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Synopsis    
In this applet, the osmosis effect (see references 1 and 2) is described and simulated for the case of a 2D gas 
solution. In an orthogonal container divided into two chambers D1 and D2 with a semi-permeable barrier, N disk-
like particles are moving. The particles are discriminated into two classes: The "red" particles which cannot pass 
through the barrier and they are always trapped in chamber D1 and the "blue" particles which can pass through 
the barrier and move everywhere in the container. The number of "red" particles is 𝑛𝑟 = 𝑁/3 and that of the 
"blues" is 𝑛𝑏 = 2𝑁/3. The particles interact with the walls of the container by elastic collisions. The particles 
interact with each other by pairs (p-p interaction). In the p-p interactions, the linear momentum and the energy of 
the pair are conserved; the directions of the velocities just after any p-p interaction are random and independent 
of their directions just before the interaction (see paragraph: "The particles' interactions"). The system is isolated.  
At time t=0, the mean energy of the particles is everywhere the same; there are equal numbers of particles in D1 
an D2: N/3 "reds" and N/6 "blues" in D1 and N/2 "blues" in D2. Hence the pressure of the gas in each chamber is 
the same. But, because of the inability of the red particles to pass through the barrier, the number of particles in 
D1 gradually increases, and that of the particles in D2 decreases. As a result, the pressure in D1 increases with 
time, and the pressure in D2 decreases by the same amount. This process continues until the system reaches in a 
state of dynamical equilibrium, achieved when the number of "blue" particles is the same in both chambers. In the 
state of dynamical equilibrium, the total numbers of particles in each chamber are different. This implies that the 
final pressure in D1 is different than the pressure in D2; their difference is defined as the osmotic pressure of the 
system.    
The program of the simulation counts the actual number of particles in each chamber, at a specific sequence of 
time moments, and calculates the corresponding pressures. These values which are been obtaining in real-time, 
consist of the experimental data concerning the evolution of the 2D gas in the container. In parallel, for every 
time-step of the simulation, the program calculates the theoretical values of the particles' numbers and the 
pressures in D1 and D2 derived by the theoretical model, and the corresponding graphs are composed. The 
theoretical graphs and the experimental points are plotted on the same system of axes so that the user can check 
the agreement of the theoretical predictions with the experimental data.   
Finally, the user is prompted to carry out a set of recommended activities.   
 
Objectives of the application 
1. The user is getting acquainted with a theoretical model, aiming at the description of the osmosis effect, for the 

case of a 2D gas solution. He makes predictions concerning the evolution of the system and confirms or 
disconfirms them in the virtual environment of the simulation.    

2. The user compares the theoretical predictions derived by the model, with the experimental data obtained in 
real-time by the evolution of the virtual gas. He can evaluate the reliability of the model and the technical 
details of the virtual environment.  

 
Key concepts and relations 
2D gas – Semipermeable barrier – Elastic collisions – p-p interactions – Linear momentum and energy 
conservation in the p-p interactions – Random variable – Distribution density function of a random variable – 
Distribution function of a random variable –  Forces exerted by the particles on the walls of the container – 
Pressure of the 2D gas – Mean energy of the particles – Thermodynamic equilibrium – Maxwell-Boltzmann 
distribution – Boltzmann H-theorem – Variation of the particles' number in the chambers of the container with 
time – Dynamical equilibrium – Gas pressure in each chamber in the equilibrium state – Osmotic pressure   
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Description of the device and the theoretical model  
 
An orthogonal plane container of width 2L and height L is divided into two equal chambers D1 (the left one) and 
D2 (the right one) by a barrier B, as shown in figure 1. In the container, there are N disk-like particles, each of 
mass m and radius r. The particles are discriminated into two classes: The "red" particles which cannot pass 
through the barrier and they are always trapped in 
chamber D1 and the "blue" particles which can pass 
through the barrier and move everywhere in the 
container. The total number of the "red" particles is 
𝑛𝑟 = 𝑁/3 and that of the "blue" ones is 𝑛𝑏 = 2𝑁/3.  
The container is thermally isolated, and its walls 
are rigid.  
At time t=0, there are 𝑛𝑏1 = 𝑁/6 "blue" particles in 
D1 and 𝑛𝑏2 = 𝑁/2 in D2. Hence in each chamber, 
there is the same number of particles: 𝑛1𝑟 + 𝑛1𝑏 =
𝑁

3
+

𝑁

6
=

𝑁

2
 in D1, and 𝑛2𝑏 =

𝑁

2
 in D2. According to 

equations 7a and 7b (see paragraph: "Variation of 
the pressure in each chamber with time according 
to the theoretical model"), the pressure of the gas in each chamber at any time t, is proportional to the number of 
particles contained in it; hence, in the initial state, the pressures in D1 and D2 are equal.  
 
