
 
 
 

 

Equations 2.3 that determine the sub-manifold PL, in polar coordinates are transformed to the 

next:  
, 0r L z     (2.5) 

 
In polar coordinates, the interval Δs  of the space continuum M4 is expressed by the identity: 

 
2

2 0 2 2 2 2

00 00 2

2
, 1

V
Δs g Δx r Δθ Δr Δz g

c
        (2.6a) 

Hence, the interval induced on the sub-manifold PL has the following expression:  

 
2

2 0 2 2

00
Δs g Δx L Δθ       (2.6b) 

We infer that P moves as a free particle in a two dimensional manifold PL. Each point of PL is 

determined by the time-coordinate: 0x ct  and the angle-coordinate: θ  

According to 2.6b, the matrix of the metric tensor 
μν
g 
   induced on PL in the coordinate system 

 ,ct θ  is:  

00

2

0

0
μν

g
g

L

 
       

  (2.7a) 

Where: 2

00 00 112

2
1 , cos  and 

V
g g V gL θ g L

c
        

The inverse matrix:  

 
 
Figure 3 
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00

2

1 / 0

0 1 /

μν g
g

L

 
       

 (2.7b) 

Now, we derive the connection of PL which is compatible with its metric (2.6b). To this end, we 

calculate the Christoffel symbols of the connection by the following equations:  

 
1

, , , 0,1
2

κλμ κ λμ μ κλ λ μκ
Γ g g g κ λ μ        

Where we have established the correspondence: 00 , 1x θ   

00
000 001 010 0112

1
0, sin , 0

2

dg gL
Γ Γ Γ θ Γ

dθ c
      

00
100 110 101 1112

1
sin , 0, 0

2

dg gL
Γ θ Γ Γ Γ

dθ c
        

ν νκ

λμ κλμ
Γ g Γ  

0 0 0 00 00 000
00 10 01 010 112

1 sin
0, , 0

2 2 cos

dg gL θ
Γ Γ Γ g Γ g Γ

dθ c gL θ
     


 

1 11 11 1 1 100
00 100 01 10 112

1
sin , 0, 0

2

dg g
Γ g Γ g θ Γ Γ Γ

dθ c L
        

 

We, finally write down the differential equations of motion 2.2e for a particle P moving on the 

sub-manifold PL. As we have already said, we shall use the world time t to express the analytic 

equations of motion:  

From 2.6b, we have:  
2

2

00 2

L cΔt
Δs cΔt g θ

γc
    

1/2
2

2

00 002 2

2
Where:  ,  and: 1 cos

def def

dθ L gL
θ γ g θ g θ

dt c c



 
     

 
 

Hence, from 2.2e we obtain the equations:  

0

01
2 0

dγ dθ
γΓ

dt dt
    (2.8a) 

2 1

00
0

d dθ
γ c γΓ

dt dt

 
  

 
 (2.8b) 

From 2.8a we result in the conservation-equation:  

 

00
00

00

0, or:

0

dgdγ dθ
g γ
dt dθ dt

d
g γ

dt

 



  (2.9a) 

Hence, the following quantity determines the energy of the moving particle, which is conserved 

along its path:  

2 00

2
2

00 2

g
E mc

L
g θ

c





   (2.9b) 

In the non-relativistic limit, that is for 
2 2

2 2
, 0

gL L θ

c c
  expand 3.7b in a Taylor series and keep 

terms up to the first order. The following result is obtained:  

 

2 2 21
cos

2
E mc mgL θ mL θ    (2.9c) 

Apart from the constant term 2mc  which does not affect the equations of the motion, the 

previous result is identical to the energy of the particle derived in the Newtonian model 

(paragraph 1, relation 1.6a).   

 

From 2.8b, we imply the equation:  
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sin 0
d dθ g

γ γ θ
dt dt L

 
  

 
   (2.10) 

Where: 

1/2

2

2

2
1 cos

2

gL L
γ θ θ

gc



  
    

  
 

Assume that for t=0 the deviation angle θ  from the vertical direction is 
0

0θ   and the angular 

velocity θ  is zero. Then, from the energy conservation (2.9b) we obtain:  

 
2

0

02

2
1 cos

2
cos cos

2
1 cos

gL
θ

g cθ θ θ
gLL

θ
c



 



 (2.11a) 

From 2.11a we infer that for any value of the initial angle  0
,θ π π   the values of θ  at any 

time t, are confined in the interval: 0 0
,θ θ    

In the context of the Newtonian model, the corresponding to 2.11a is the equation:  

 0

2
cos cos

g
θ θ θ

L
      (2.11b) 

In the non-relativistic limit, i.e. for 
2

2
0, 1

gL
γ

c
   2.11a converges to 2.11b, and 2.10 

converges to 1.6c.    

 

3. Notations on the composition of the simulation  

 

The values of basic constants in the environment of the simulation  

In the simulation system of units, the light velocity is c=1; the mass of the particle is m=1 and 

the radius of the circular curve is L=0.04.  

The initial state of the mechanical system in both models is determined by the conditions:  

   0
0 , 0 0θ θ θ   

The range of the crucial parameter 
2

2
0.08

gL
g

c
  varies from 0 to 1, implying that 0<g<12.5.  

The mechanical energy of the system is estimated by the equations:  

2 2

0 02

2
1 cos 1 0.08 cos

gL
E mc θ mc g θ

c
      (3.1a) 

2 2

0
1 cosmc Ε mc θ       (3.1b) 

 

How the readings of the clocks in each model are related? 

