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The model of the linear oscillator in Special Relativity and Newtonian Mechanics
Kostas Papamichalis Dr. of Theoretical Physics (Athens University - Greece)

Synopsis
In this work, we define, study and simulate the linear oscillator in two contexts: a) Relativistic
Mechanics and b) Newtonian Mechanics. We describe the relativistic and the Newtonian model and
derive the corresponding equations of the motion in an inertial reference frame. The time t in the
Newtonian model is identical with the world time in the relativistic model. The motion differential
equations are expressed with free parameter the common time t. The initial conditions and the
parameters of the oscillator which determine uniquely the motion in each model, have been chosen
so that in the non-relativistic limit the predictions of the Newtonian and the relativistic model are
identical.
The motion of the Newtonian and the relativistic oscillator are simulated in the virtual environment
of the application. The user is free to change the mechanical energy of the system and calculate
the variations to the period and the frequency of the motion caused by his choice. In addition, he
can watch in real time, the time-position and the position-velocity graph and compare the
predictions of each model.
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1. The relativistic model of the linear oscillator(3)
In this paragraph we write the motion differential equations of a particle P, in a Minkowski space,
and we specialize their form in the case of an inertial, Cartesian reference frame (O,x). We
formulate the relation of the P's proper time τ with the world time t of the frame (O,x), and we
write down the motion equations, by using t as the free parameter. We derive the general
constraints that a Minkowski force must satisfy, as well as its form in the case that this force comes
from a scalar potential.
We examine the behaviour of a Minkowski force in the non-relativistic limit and we derive the
relation of the relativistic scalar potential with the corresponding Newtonian potential. Then, we
define the linear oscillator in a certain inertial reference system of coordinates and write down the
differential equations that describe its motion. We compare the predictions of the relativistic model
of the linear oscillator with the corresponding predictions of the Newtonian model.

A relativistic model that describes the motion of a particle P of mass m>0 in a Minkowski space M,
is determined by the analytic expression of the force four-vector K, acting on P. This analytic
expression is specified in a certain reference system (O,x). Then, the world line C of P in (O,x) is a
solution of the differential equations (1,3,5):

 ή: , 0,1,2,3
μ

μΔC ΔCD U D Um Κ m Κ μ
Dτ Dτ

   (1.1)

…where τ symbolizes the proper time and U the four-velocity of P, along its world line C(1,2,3). With
DΔCU, we symbolize the covariant differential(3,4) of the P's four-velocity along the curve C.

In our model, we consider that (O,x) is an inertial, Cartesian system of coordinates(3). The metric
tensor of the Minkowski space-time continuum M with respect to (O,x), is determined by the matrix:

1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

μν
μνη η



 
          
 

 
The infinitesimal interval Δs between two neighboring points of the curve C, with coordinates:
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   0 1 2 3 0 0 1 1 2 2 3 3, , ,  and , , ,Χ x x x x Υ x Δx x Δx x Δx x Δx     

...is calculated by the expressions(1,3,5):
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μν
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vΔs η Δx Δx cΔt Δx Δx Δx cΔt
c

v dx dx dxcΔt γ v v
γ v c dt dt dt



      

       
            

       

(1.2a)

In 1.2a, we have set: 0Δx cΔt where c is the light velocity and t the world time(3,5) in (O,x),
which is being measured by synchronized similar chronometers placed at the space-points of
(O,x)(3,5).
The proper time of P along its world line C, is related with the world time by the equation(1,5):

1
( )

Δτ Δt
γ v

 (1.2b)

In the inertial, Cartesian system (O,x), the covariant differential DΔCU is identical with the
directional differential dΔCU (3,4). Hence: DΔCU=dΔCU.
The components of the four velocity U and its norm are given by the relations:

0( ) , ( ) , ( ) , 1,2,3
μ μ

μ j jdx dxU γ v U γ v c U γ v v j
dτ dt

     (1.3a)

 2 2 2 2, μ ν
μνU U U η U U γ c v v c     

 
(1.3b)