The initial positions of the particles are random: the probability distributions of the X and Y particles' positions 
are uniform (see reference 3); they are calculated by the program of the simulation, using the random method of 
JavaScript. Given that the energy and linear-momentum conservation equations in the p-p interactions are 
independent of the particles' positions, the chaotic character of the particles' positions is maintained with time.   
The directions of the velocities in the initial state are random. The velocity magnitudes are random, taking values 
at certain intervals determined in the program, in accord to the energy level chosen by the user. This distribution 
is very "near" to the Maxwell-Boltzmann one (see Appendix). Nevertheless, according to the Boltzmann H-
theorem, because of the p-p interactions the velocity magnitude distribution converges fast-enough to the M-B 
distribution (see references 2 and 3).  
 
The particles' interactions 
The particles interact with the walls and the barrier (the "reds" only) via elastic collisions. 
In every p-p interaction, the linear momentum and the total kinetic energy of the interacting particles are 
conserved. The direction of the velocities just after every interaction is random, independent of the velocity 
directions just before the interaction. Between two successive interactions, each particle moves with constant 
velocity. Finally, the duration of any interaction is negligible, 
compared with the time between two successive interactions of 
any particle in the system.  

 
Now, we shall relate the velocities of the interacting particles just 
before and just after their interaction.     
Consider that at time t, the j-particle interacts with the k-particle. 
Let us symbolize 𝑟𝑗 , 𝑣⃗𝑗, 𝑟𝑘, 𝑣⃗𝑘 the positions and the velocities of the 

particles just before their interaction, in the inertial reference 
frame Oxy, fixed to the container (figure 2).  
In the simulation, the interaction moment t of the two particles is 
determined by the following two conditions:  

a) |𝑟𝑗 − 𝑟𝑘| < 𝑠 ⋅ 𝑟 (The parameter s is determined in the 

program)  

b) 
𝑑

𝑑𝑡
[(𝑟𝑗 − 𝑟𝑘)(𝑟𝑗 − 𝑟𝑘)] < 0 or: (𝑣⃗𝑗 − 𝑣⃗𝑘) ⋅ (𝑟𝑗 − 𝑟𝑘) < 0 

(The two particles are moving so that, in the infinitesimal time 
interval [𝑡, 𝑡 + Δ𝑡) their centers-distance decreases) 
Symbolize 𝐾𝑗𝑘 ≡ 𝐾 the center of mass of the j and k-particles at the interaction moment t and Kxy, their center-of-

mass inertial reference frame (figure 2).  
We implement the following steps:  
1) Find the relations of the j and k-particle velocities in the frames Oxy and Kxy.  

 
 

Figure 1 

 
Figure 2 
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2) Calculate the velocities just after the interaction in the center of mass frame Kxy.  
3) Calculate the velocities just after the interaction in the frame Oxy.  

 
1) The particles have equal masses. Hence:   

𝑂𝐾⃗⃗⃗⃗⃗⃗⃗ =
1

2
(𝑟𝑗 + 𝑟𝑘), 𝑉⃗⃗𝐾 =

1

2
(𝑣⃗𝑗 + 𝑣⃗𝑘)      (1a) 

𝑉⃗⃗𝐾 is the center of mass velocity in Oxy. The velocities of the j and k-particle, in the Kxy system, are symbolized: 
𝑢⃗⃗𝑗 , 𝑢⃗⃗𝑘   

According to figures 2 and 3, the following relations are true: 

𝑠𝑗 = 𝑟𝑗 − 𝑂𝐾⃗⃗⃗⃗⃗⃗⃗ =
1

2
(𝑟𝑗 − 𝑟𝑘), 𝑠𝑘 =

1

2
(𝑟𝑘 − 𝑟𝑗) = −𝑠𝑗     (1b) 

𝑢⃗⃗𝑗 =
1

2
(𝑣⃗𝑗 − 𝑣⃗𝑘) , 𝑢⃗⃗𝑘 =

1

2
(𝑣⃗𝑘 − 𝑣⃗𝑗) = −𝑢⃗⃗𝑗    (1c) 

𝑟𝑗 = 𝑠𝑗 + 𝑂𝐾⃗⃗⃗⃗⃗⃗⃗ , 𝑟𝑘 = 𝑠𝑘 + 𝑂𝐾⃗⃗⃗⃗⃗⃗⃗     (1d) 

𝑣⃗𝑗 = 𝑢⃗⃗𝑗 + 𝑉⃗⃗𝐾 , 𝑣⃗𝑘 = 𝑢⃗⃗𝑘 + 𝑉⃗⃗𝐾     (1e) 

2) Just after the interaction of the j and k-particle, their velocities 𝑢⃗⃗′𝑗 , 𝑢⃗⃗′𝑘  in the Kxy frame  are calculated from the 

linear momentum and energy conservation (figure 3):   
𝑢⃗⃗′𝑗 + 𝑢⃗⃗′𝑘 = 𝑢⃗⃗𝑗 + 𝑢⃗⃗𝑘 = 0     (2a) 

