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Diffusion of a 2D gas 

Kostas Papamichalis, Dr. of Theoretical Physics 

 

Summary 

A 2D rectangle-shaped container is 2L long and L high. It is divided into two equal square 

chambers D1 and D2, with a diaphragm TU. In the middle of the diaphragm, there is a gap of 

height h which is initially closed by a barrier (Figure 1). In the container, there are N identical but 

discrete particles. Each particle has the shape of a disc of radius r and mass m. The particles 

interact in pairs (p-p interactions). During each interaction, the momentum and energy of the 

pair are conserved. The interactions of particles with the walls of the container are elastic 

collisions.  

At time t=0 all particles are in the left compartment D1 and have random positions, and velocities 

of random magnitudes and directions. The initial velocity distribution of the gas, although it is not 

identical to the Maxwell-Boltzmann (M-B) distribution, it is very "near" to this and, because of the 

p-p interactions, it converges extremely fast to it(1,2,3).   

Over time, particles are transferred through the gap from D1 to D2 and vice versa, so that the 

numbers (n1, n2) of particles in each chamber are changing. The program counts n1, n2 in real 

time and draws their graphs with time. On the other hand, a mathematical model has been 

composed, by which the variation of n1 and n2 is calculated over time and the corresponding 

graphs are depicted. The user compares the theoretical graphs with the experimental.   

The user can select the values of the length h of the gap and the mean energy of the particles. 

He can also adjust the value of a statistical-phenomenological parameter pass
P  so that the 

agreement of the experimental data with the theoretical graphs be the best possible.  

To monitor the movement of each particle and its interactions with the rest and with the walls of 

the container or with the diaphragm, the program is drawing the trajectory of a particular particle 

in red.  

 

Key concepts and relationships  

Random variable - Probability density of a random variable - Probability distribution of a random 

variable - Uniform distribution - Maxwell-Boltzmann distribution - Markov process - Inertial 

reference system – Center-of-mass inertial frame - Linear momentum conservation in a p-p 

interaction - Energy conservation in a p-p interaction  

 

The mathematical model 

 

In the virtual gas, the initial positions of the particles are random. The velocity directions are 

random and the velocity magnitude of each particle is a random number in an interval ).0,
in
v , 

where 
.in

v  is determined by the program according to the selection of the energy level by the 

user. This state, although not identical to the thermodynamic equilibrium state, it is extremely 

near to this (1). Nevertheless, fast enough the velocity distribution of the virtual gas converges to 

the Maxwell-Boltzmann (M-B) distribution (1,2,3). Then, the probability of the event: "The velocity 

magnitude j
V  of the j-particle is in the interval ) ( ), , 0v v Δv Δv+ → ", for any j=0,1…N-1 is: 

2

2
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β

j
p v V v Δv βme vΔv

−

   + =      (1a) 

The constant β  is a function of the particles' average energy. It can be proved (1) that: 
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On the other hand, the probability of the event: "The angle j
Θ  formed by the j-particle's velocity 

with the Ox axis is in the interval ),θ θ Δθ+ " is:  

( )
2

j

Δθ
p θ Θ θ Δθ

π
  + =      (2) 
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Hence, the probability of the composite event: "The j-particle velocity has a magnitude in the 

interval ),v v Δv+  AND its angle with the Ox axis is in the interval ),θ θ Δθ+ " is given by the 

analytic expression:  

( ) ( )
2

2 AND 
2

mv
β

j j

βm
p v V v Δv θ Θ θ Δθ e vΔv Δθ

π

−
   +   + = 
 

  (3) 

 

Regarding the particle positions in the initial state, it holds that:  

( )
if 0

0 otherwise
j

Δx
x L

p x X x Δx L


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  + = 



   (4a) 

( )
if 0

0 otherwise
j

Δy
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
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


   (4b) 

 

Calculation of the particles' variation in each chamber over time 

Suppose that at time t there are 
1
( )n t  particles in D1 and 

2
( )n t  in D2. It is true that:  

1 2
( ) ( )n t n t N+ =      (5a) 

In the time interval ),t t Δt+ , ( )1 2
Δn t

→
 

particles pass from D1 to D2 and ( )2 1
Δn t

→
 

from D2 to D1. The variations of 
1
( )n t  and 

2
( )n t  in the same time interval are 

1 2
( ), ( )Δn t Δn t . From 5a it is implied that:  

1 2
( ) ( ) 0Δn t Δn t+ =   (5b) 

 

Consider the event 1 2
; ,E j t Δt

→    : "The j-

particle in the time interval ),t t Δt+  

passes from D1 to D2".  