From 1.3b and the motion equations 1.1, we imply that the Minkowski force must satisfy the
conditions:

3
0

1

1, , , 0 , 0, 0
2

j j

j

DU DΚ U m U m U U Κ U K c K v
Dτ Dτ 

 
       

 
 (1.4)

We deduce that the motion of the particle P in the coordinate system (O,x) is described by the
equations 1.1 and the constraints 1.4. We choose as free variable the world time t of (O,x), and we
write:

  0dγ mγc K
dt

 (1.5a)

  , 1,2,3j jdγ mγv K j
dt

  (1.5b)

0μ ν
μνη K U  (1.5c)

In the non-relativistic limit, 1.5b converges to the 2nd law of Newton:

 
2

2

10 , 1,2,3j jv d mv K j
c dt γ

   

The Newtonian force acting on the particle P is related to the Minkowski force with the expression:

2

2
0

1lim , 1,2,3j j

v
c

F K j
γ

 

Minkowski force coming from a scalar potential
In the references 1 and 3 has been shown that with respect to the inertial Cartesian coordinate
system (O,x), any vector field with components :

2

0

1(x) ,

where: (x) and (x) 0

μ
μ μ μ

μ μκ
κ

dUK V Β B U U
dτ c
Β η V V

  

   
(1.6)

...satisfies the restraints 1.4 or 1.5; hence it is eligible to get the role of a Minkowski force. One
can verify the truth of the following equations:
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 

2 2

1 1(x) , (x) ,

(x) , 0

μ μ
μ ν μ μ ν ν μ ν μ ν

μν μν μν μν μν

μ ν μ ν
μν μν

dU dUη K U η V Β B U U U V η U η Β U B U η U U
dτ c dτ c

dV η U U η Β U B U
dτ

 
       

 

   

In the case of a four-force given by 1.6, its time and space components are given by the relations:

 0 1 ( )dΚ γ γV r
c dt

 


 2
1j jk j

k
dK η V γ γV v

c dt
  

...and the motion equations 1.5a, 1.5b take the form:

   2 =constantγ mc V Ε  (1.6a)

2

1 j
j

dγ m V γv V
dt c

      
  

(1.6b)

1.6a declares that the quantity E, which is defined as "the mechanical energy of the system", is
conserved along the world line of P. 1.6b is the generalization of the Newton's 2nd law. In the non-

relativistic limit, i.e. for  2

2 20 και 0
V rv

c mc
 


1.6b converges to the equation:

  ( )
j

j N j
d mv V F
dt

  

...from which, we infer that the analytic form of the function V is the same with the potential
energy of P in the correspondent Newtonian model. According to this remark, we define the
"relativistic oscillator" as the mechanical system which is determined by the following conditions.

Definition of a linear oscillator in a Minkowski space
A) There exists an inertial, Cartesian coordinate coordinate system (O,x) of the Minkowski space M,
such that the motion of a particle P with mass m>0 is determined by the equations 1.6a and 1.6b.

Β) The potential energy V is determined in (O,x) by the analytic expression:

   

2 0 1 2 3

0 1 2 3

1(x)  where: , , , 
2

x , , , , , ,

V kx ct x x x y x z x

x x x x ct x y z

    

 
(1.7)

The time coordinate t is the world time(1,3) in the coordinate system (O,x).

By conditions A and B we infer that the motion equations 1.6a and 1.6b take the form:
2 2 2

2

2 2
2 2

1 ,
2 2

0, 0
2 2

x

y z

d kγ mc kx Ε γ m x γv kx
dt c

d k d kγ m x γv γ m x γv
dt c dt c

            
    

               
      

(1.8)

Assume that the world line of P satisfies the initial conditions:
0 0(0) , (0) , (0) (0) 0x y zx x v v v v    (1.9)

From 1.8 and 1.9, we imply the equations:
2 2

2 2=const., =const.
2 2y y z z
k km x γv C m x γv C
c c

         
   