𝑢′
𝑗

2
+ 𝑢′

𝑘
2

= 𝑢𝑗
2 + 𝑢𝑘

2     (2b) 

 
Equations 2a and 2b imply that:  

𝑢′
𝑗

2
= 𝑢′

𝑘
2

= 𝑢𝑗
2 = 𝑢𝑘

2   (2c) 

We infer that 𝑢⃗⃗′𝑗 , 𝑢⃗⃗′𝑘  have mutually opposite directions and equal 

magnitudes. Their magnitude is the same as the common velocity 
magnitude of j and k-particle just before their interaction (relation 
2c).  But in general, the axis defined by 𝑢⃗⃗′𝑗 , 𝑢⃗⃗′𝑘 is different from the 

axis defined by the velocities just before the interaction (figure 3). 
The directions of 𝑢⃗⃗𝑗

′, 𝑢⃗⃗′𝑘  are determined by a rotation angle 𝜃 formed 

with 𝑢⃗⃗𝑗 , 𝑢⃗⃗𝑘 respectively (figure 3).  

In the present model, the value of theta (𝜃) is random; it is 
determined by the JavaScript random values method.    
According to figure 3, the x and y-components of 𝑢⃗⃗𝑗

′, 𝑢⃗⃗′𝑘  in the Kxy 

frame, are calculated as a function of the x and y-components of the 
velocities 𝑢⃗⃗𝑗, 𝑢⃗⃗𝑘  and the angle 𝜃, by the equations:   

(
𝑢𝑗𝑥

′

𝑢𝑗𝑦
′ ) = (

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃
− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

) (
𝑢𝑗𝑥

𝑢𝑗𝑦
) = (

𝑢𝑗𝑥 𝑐𝑜𝑠 𝜃 + 𝑢𝑗𝑦 𝑠𝑖𝑛 𝜃

−𝑢𝑗𝑥 𝑠𝑖𝑛 𝜃 + 𝑢𝑗𝑦 𝑠𝑖𝑛 𝜃
)   (3a) 

(
𝑢𝑘𝑥

′

𝑢𝑘𝑦
′ ) = − (

𝑢𝑗𝑥
′

𝑢𝑗𝑦
′ )   (3b) 

3) The velocities 𝑣⃗𝑗
′, 𝑣⃗𝑘

′  of the j and k-particle just after their 

interaction, in the Oxy reference frame are calculated by equations 
1e, 3a, and 3b:  

𝑣⃗𝑗
′ = 𝑢⃗⃗𝑗

′ + 𝑉⃗⃗𝐾  , 𝑣⃗𝑘
′ = 𝑢⃗⃗𝑘

′ + 𝑉⃗⃗𝐾  (4) 

 
Some more features of the model and the virtual environment of the simulation 
A) In the simulation program, the value of the parameter s has been chosen so that the gas, because of the p-p 

interactions, gets fast enough the M-B velocity distribution (Boltzmann H-theorem, see reference2 and 3) and 
then, stays at this state. It is a particularly good approximation to assume that at any time, the temperature of 
the gas is constant and equal to the inverse of the particles' mean energy (see references 2 and 3).  

B) At any time, the gas pressure in each chamber is calculated by the mean force exerted by the particles on 
some rigid wall of the chamber, divided by the length of the corresponding wall. According to equations 7a 
and 7b of the next paragraph, at t=0 the pressures in D1 and D2 are equal: for 𝑡 = 0 ∶  𝑃1 = 𝑃2  

C) Nevertheless, just after the user starts the simulation, the "blue" particles' number is greater in D2 than in D1. 
Hence the flow of "blue" particles from D2 to D1 is greater than in the opposite direction. The result of this 
situation is that the number of "blue" particles increases in D1 with time, and decreases by the same amount 
in D2. Consequently, the pressure in D1 increases, and in D2 decreases. The system converges to a steady-
state when the number of "blue" particles in D1 and D2 reaches the same value. When the system obtains this 
state of dynamical equilibrium, the flow of "blue" particles is the same to both directions; the mean number of 
particles and the pressure in each chamber do not change with time. At the equilibrium state, the total 

 
Figure 3 
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number of particles in D1 is different from the one in D2. Hence, the pressure in D1 is different from the 
pressure in D2. In the context of the present model, the difference of the gas pressure in chambers D1 and D2, 
at the equilibrium state, is called "osmotic pressure": Δ𝑃 = 𝑃1 − 𝑃2.  

D) In the virtual environment of the simulation, the user can watch the motion of the particles, their interactions, 
and the function of the semi-permeable barrier. In the graph-window, the user can watch the variation of the 
actual gas pressure in both chambers, in real-time: the program measures both pressures in a sequence of 
time moments (red, zigzagged lines). In the same window, the corresponding theoretical graphs are drawn, in 
real-time again, according to the prediction of the model (blue, continuous lines). So, the user can compare 
the theoretical predictions with the experimental data and evaluate the whole application. The calculation of 
the osmotic pressure is accomplished from the graphs when the system has approached the state of 
equilibrium.  