Event 1 2
; ,E j t Δt

→     is composed of the 

following independent events:  

( )1 ; 1E t D : "At time t the j-particle is in chamber D1". 

2 ;( )E t ABCD   : "At time t the j-particle is in the orthogonal parallelogram (ABCD) with 0
jx
V   

AND it passes through the gap to chamber D2 in the time interval ),t t Δt+ " (see Figure 1).  

Let pass
P  be the probability for the j-particle to pass through the gap, given that at time t it is in 

(ABCD) with the right x-velocity. pass
P  depends on many parameters: the length of the gap, the 

frequency of the p-p interactions, the density of the gas, etc. The value of pass
P  is determined 

phenomenologically: In the virtual environment of the simulation, the user is being 

experimented with the values of pass
P  in the interval (0,1  so that to obtain the best 

fitting of the experimental with the theoretical graphs.   

 

Hence, the probability of 1 2
; ,E j t Δt

→     is:  

)1
1 2 2

0,

0,2

( )
; , , 0 x

pass jx x x x x
v

θ π

n t h v Δt
p j t Δt P p V v v Δv p v

N L
→

 +  
  

  
 =    +             

 
   (6) 

Since:  

( ) ( )cos sin sin cos
x y

Δv Δv Δv θ vΔθ θ Δv θ vΔθ θ vΔv Δθ = −  + =   

From 3 and 6 it is obtained:  

 
Figure 1 
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( ) ( )1 2
2

2
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n t n tβmh π h
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−
= =  

 

The total number of particles passing through the gap, from D1 to D2, over the time interval 

),t t Δt+  is:  

( )
1/2

1 2 1 2 1 2
1

( ) ; , ( ) 2
N

pass
j

h
Δn t p j t Δt Δt n t P πmβ

L

−

→ →

=

= =    

Similarly: the total number of particles passing through the gap, from D2 to D1, over the time 

interval ),t t Δt+  is:  

( )
1/2

2 1 2 1 2 2
1

( ) ; , ( ) 2
N

pass
j

h
Δn t p j t Δt Δt n t P πmβ

L

−

→ →

=

= =    

It is concluded that the variation of the particles' number n1 over ),t t Δt+  is: 

( ) ( )
1/2

1 1 2 2 1 1 22
( ) ( ) ( ) 2 ( ) ( )

pass

h
Δn t Δn t Δn t Δt P πmβ n t n t

L

−

→ →
= − + = − −    (8a) 

The variation of the particles' number n2 over the same time interval is:  

( ) ( )
1/2

2 1 2 2 1 1 22
( ) ( ) ( ) 2 ( ) ( )

pass

h
Δn t Δn t Δn t Δt P πmβ n t n t

L

−

→ →
= − = −    (8b) 

8a and b are first-order differential equations. The initial conditions that uniquely define their 

solutions in the context of the simulation are:  

1 2
(0) , (0) 0n N n= =       (8c) 

By solving equations 8a and 8b, it is found that:  

( ) ( )1 2
1 , 1

2 2

λt λtN N
n e n e− −= + = −     (9a)  

( )
1/2

2 2

2 2
2

2
pass pass

Eh h
λ P πmβ P

L L πm

−
= =    (9b) 

The system approaches the equilibrium state asymptotically:  

( ) ( )1 2
lim lim

2t t

N
n n

→+ →+
= =  

The time constant is:  
21

2
pass

L πm
τ

λ hP E
= =      (10) 

Remark: The particles of the virtual gas are discs of a radius of r. Therefore, a particle will pass 

through the gap, if at time t  the y-position of its center is in the interval: ,
2 2

L h L h
r r

− + 
+ − 

 
 

Hence, the actual length of the gap is h-2r. Relation 10 is modified to the following:     

( )

21

2 2
pass

L πm
τ

λ P h r E
= =

−
    (10a) 

 

How do particles interact? 