In the absence of the gravitational field, the reference system (O;t,x,y) in the virtual 

environment of the simulation is Cartesian and inertial for the Newtonian model as for the 

relativistic one. Time t is universal for both models: we have placed two similar chronometers at 

the space origin O of each model; the time-laps and the readings of both chronometers are 

identical.     

In the presence of a static gravitational field, the time in the relativistic model is world-like, 

again: we are possible to synchronize the clocks at every space-point of the space-time 

continuum so that they show the same reading with the clock at the origin O (paragraph 2).  

 

The system-evolution with time  
The state of the mechanical system is determined by one degree of freedom: the angle θ  

specifying the deviation of the particle from the vertical direction, on the circular orbit.  

Although the differential equation of motion is of second order, we obtain a first integral of the 

motion expressed by equations 2.11a and b, respectively.  

The radial velocity R
v Lθ  of the particle as a function of the angle θ  is calculated by the 

energy conservation and the initial conditions: 
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00
00 02

00 2

( )
( )

( ) R

g θ
g θ

v
g θ

c





  (3.2) 

The quantity under the squared root must be greater than or equal to zero for every 

0 0
[ , ].θ θ θ   Hence vR satisfies the inequality:  

2

2 2

2
1R

v gL

c c
      (3.3) 

From 3.2, we result that the magnitude of the radial velocity varies with angle θ  according to 

the relationship:   

 
 
 

00

00

00 0

1R
g θv

g θ
c g θ

 
  

 
 

  (3.4) 

 

Which are the extreme-points of 3.4? 

We calculate them by solving the equation:  
2

2
0R

vd

dθ c

 
 

 
 

We find that: 

   
 

2
00 00

2

00 0

2
1R

dg θ g θvd

dθ dθ g θc

  
     

   

 

Hence, the velocity-magnitude is an extremum if the following conditions are fulfilled:  

 00 0 sin 0 0
dg θ

θ θ
dθ

      

Or:  

 
 

2
00

0

00 0

2 1
1 0 cos cos

4 2

g θ c
θ θ

g θ gL
      

The second case is possible to be fulfilled if the gravitational field is strong enough so that the 

following condition is satisfied: 

2

0

2 1

2 cos

gL

θc



   (3.4)  

In the following graphs, we can see the variation of the quantity 
2

2

R
v

c
 versus θ  for three 

different values of the parameter 
2

2gL

c
 

 

 

Confirm that if 
2

2
1

gL

c
  the magnitude of the radial velocity converges to zero: the particle is 

"trapped" by the gravitational field. At first sight, we could say that we have a violation of the 
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energy-conservation. But if we apply carefully the energy-conservation equation (3.2), we can 

see that this particle-trapping is actually in agreement with this:  

Set: 
2

2
1 , 0

gL
ε ε

c
     

Then, from 3.2 we result in the consequent equations: 

 

 

 00

00 02

00 2

R

g θ
g θ

v
g θ

c





 

 
 
     

2
00 0

002 2

00 0 0 00 00

cos1
1 1 1

1 1 cos 1 cos 1 cos

R

θ θ

g θ ε θv ε
g θ ε ε ε ε

g θ ε θ θc θ 

     
            

               

 

 0 0
R
v c ε      (3.5) 

 

In the context of the Newtonian model, the radial 

velocity of the particle is given as a function of the 

deviation angle by the relation:   

 0
2 cos cos

R
v gL θ θ    (3.6) 

At 0θ   function 3.6 has a maximum. Its graph, 

for the initial angle: 
0

2.7θ rad  is depicted by the 

nearby figure.  

 

 

 

 

 

4. Activities  

 

1) In the virtual environment of the simulation, calculate the differences in the period of the 

motion according to each model for the following values of the parameters:  

0 0 0

0 0 0

0 0

: 7, / 3 : 7, 3.1 : 7, 0.2

: 1, / 3 : 1, 0.2 : 12.4, 0.2

: 12.4, 1.05 : 12.4, 3

a g θ π rad b g θ rad c g θ rad

d g θ π rad e g θ rad f g θ rad

g g θ rad h g θ rad

       

       

    

  

Discuss the results in the context of each theoretical model.  

2) Formulate the energy-conservation equation for the mechanical system in the relativistic 

model. In the virtual environment calculate the mechanical energy of the particle in the 

following cases: a) in the initial condition, b) when the bead passes by the vertical. Apply for 

the subsequent values of the parameters:  

0

0

: 7, / 3

: 7, 3.1

a g θ π rad

b g θ rad

 

 
 

0

0

: 12.44, 0.2

: 12.44, 3

c g θ rad

d g θ rad

 

 
 

In every case check the fulfillment of the energy-conservation.  

 

3) Repeat activity 2 for the Newtonian model.    

 

4) Set 
0

12, 2.1g θ rad   and run the simulation. In the virtual environment of the relativistic 

model, calculate the values of the deviation angle corresponding to the extrema of the 

particle's velocity magnitude. Calculate the corresponding extrema of the velocity.  

According to the theoretical model, if the condition 
2

0

2 1

2 cos

gL

θc



 is fulfilled then, the 

values of the deviation angle corresponding to the extrema of the particle-velocity 

magnitude are given by the equation:  

 
 

02

2
0.6, 2.7

gL
θ rad

c
   
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2

0

1
cos cos

4 2

c
θ θ

gL
   

Check if the values you obtained in the virtual environment satisfy the previous 

relationships.  

Repeat the same procedure for: 
0

12.44, 3.1g θ rad   
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