 
Variation of the "blue" particles' number in each chamber with time according to the theoretical model  

 
Symbolize 𝑛𝑏1(𝑡), 𝑛𝑏2(𝑡) the number of "blue" particles at time t, in chambers D1 and D2, respectively. Let Δ𝑛𝑏1→2 
be the number of the "blues" that in the time interval [𝑡, 𝑡 + 𝐷𝑡), 𝐷𝑡 → 0 move from D1 into D2 and Δ𝑛𝑏2→1 the 
number of "blues" that move from D2 into D1, in the same interval. According to the present model and with the 
help of figure 4, the following equations describe the variation of the particles' number with time:  

Δ𝑛𝑏1→2 = 𝐷𝑡 ∑ 𝑃[(𝐿 > 𝑥𝑗 > 𝐿 − |𝑣𝑗𝑥|𝐷𝑡) AND (𝑣𝑗𝑥 > 0)]
𝑛𝑏1−1
𝑗=0     (5a) 

Δ𝑛𝑏2→1 = 𝐷𝑡 ∑ 𝑃[(𝐿 < 𝑥𝑗 < 𝐿 + |𝑣𝑗𝑥|𝐷𝑡) AND (𝑣𝑗𝑥 < 0)]
𝑛𝑏2−1
𝑗=0     (5b) 

With 𝑃[(𝐿 < 𝑥𝑗 < 𝐿 + |𝑣𝑗𝑥|𝐷𝑡) AND (𝑣𝑗𝑥 < 0)] is symbolized the probability of the composite fact: "At time t, the 

x-position of the "blue" j-particle is between L and  𝐿 + |𝑣𝑗𝑥|𝐷𝑡  and its x-velocity is negative". Similarly, 

𝑃[(𝐿 > 𝑥𝑗 > 𝐿 − |𝑣𝑗𝑥|𝐷𝑡) AND (𝑣𝑗𝑥 < 0)] is the probability of the composite fact: "At time t, the x-position of the 

"blue" j-particle is between  𝐿 − |𝑣𝑗𝑥|𝐷𝑡 and L, and the value of x-velocity is positive". 

 

The individual facts: "At time t, the x-position of the "blue" j-particle is between  𝐿 − |𝑣𝑗𝑥|𝐷𝑡 and L", and: " At time 

t, the x-velocity of the "blue" j-particle is positive", are mutually independent and time-independent. Hence, given 
that the position distribution of the particles is uniform, we write:  

𝑃[(𝐿 > 𝑥𝑗 > 𝐿 − |𝑣𝑗𝑥|𝐷𝑡) AND (𝑣𝑗𝑥 > 0)] = 𝑃[𝐿 > 𝑥𝑗 > 𝐿 − |𝑣𝑗𝑥|𝐷𝑡] ∙ 𝑃[𝑣𝑗𝑥 > 0] =
|𝑣𝑗𝑥|𝐷𝑡

𝐿
∙

1

2
  

Similarly:  

𝑃[(𝐿 < 𝑥𝑗 < 𝐿 + |𝑣𝑗𝑥|𝐷𝑡) AND (𝑣𝑗𝑥 < 0)] = 𝑃[𝐿 < 𝑥𝑗 < 𝐿 + |𝑣𝑗𝑥|𝐷𝑡] ∙ 𝑃[𝑣𝑗𝑥 < 0] =
|𝑣𝑗𝑥|𝐷𝑡

𝐿
∙

1

2
  

 
The flow of the "blue" particles takes place from D2 to D1 and vice-versa. Assume that:  

D2 

𝑣𝑘𝑦 

𝑣𝑘𝑥 

𝑣𝑗𝑥 

𝐿 − 𝑣𝑘𝑥𝐷𝑡 

y 

N 

M 

𝑟𝑗 = (𝑥𝑗 , 𝑦𝑗) 

O 

L 

L 

𝐿 − 𝑣𝑗𝑥𝐷𝑡 

Figure 4 

x 2L 

D1 

𝑟𝑘 = (𝑥𝑘 , 𝑦𝑘) 

A B 

C 
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𝛥𝑛𝑏1→2 < 0 and 𝛥𝑛𝑏2→1 > 0  

The number of "blues" is constant: 𝑛𝑏1 + 𝑛𝑏2 =
2𝑁

3
; hence the following equation is true:  

𝛥𝑛𝑏2→1 + 𝛥𝑛𝑏2→1 = 0  
Equations 5a and 5b are written as follows:  

𝛥𝑛𝑏1→2 = −
𝐷𝑡

2𝐿
∑ |𝑣𝑗𝑥|

𝑛𝑏1−1
𝑗=0 = −𝑛𝑏1(𝑡)