At time t=0 all N particles of the virtual gas are in compartment D1. The interactions of particles 

with the walls of the container are elastic collisions. The particles interact with each other in pairs. 
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The directions and the magnitudes of the velocities immediately after each interaction, satisfy the 

conservation laws of the linear momentum and energy of the pair. They are completely 

determined by an additional random parameter: the angle θ  formed by the velocities after, with 

the velocities before the interaction, in the pair's center-of-mass reference frame (Figure 3). The 

value of θ  is independent of the velocity directions before the p-p interaction (the successive p-

p interactions form Markov processes).   

Between two successive interactions, each particle moves at a constant velocity. The time that 

each interaction lasts is negligible to the time-lap between any two successive interactions.  

 

Suppose that at a time moment t, the j-particle interacts with the k-particle. Symbolize , , ,
j j k k
r v r v  

the corresponding positions and velocities of these particles in the Oxy inertial system of the 

container (Figure 2).  

The moment t of the interaction is determined by the simultaneous conditions: 

j k
r r s r−     

(the centers of the two particles are less than s r  - 

parameter s is determined in the program of the 

simulation) 

( ) ( ) 0
j k j k

d
r r r r

dt
 − − 
 

  

Or:  

( ) ( ) 0
j k j k
v v r r−  −   

(the two particles are moving so that in the 

infinitesimal time interval ),t t Δt+  the distance of 

their centers is decreasing) 

 

Let 
jk
K K  be the center of mass of the j and k-

particles at the time t of their interaction. In the 

following steps, it is obtained:  

a) A relation of the particles' velocities in two inertial 

reference frames: The Oxy and the center-of-mass 

frame Kxy. 

b) A derivation of the particles' velocities after their 

interaction, in the Kxy reference frame. 

c) A derivation of the particles' velocities after their 

interaction, in the Oxy reference frame. 

 

(a) The particles have equal masses (m=1mass-unit), 

therefore:  

( ) ( )
1 1

,
2 2

j k K j k
OK r r V v v= + = +  (11a) 

K
V  is the center of mass velocity in the Oxy-frame 

(Figure 2)   

It is true that:  

( )

( )

1

2

1

2

j j j k

k k k j j

s r OK r r

s r OK r r s

= − = −

= − = − = −

 (11b) 

( )

( )

1

2

1

2

j j k

k k j j

u v v

u v v u

= −

= − = −

   (11c) 

,
j k
u u  are the j and k-particle velocities in the Kxy-frame (Figure 2).  

 
 

 
Figure 3 

 
Figure 2 
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j j

k k

r s OK

r s OK

= +

= +
      (12a) 

j j K

k k K

v u V

v u V

= +

= +
      (12b) 

 

(b) Let ,
j k
u u   be the j and k-particles velocities just after their interaction, in their center-of-

mass reference frame Kxy. They are derived by applying the linear momentum and energy 

conservation laws (Figure 3):  

0
j k j k
u u u u + = + =      (13a) 

2 2 2 2

j k j k
u u u u + = +      (13b) 

From 13a and b, it is implied that:  
2 2 2 2

j k j k
u u u u = = =      (13c) 

The velocities ,
j k
u u   in Kxy-frame have the same magnitudes as the velocities ,

j k
u u  just before 

the interaction, and their directions are opposite to each other. However, in general, the axis that 

is determined by ,
j k
u u   forms an arbitrary angle θ  with the axis of ,

j k
u u  (Figure  3). The angle 

θ is determined in the program of the simulation, by the JavaScript random variables method, in 

the interval )0,2π . In Kxy-frame, the coordinates of the velocities  ,
j k
u u   are calculated by the 

equations:  

cos sincos sin

sin cos sin sin

jx jx jx jy

jy jy jx jy

u u u θ u θθ θ

u θ θ u u θ u θ

 +      
= =            − − +      

   (14a) 

jxkx

ky jy

uu

u u

   
= −          

     (14b) 