…and:
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2 2
0 0 0 02 2= (0) 0, = (0) 0

2 2y y z z
k kC m x γ v C m x γ v
c c

         
   

...from which, we deduce that: ( ) ( ) 0y zv t v t  for every t. Hence, the particle P moves on the Ox
axis of the coordinate system and its world line is a solution of the differential equations:

2 21
2

γ mc kx Ε   
 

(1.10a)

2
22 x

d kγ m x γv kx
dt c

      
  

(1.10b)

A further analysis of the oscillator's motion equations
1.10a denotes the conservation of the oscillator's mechanical energy along its world line:

2 2 1/220
2 2

22
0
2

1
1 2 , ( ) 1
2

1

x
x

mc kx vγ mc kx E γ γ v
cv

c

          
   

(1.11)

On the other hand, from 1.10a and 1.10b the following equation is implied:

2
xdvΕ kγ x

mc dt m
  (1.12)

We set:
2

0
222

2 2 22
0
2

1
2 1 1 1

2
1

kx
w w kxmcE mc w γ
mc mc mcv

c

  
         

 

(1.13)

…and we assume that at t=0 it holds: 0 0(0) , (0) 0xx x v v  

From 1.13 and 1.10a we obtain the relation:
2 2

20
2( ) 1 1

2 2x
kx kxw mc γ v

mc
  

        
(1.14)

…and the motion equation 1.12, takes the form:
2 2

2 2

2 2 22
0

2 2

1 1
2 21

1 1
2

x x x

kx kx
dv dv dvw k k kmc mcγ x x x

mc dt m dt m dt mw kx
mc mc

           
            

(1.15)

Remark 1: Let us solve 1.14 for vx2:
22

22

2 22
0

2

1
2

1

1
2

x

kx
mcv

c kx
mc

 
 

  
 

 
 

The max value of vx2 is accomplished for x=0:
2

max
2 22

0
2

11

1
2

v
c kx

mc

 
 

 
 

...from which, it is implied that the condition |vmax|<c is satisfied for every value of the initial

mechanical energy
2

0

2
kxw 
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Remark 2: Again from 1.14, it is deduced that:
22 222

0
2 2 21 1 1

2 2
x kxvkx

mc c mc
   

      
     

from which, we

can confirm that the max value of x is accomplished for vx2=0:
max 0 0 0x x x x x    

Remark 3: For
2

0
2 2 1

2
kxw

mc mc
  equation 1.15 is approximated by the following:

xdv k x
dt m

 

...which is identical with the motion differential equation of a harmonic oscillator in the context of

the Newtonian Mechanics, with frequency: Ν
kω
m



The trajectory of a Newtonian oscillator with initial conditions xN(0)=x0 and vx(0)=0, is determined
by the analytic expression: 0 cosN Νx x ω t

In the followings, we calculate the relativistic correction of the Newtonian path and of its period, in

terms up to the first order of the quantity 2

w
mc

We set:
2

0
2 2 1

2
kxwh

mc mc
  

We assume that the analytic expression of the path in first order of h, which is a solution of 1.15,
with initial conditions 0 0(0) , (0) 0xx x v v   is identified by the function:

 0 cos ( )  όπου: (0) 0 και (0) 0Νx x ω t h f t f f    (1.16a)

     2
0 0sin ( ) , cos ( )1.16a x Ν Ν x Ν Νv x x ω ω t h f t v x x ω ω t h f t            (1.16b)

From 1.14 and the previous relations 1.16a, 1.16b, we obtain the approximate expression:

 
4

2 2 2 2 2
0 0 2

0

3 2
2 2x

k k xv x x h x x
m m x

 
     

 
(1.17)

(Notice that the first term at the right part of 1.17 corresponds to the prediction of the Newtonian
model)

From 1.17 one confirms that for |x|=x0 the velocity vx is zero. Hence, the motion is confined in the
interval [-x0,x0], and it is periodic with period T, which is to be calculated by the equation:

0

0

2
x

xx

dxΤ
v

  (1.18)