𝐷𝑡

2𝐿

1

𝑛𝑏1(𝑡)
∑ |𝑣𝑗𝑥|

𝑛1𝑏−1
𝑗=0 = −𝐷𝑡𝑛𝑏1(𝑡)

|𝑣𝑥|

2𝐿
   (5c) 

𝛥𝑛𝑏2→1 = 𝐷𝑡𝑛𝑏2(𝑡)
|𝑣𝑥|

2𝐿
        (5d) 

The mean value of the x-velocities absolute-values is determined by the relations:   

|𝑣𝑥| =
1

𝑛𝑏1
∑ |𝑣𝑗𝑥|

𝑛𝑏1−1
𝑗=0 =

1

𝑛𝑏2
∑ |𝑣𝑗𝑥|

𝑛𝑏2−1
𝑗=0 =

1

𝑁
∑ |𝑣𝑗𝑥|𝑁−1

𝑗=0    

According to 5c and 5d, the variations of the "blues" number in each chamber, at the time interval [𝑡, 𝑡 + 𝐷𝑡) are 
determined by the equations:  

𝑛𝑏1(𝑡 + 𝐷𝑡) = 𝑛𝑏1(𝑡) + (𝛥𝑛𝑏1→2 + 𝛥𝑛𝑏2→1) = 𝑛𝑏1(𝑡) + 𝐷𝑡
|𝑣𝑥|

2𝐿
(−𝑛𝑏1(𝑡) + 𝑛𝑏2(𝑡))   (6a) 

Or:  
𝑑𝑛𝑏1(𝑡)

𝑑𝑡
=

|𝑣𝑥|

2𝐿
(−𝑛𝑏1(𝑡) + 𝑛𝑏2(𝑡))      (6b) 

And: 

𝑛𝑏2(𝑡) =
2𝑁

3
− 𝑛𝑏1(𝑡)      (6c) 

Notice that because of the randomness of the velocity directions after any p-p interaction, the 2D gas does not lose 
its homogeneous and isotropic character with time. The mean value of a vector quantity along some direction is 

independent of the reference frame it is used.  Hence, we can write: |𝑣𝑥| = |𝑣𝑦| , or even: 𝑣𝑥
2 = 𝑣𝑦

2, for every time 

moment t.  
Nevertheless, if the particles' velocity distribution is different from the Maxwell-Boltzmann (M-B), it changes with 
time and converges to the M-B (Boltzmann H-theorem, see references 2 and 3). Hence, in general, the mean values 
of microscopic quantities depend on the velocity distribution, and consequently, on time. They are stabilized 
when velocity distribution becomes identical to the Maxwell-Boltzmann, i.e. when the system obtains the state of 
thermodynamic equilibrium (see "Appendix").  

The consequence of this fact is that |𝑣𝑥| changes with time until the system reaches the state of thermodynamic 

equilibrium. As a result, many difficulties arise with the treatment of differential equations 6, where |𝑣𝑥| appears 

as an unknown function of time. The theoretical value of  |𝑣𝑥|, appearing in equations 6 is calculated in the 
appendix, for two cases: a) when the system has reached the M-B velocity distribution, and b) for the case of the 
step-function distribution.  
In the simulation, at t=0 the system is "near" the state of thermodynamic equilibrium. The velocity magnitude of 
each particle is a random number in the interval [0, 𝑣𝑖𝑛.), where 𝑣𝑖𝑛. is determined by the program for every 
selection of the energy level by the user. This state, although not identical to the thermodynamic equilibrium state, 
it is extremely near to this and moves rapidly to this. A criterion for this "nearness" is the comparison of the actual 

value of |𝑣𝑥|, corresponding to this initial state with the theoretical value of |𝑣𝑥| corresponding to the M-B 
distribution. The user can see both values in the simulation environment for any choice of the initial energy level 
of the system (see also, reference 3).    
 
Variation of the pressure in each chamber with time according to the theoretical model 
Let 𝑃1(𝑡) be the pressure of the 2D-gas in D1 at time t. The pressure is calculated by the total force perpendicular 
to a rigid wall of D1 -say OA in figure 4- exerted by the particles during their collision with this wall at an 
infinitesimal interval [𝑡, 𝑡 + 𝐷𝑡), divided by the length of the wall.   
The force exerted on the wall during the collision of one particle with it is calculated by the 2nd Newton-law. In 
the infinitesimal time-lap Dt, the total force on the wall OA is due to the number of particles that strike on OA in 
the time interval [𝑡, 𝑡 + 𝐷𝑡): 

𝑓(𝑡) = ∑
2𝑚|𝑣𝑗𝑥|

𝐷𝑡
𝑃[(0 < 𝑥𝑗 < |𝑣𝑗𝑥|𝐷𝑡) 𝐴𝑁𝐷 (𝑣𝑗𝑥 < 0)]