 

(c) The coordinates of the j and k-particle's velocities, just after the interaction, in the Oxy-frame 

shall be calculated by 11e and 14a, b: 

,
j j K k k K
v u V v u V   = + = +     (15) 

 

Characteristics of the simulation 

At time t=0 all N particles of the virtual gas are confined in chamber D1 of the container. The 

energy level of the system can be selected by the user. The particles' positions, the directions, 

and the magnitudes of the particles' velocities are random. The velocity magnitudes are random 

numbers produced by the JavaScript random number method in the interval ).0,
in
v , where 

.in
v  

is related to the chosen mean energy level E. The initial velocity distribution of the virtual gas, 

although is not identical to the M-B distribution, is very "near" to it (1). Extremely fast, the virtual 

gas converges to the M-B velocity distribution (1,2,3), according to the Boltzmann's H-theorem.  

 

The gap is initially closed by a barrier. The program imposes a delay of 2 time-units for the barrier 

to be removed after the user starts the simulation. Aiming at a better perception of the formation 

of the particles' trajectories under the successive p-p interactions, one specific particle, and its 

path has been colored red. 

 

The user controls three parameters: the energy level of the gas, the length h of the gap, and the 

probability pass
P  of passing a particle from D1 to D2 or back, if all the other conditions for that, 

predicted by the theoretical model, are satisfied. pass
P  is a phenomenological parameter taking 

values in the interval (0,1  used to obtain the best agreement of the theoretical graphs with the 

experimental.  

In the energy graphs window, it is depicted the actual gas's energy in each chamber and the total 

gas's energy, in a sequence of time moments (they are measured in real-time by the program). 



6 

 

In addition, at each moment of this time-sequence the program counts in real-time the actual 

number of particles in each chamber and draws the corresponding experimental graphs (reddish 

curves, in the number-of-particles window). In the same window, the theoretical graphs are also 

depicted for the chosen by the user parameters (bluish curves).  

 

The user is prompted to adjust the value of the parameter pass
P , so that to succeed the 

best agreement of the theoretical graph with the experimental. 

Remark: A change of pass
P  implies a change of time constant only; it does not affect the other 

characteristics of the theoretically derived functions 
1 2
( ), ( )n t n t  (relations 9a, 10a). 

The user compares the theoretical predictions with the actual particles' number over time in each 

compartment and evaluates both the theoretical model and the virtual environment.  

 

Activities 

 

In the virtual environment of the simulation, the mass of each particle is m=1mass-units, the 

length of each container wall is L=20length-units, the radius of each particle is r=0.12length-

units.  

 

1. Run the simulation for different values of the parameters E and h. Choose the value of pass
P  

to obtain the best agreement of the theoretical graphs with the experimental. What are the 

causes for any observed discrepancies between theoretical and experimental graphs? Please 

indicate at least two. 

 

2. Keep the length h of the gap constant and for three different values of the mean energy E, 

run the simulation. 

a. In each case, select and write down the optimum value of pass
P  to have the best 

agreement of the theoretical graphs with the experimental. Write down the time 

constant of the system. How much time is needed to reach the system the equilibrium 

state?  

b. Compare the time constants to each other. Explain.  

c. Compare the values of pass
P  you selected in each case. Formulate an empirical rule.  

 

3. For a certain energy level and three different values of the length h of the gap run the 

simulation. 

a. In each case, select and write down the optimum value of pass
P  to have the best 

agreement of the theoretical graphs with the experimental. Write down the time 

constant of the system. How much time is needed to reach the system the equilibrium 

state?   

b. Compare the time constants to each other. Explain the result of the comparison.  

c. Compare the values of pass
P  you selected in each case. Formulate an empirical rule.  
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