By using 1.17, we approximate the integral at the right part of 1.18, as follows:

   
1/2

1/21 2 2

0

1 1 3  where: 
2 4x
m h xv y y y
w x

           
   

(1.18a)

     
1 1

1/2 1/22 2 2
2

0 0

14 1 1 3
4

m wT dy y dy y y
k mc

  
     

 
  (1.18b)

We can easily find the values of the integrals in the right part of 1.18b and conclude to the
expressions:

2
0

2
51  where: 2 2

8 2N N
mxw mΤ T T π π

mc k w
     
 

(1.18c)

1

2 2
2 5 5 21 1  where: 

8 8N N N
Ν

π w w πω ω ω ω
T mc mc Τ


           
   

(1.18d)
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Dependence of the relativistic oscillator differential equations of motion from the
mechanical energy w
The world line of P with initial conditions x(0)=x0, vx(0)=0 and initial mechanical energy w>0, is a
solution of the differential equation:

2
2 2

0
2 2

0
2

1
2

1

x

w x
mc xdv w x

dt mxw
mc


 

  
 

(1.19)

…or, equivalently:

2
0

2

1
( )1

2

x

x

dv w x
dt mx γ vw

mc

 
  
 

(1.20a)

...where (see relation 1.10a):
2

1/2 2 22
0

2

2

1
1 1
( ) 1

x

x

w x
mc xv
wγ v c
mc


 

   
  

(1.20b)

We have set: 2

wh
mc

 Hence, from 1.20a and b we deduce the equations:

 

2

2
0

2 2
0

1
2

1
x

xh
xdv w x

dt mx h


 


(1.20c)

1/222 2
01 /1

1x
h x xv c

h

         
(1.20d)

The period of the oscillation is calculated by the 1.18:
0

0

1/221 2
0

1

2 12 1
1

x

xx

xdx hyΤ dy
v c h




 

          
  (1.20e)

In the non-relativistic limit 2 0wh
mc

   
 

1.20c converges to the equation:

2
0

2xdv w x
dt mx

 

...and by using 1.14, we confirm that: xdv k x
dt m

  which is the well-known motion-equation of a

Newtonian oscillator.

Calculation of the period for extremely large values of the oscillator's mechanical energy
Assume that the mechanical energy w of the relativistic oscillator is much larger than the internal
energy mc2 of the oscillating particle P:

2

w
mc

  In that case, we set:

1

2ορισμ.

wh
mc


   
 

Hence: 2 0w h
mc

   
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We derive the limiting expression of vx, as a function of x, by using 1.20b, and we calculate the
period T, from 1.18:

 

222
1/241/2 22 22 2

00
2 2 2 0

0
2

1
(1.20b) 1 1 lim 1

11
x x

xh

xw x h
xmc xv v xv c

wc c xh
mc



 
                            

 
0 max

0

1
0

1/24
0 0

4(1.18) 2 4
1

x x

x xx

xdx dx dqΤ
v v c q

   


  

The approximate value of the integral at the right part of the previous relation is obtained by using
the app "Geogebra", or by a suitable program of the JavaScript. We find that:

05.24 xT
c

 (1.21)

On the contrary, the period of the motion for extremely large values of the mechanical energy in
the Newtonian model, is given by the relations:

0 0
0 2

12 2 2 2
2 /N

x xm mT π πx π π h
k w c w mc c

   

...Hence, in the limit 0h  it is implied that:

0

0 0
lim lim 2 0Nh h

xT π h
c 

 
  

 
(1.22)

1. Composition of the virtual environment

From 1.2b we deduce the equation:
22

2 22
0

2

2

1
1

1
x

w x
mc xv
wc
mc

 
 

  
  
 

(2.1)

...from which it is implied that the extreme values of the velocity are obtained for x=0; vx takes
values in the interval 0 0,V V   where:

   0 2 22

1 11 1
11 /

V c c
hw mc

   


(2.2)

The equilibrium position of P, is determined by the condition: dvx/dt=0 Hence, from 1.19 it follows
that the the position of the equilibrium is at x=0.