𝑛1𝑏+𝑛𝑟−1
𝑗=0 =  

=
2𝑚

𝐷𝑡

1

2
∑ |𝑣𝑗𝑥|

|𝑣𝑗𝑥|𝐷𝑡

𝐿

𝑛𝑏1+𝑛𝑟−1
𝑗=0 =

𝑚

𝐿
(𝑛𝑏1 + 𝑛𝑟)

1

𝑛𝑏1+𝑛𝑟
∑ |𝑣𝑗𝑥|

2𝑛𝑏1+𝑛𝑟−1
𝑗=0 =

𝑚

𝐿
(𝑛𝑏1 + 𝑛𝑟)𝑣𝑥

2    

Hence, 𝑃1(𝑡) is calculated by the analytical expression:  

𝑃1(𝑡) =
𝑓(𝑡)

𝐿
=

𝑚

𝐿2
(𝑛𝑏1(𝑡) + 𝑛𝑟)𝑣𝑥

2     (7a) 
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Similarly, the pressure in D2 is given by the expression:  

𝑃2(𝑡) =
𝑚

𝐿2 𝑛𝑏2(𝑡)𝑣𝑥
2     (7b) 

The mean energy of the 2D-gas is:  

𝐸 =
1

𝑁
∑

1

2
𝑚(𝑣𝑗𝑥

2 + 𝑣𝑗𝑦
2)𝑁−1

𝑗=0 =
1

2
𝑚 (𝑣𝑥

2 + 𝑣𝑦
2) = 𝑚𝑣𝑥

2 = 𝑚𝑣𝑦
2     (8) 

Hence, 7a and 7b can be written as follows: 

𝑃1(𝑡) =
𝐸

𝐿2
(𝑛1𝑏(𝑡) + 𝑛𝑟)     (9a) 

𝑃2(𝑡) =
𝐸

𝐿2 𝑛2𝑏(𝑡)      (9b) 

  
Appendix: Variation of the mean values of microscopic quantities with time, when the 2D gas is not in 

thermodynamic equilibrium 
 
Let 𝑃𝑡[(𝑣 ≤ 𝑉 < 𝑣 + 𝐷𝑣) 𝐴𝑁𝐷 (𝜃 ≤ Θ < 𝜃 + 𝐷𝜃)] be the probability of the event: "At time t, the velocity 
magnitude of any, specific particle of the 2D gas is in the infinitesimal interval [𝑣, 𝑣 + 𝐷𝑣) and the angle of its 
velocity with the x-axis is in [𝜃, 𝜃 + 𝐷𝜃)". Symbolize:  
𝐷𝑛𝑡 = 𝑁𝑡(𝑣 ≤ 𝑉 < 𝑣 + 𝐷𝑣; 𝜃 ≤ Θ < 𝜃 + 𝐷𝜃)  

the number of particles which at time t their velocity magnitudes is in the interval [𝑣, 𝑣 + 𝐷𝑣), and the angles of 
their velocities with the x-axis is in [𝜃, 𝜃 + 𝐷𝜃). For the 2D gas, the following relations hold (see reference 3):  

𝑃𝑡[(𝑣 ≤ 𝑉 < 𝑣 + 𝐷𝑣) 𝐴𝑁𝐷 (𝜃 ≤ Θ < 𝜃 + 𝐷𝜃)] =
1

𝑁
𝐷𝑛𝑡 =

1

2𝜋
𝑝𝑡(𝑣)𝑣𝐷𝑣𝐷𝜃  

The function 𝑝𝑡(𝑣) is called "the velocity distribution density function" at time t. According to the Boltzmann H-
theorem, because of the p-p interactions, 𝑝𝑡(𝑣) converges to the M-B velocity distribution density function 
(reference 3):  

lim
𝑡→+∞

𝑝𝑡(𝑣) = 𝛽𝑚𝑒−𝛽
𝑚𝑣2

2 = 𝑝𝑀𝐵(𝑣)     (A1) 

 

Consider a microscopic quantity q which is a function of the particle velocity: 𝑞𝑗 = 𝑞(𝑣𝑗 , 𝜃𝑗), 𝑗 = 0,1, … 𝑁 − 1 . Its 

mean value at the time moment t is calculated by the equations:  

⟨𝑞⟩ =
1

𝑁
∑ 𝑞(𝑣𝑗 , 𝜃𝑗)𝑁−1

𝑗=0 =
1

2𝜋
∫ 𝑑𝑣 ∫ 𝑑𝜃𝑣𝑝𝑡(𝑣)𝑞(𝑣, 𝜃)

2𝜋

0

+∞

0
    (A2) 

In general, ⟨𝑞⟩ is changing with time until the system reaches the M-B velocity distribution:  
𝑑

𝑑𝑡
⟨𝑞⟩ =

1

2𝜋
∫ 𝑑𝑣 ∫ 𝑑𝜃 𝑣 

𝜕

𝜕𝑡
𝑝𝑡(𝑣) 𝑞(𝑣, 𝜃)

2𝜋

0

+∞

0
      (A3) 

The M-B distribution 𝑝𝑀𝐵(𝑣) determines the stable state of the system and is characterized by the condition:  
𝜕

𝜕𝑡
𝑝𝑀𝐵(𝑣) = 0   

Hence, if the system is at the state of thermodynamic equilibrium, it is true that 
𝜕

𝜕𝑡
⟨𝑞⟩ = 0 for any microscopic 

quantity q. In the present model, there are two exceptions: The mean energy and the mean linear momentum of 
the system are conserved even if the system is not at the state of thermodynamic equilibrium; this is caused by the 
conservation of these quantities along with any p-p interaction. The following conditions are fulfilled, for any time 
moment t:  

𝑑

𝑑𝑡
⟨𝛦⟩ =

1

𝑁

𝑑

𝑑𝑡
∑

1

2
𝑚𝑣𝑗

2𝑁−1
𝑗=0 =

1

2𝜋
∫ 𝑑𝑣 ∫ 𝑑𝜃𝑣

𝜕𝑝𝑡(𝑣)

𝜕𝑡

1

2
𝑚𝑣22𝜋

0

+∞

0
= 0   (A4) 

𝑑

𝑑𝑡
⟨𝑚𝑣𝑥⟩ =

1

𝑁

𝑑

𝑑𝑡
∑

1

2
𝑚𝑣𝑗𝑥

𝑁−1
𝑗=0 =

1

2𝜋
∫ 𝑑𝑣 ∫ 𝑑𝜃𝑣

𝜕𝑝𝑡(𝑣)

𝜕𝑡

1

2
𝑚𝑣𝑥

2𝜋

0

+∞

0
= 0   (A5) 

𝑑

𝑑𝑡
⟨𝑚𝑣𝑦⟩ =

1

𝑁

𝑑

𝑑𝑡
∑

1

2
𝑚𝑣𝑗𝑦

𝑁−1
𝑗=0 =

1

2𝜋
∫ 𝑑𝑣 ∫ 𝑑𝜃𝑣

𝜕𝑝𝑡(𝑣)

𝜕𝑡

1

2
𝑚𝑣𝑦

2𝜋

0

+∞

0
= 0   (A6) 

 
Application for the cases of the step-function distribution and the M-B distribution  
Assume that the initial velocity distribution density function of the 2D gas is a delta function:  
𝑝𝑡=0(𝑣) = 𝐴𝛿(𝑣 − 𝑣𝑖𝑛.)  
The constant A is calculated by the condition:  
1

2𝜋
∫ ∫ 𝐴𝛿(𝑣 − 𝑣𝑖𝑛.)𝑣𝐷𝑣𝐷𝜃

+∞

0
= 1

2𝜋

0
  

It is implied that 𝐴 =
1

𝑣𝑖𝑛.
 and: 𝑝𝑡=0(𝑣) =

1

𝑣𝑖𝑛.
𝛿(𝑣 − 𝑣𝑖𝑛.)  
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The corresponding velocity distribution function is a step-function:   

𝑃𝑡=0(𝑣) = 𝑃[0 ≤ 𝑉 < 𝑣] =
1

2𝜋
∫ ∫

1

𝑁
𝐷𝑛𝑡=0

2𝜋

𝜃=0

𝑣

𝑢=0
=  

=
1

2𝜋
∫ ∫ 𝑝𝑡=0(𝑢)𝑢𝑑𝑢𝑑𝜃

2𝜋

𝜃=0

𝑣

𝑢=0
=

1

𝑣𝑖𝑛.
∫ 𝑢𝛿(𝑢 − 𝑣𝑖𝑛.)𝑑𝑢 =

𝑣

0
  

= {
0 if 𝑣 < 𝑣𝑖𝑛.

1 if 𝑣 ≥ 𝑣𝑖𝑛.
  

That is, the velocity magnitude for every particle at t=0 equals to 𝑣𝑖𝑛.. 
The mean energy of the system, calculated in the state corresponding to the step-function velocity distribution is:  

⟨𝐸⟩ =
1

𝑁
∑

1

2
𝑚𝑣𝑖𝑛.

2𝑁−1
𝑗=0 =

1

2
𝑚𝑣𝑖𝑛.

2  

Or:  

⟨𝐸⟩ =
1

2𝜋
∫ 𝑑𝑣 ∫ 𝑑𝜃𝑣

1

𝑣𝑖𝑛.
𝛿(𝑣 − 𝑣𝑖𝑛.)

1

2
𝑚𝑣22𝜋

0

+∞

0
=

1

2
𝑚𝑣𝑖𝑛.