Which is the max displacement of P from its equilibrium position?
From 1.20b, we imply that the extreme values of x are obtained for vx=0:

 
1/222

max max 0 0 02 2 2 2
0

1 1 1 0 ,x
x

vw x w x x v x x x x x
mc x c mc

                    
  

In the virtual environment of the simulation, the initial conditions of the oscillator in both models
are kept fixed: we assume that at t=0, the particle P is placed at the position x=x0 of the axis Ox of
the inertial, Cartesian system (O,x), and its velocity is zero. We simulate the motion of P by using
the world time of (O,x) as the free parameter, and we study the variation of the period of the
motion as a function of the oscillator's mechanical energy w.
For both, the relativistic and the Newtonian model, the graphs of the position versus time and the
velocity versus position are designed in real time. In addition, in the virtual environment the user
will find the graph of the period versus the mechanical energy of the oscillator, for both models,
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that depicts their different predictions. The graph of the velocity versus position in the relativistic
model follows from the energy conservation (relation 2.1):

1/222

2 2
0

2

1
1

1
x

w x
mc xv c
w
mc

  
  
       
   

(2.3)

In the non-relativistic limit 2/ 0w mc  2.3 converges to the corresponding relation predicted by
the Newtonian model:

2 2 2

1/21/2 22 2 2 22
2

2 2 2 22 2
0 020

2
0 0 0

2 2 2 4

21
lim lim 1 lim

21 1
N xw w w

mc mc mc

w x w xw x c
m x m c xmc xv v c c

w w w
mc mc m c

  

                                       

 
2

1/222 2 2 2

2 2 2 2 2 2 2
0 0 2 2

02 2
0 0

2 2 4

2 2
2lim 1

21
w
mc

w w w x w x
m m c m x m c x w x k x x

w w m x m
mc m c



  
               

   
 
 

The last equation is identical with the energy conservation in the Newtonian oscillator:
2 2 2

02 2 2N
m k kv x x 

Arithmetic values - units
In the virtual environment we use the system of atomic units. We have chosen: c=1, m=2000
(approximately the mass of the proton) and x0=10au (atomic units of length).

Calculations - Activities

1. By using the values of the main parameters and the specific features of the virtual environment,
prove that:

a) The period TN of the Newtonian oscillator is given by the expression: 1/244.4NT h where:
h=w/mc2

b) The period TE of the relativistic oscillator, for h<<1, is given by the expression:
1/2 544.4 1

8ET h h    
 

c) For h   the period of the relativistic oscillator tends to the value:
05.24E
xT
c



2. Find the limiting behaviour of the period TN of the Newtonian oscillator for h  

3. Check your previous calculations by running the simulation.
Hint: For the activity 1b set successively: h=0.05, h=0.1, h=0.2. For the activity 1c set
successively: h=3, h=5, h=10 (the value h=10 is the max value of h accepted by the application
and the value h=0.01 the min value)

4. Notice that the shape of the cyclic particle oscillating according to the relativistic model (blue
particle), is changing. Run the simulation and describe how this change takes place. Explain this
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phenomenon in the context of the Special Theory of Relativity, and calculate the variation of the
particle's diameter which is parallel to the x-axis, as a function of the particle's velocity.

Virtual experiments

Experiment 1
Set h=0.1 and run the simulation.
A) By using the window of the virtual motion, the chronometer and the button of the step-evolution,
calculate and write down the value of the period of each oscillator.
B) Calculate and write down the period of each oscillator by using the graphs: a) time-position, b)
position-velocity, c) energy (h)-period (T).
Run the simulation as many times as necessary.
C) Do your calculations agree with each-other? If you notice any inconsistency, repeat the virtual
experiment and try to find out where is the error.

Experiment 2
Repeat the activities A, B, C, mentioned in experiment 1, by setting h=1.

Experiment 3
Repeat the activities A, B, C, mentioned in experiment 1, by setting h=10.
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