2    (A7a) 

 
When the system reaches the state of thermodynamic equilibrium, the velocity distribution density function is 
given by A1. The mean energy is calculated by A2:  

⟨𝐸⟩ =
1

2𝜋
∫ 𝑑𝑣 ∫ 𝑑𝜃𝑣𝑚𝛽𝑒−𝛽

1

2
𝑚𝑣2 1

2
𝑚𝑣22𝜋

0

+∞

0
  

One can find that:  

⟨𝐸⟩ =
1

𝛽
                    (A7b) 

 From A7a, A7b, and the energy conservation theorem, it is obtained that:  
1

𝛽
=

1

2
𝑚𝑣𝑖𝑛.

2      (A8) 

The mean absolute value of the x-velocity, contrary to the energy, is not conserved during the system evolved 
from its initial state up to the state of thermodynamic equilibrium.  
In the initial state (corresponding to the step-function velocity distribution):  

|𝑣𝑥|
𝑖𝑛.

=
2

2𝜋
∫ 𝑑𝑣 ∫ 𝑑𝜃𝑣

1

𝑣𝑖𝑛.
𝛿(𝑣 − 𝑣𝑖𝑛.)𝑣 𝑐𝑜𝑠 𝜃

𝜋/2

−𝜋/2

+∞

0
=

2

𝜋
𝑣𝑖𝑛. =

2√2

𝜋
√

⟨𝐸⟩

𝑚
   (A9) 

In the state of thermodynamic equilibrium:  

|𝑣𝑥|
𝑀𝐵

=
2

2𝜋
∫ 𝑑𝑣 ∫ 𝑑𝜃𝑣𝑚𝛽𝑒−𝛽

1

2
𝑚𝑣2

𝑣 𝑐𝑜𝑠 𝜃
𝜋/2

−𝜋/2

+∞

0
= √

2

𝛽𝑚𝜋
= √

2

𝜋
√

⟨𝛦⟩

𝑚
                (A10) 
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Activities 

 

It is given that 𝑁 = 300, 𝑛𝑟 =
𝑁

3
, 𝐿 = 10𝑠𝑖𝑚. 𝑢𝑛𝑖𝑡𝑠   

The user can choose the level of the particles' mean energy E among three alternatives: "low energy" - "mid 
energy" - "high energy".  

 
A) By using the theoretical model, developed in the previous paragraphs, demonstrate that the system reaches 

its state of dynamical equilibrium when the numbers of the "blue" particles in both chambers are equal.  In 
that state, show that the difference of the pressure in D1 and D2 is given by the equation:  

𝑃1𝑒𝑞 − 𝑃2𝑒𝑞 =
𝐸

𝐿2 𝑛𝑟  

Confirm this relation in the virtual environment. Run the simulation successively, for every level of the mean 

energy E.  

B) In the context of the developed theoretical model, demonstrate that the pressure in each chamber converges 
exponentially to the corresponding equilibrium value, with a time-constant calculated by the equation:  

𝜏 =
|𝑣𝑥|

𝐿
   

Run the simulation by selecting successively all the available alternatives of the mean energy E. For every 

case, proceed to an estimation of the time constant value. From this, calculate the corresponding value of |𝑣𝑥|̅̅ ̅̅ ̅.  

Compare the result with the theoretical value of  |𝑣𝑥|̅̅ ̅̅ ̅ displayed by the relative counter in the virtual 
environment of the application.  

 
C) Demonstrate that the "equation of state" of the 2D-gas described in the context of the developed theoretical 

model, is expressed by the equation:  
𝑃𝐿2 = 𝑁𝐸   
P denotes the pressure of the gas in a plane orthogonal container of width L and height L, consisting of N 
particles. E is the mean energy of the particles. Notice that the system is in thermodynamic equilibrium state: 
the particles' velocity distribution is the Maxwell-Boltzmann one. For a 2D gas (see reference 3):  

𝑁𝑀𝐵(𝑣) = 𝑁 (1 − 𝑒−𝛽
𝑚𝑣2

2 )   

The temperature T of the gas is determined by the parameter 𝛽:  
1

𝛽
= 𝑘 ∙ 𝑇, k is a constant depending on the 

system of units. For the case of the 2D gas 𝛽 is related to the mean energy E, by the relation (reference 3):  

𝛽 =
1

𝐸
   

D) Which parameter the user must change in the virtual environment of the simulation, to alter the gas 
temperature? If he manages to increase the temperature, then answer the following questions (demonstrate 
your assumptions).   

a. Does the system reach the state of dynamical equilibrium in less, greater, or the same time? 
b. The absolute value of the final difference of the pressure in D1 and D2 increases, decreases, or 

remains unaltered?   
Check your predictions in the virtual environment of the simulation.  

 
E) Write down your thoughts about the reliability of the model and the functionality of the virtual environment. 

What would you propose to get the model more reliable and the virtual environment more functional?  
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