
Author: Kostas Papamichalis 

World Lines Transform: the relativistic and the Newtonian point of view 

 

Synopsis 

A particle of mass m is moving in a Minkowski space M with constant spatial velocity, with respect 

to the inertial Cartesian reference system: ( ) ( )0 1 2 3,x , x , , ,O x x x x= . We derive the analytic 

expression of the particle's world line in another inertial Cartesian reference system:  ( ), xO  . We 

do the same for the case that our particle describes a circular uniform motion in the ( ), xO  frame. 

We simulate the motion of the particle for every one of these cases. Then, we repeat this project 

by studying the corresponding transformations of the particle's paths according to the Newtonian 

point of view. The user of the simulation compares the data ensuing in the virtual environment 

of the relativistic and the Newtonian model and writes down his/her conclusions.  
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Paragraph 1: Uniform linear motion in a Minkowski space with respect to two different 

inertial Cartesian reference systems 

 

Consider a four-dimensional Minkowski space M and an inertial Cartesian reference frame ( ), xO  

The points of M are determined by the four-tuples of 4R  through a differentiable function (1,5) 

( )4 4:Φ R Φ R M  The values of Φ  are points of an abstract, real vector space of dimension 

greater or equal to 4. 

At every point P M , the tangent vectors , 0,1,2,3
μ μ
e Φ μ=  =  of M are defined. They form a 

set of basis vectors for the tangent space 
P
Τ Μ  of M at P and given that ( ), xO  is inertial and 

Cartesian, this set is independent of the choice of P M . The basis vectors μ
e determine the 

Minkowski inner product in each tangent space 
P
Τ Μ , according to the relations:  

,
μ ν μν
e e η=  

…where:  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

μν
η

 
 

−   =   −
 

− 

 

The interval Δs  between two infinitesimally close points P and Q of M with coordinates (1,3):  

( ) ( )0 1 2 3 0 0 1 1 2 2 3 3x , , , , x , , ,
P Q

x x x x x Δx x Δx x Δx x Δx= = + + + +  

…is calculated by the equations:  

( ) ( ) ( ) ( )
2 2 2 2

0 1 2 3,μ ν

μ ν
Δs e Δx e Δx Δx Δx Δx Δx= = − − −  

…or, setting: 0 1 2 3, , ,x ct x x x y x z= = = =  

2 2 2 2 2Δs c Δt Δx Δy Δz= − − −  



…where t is the world time measured by all the synchronized clocks setting at the spatial points 

of the inertial system ( ), xO  (2,5). 

Let P be a particle of mass m moving in the Oxy plane of the inertial system ( ), xO  with constant 

(independent of the world time t) spatial velocity ( ), ,0
x y

v v v=  

The world line of P is the image of the coordinate-space-curve:  

x ( ) 1, , ,0yx
P

vv
t ct

c c

 
=  

 
       (1.1) 

…to the Minkowski space M, which is expressed by the composite function: ( )( ) x ( )
P P

Χ t Φ t=  

The infinitesimal interval along the curve 
P
X is calculated by the equation:  

1/2
2

2
, 1
P P

v
Δs ΔΧ ΔΧ cΔt

c

 
= = − 

 
 

The proper time of P is: 
1 1

( )
Δτ Δs Δt

c γ v
= =  

…where: 

1/2
2

2 2

2
( ) 1 ,

x y

v
γ v v v v

c

−

 
= − = + 
 

 

The four-velocity and the four-momentum of P are given by the equations:  

0 1 2
( )

μ
yP P x

P μ

vdX dx v
U e γ v c e e e

dτ dτ c c

 
= = = + + 

 
    (1.2) 

0 1 2 0 1 2
( ) ( ) ( )

P P x y x y

E
P mU e mγ v c e mγ v v e mγ v v e e P e P

c
= = + +  + +   (1.3) 

…where E is the energy of P.  

 

How is the P's world line analytic expression transformed under a homogeneous 

Lorentz transformation? 

Consider a new inertial Cartesian coordinate system ( ), xO   with its axes parallel to the axes of 

( ), xO  The zeroth events of the two systems are identical i.e., if 0, 0,1,2,3μx μ = =  then, it is 

true that 0, 0,1,2,3μx μ= =  

The spatial origin O of ( ), xO -and any point with constant spatial coordinates: 0, 1,2,3jΔx j= =

- is moving along the x-axis of ( ), xO   with velocity 
0 0
:0v v c    

The analytic expression of this coordinate transformation is determined by the equations (5):  
0 0 1 1

0 1 0 1
, , ,ct ct L x L x ct L x L y y z z   = + = + = =     (1.4a) 

0 1 1 0 0
0 1 0 1

cosh , sinh , tanh
v

L L θ L L θ θ
c

= = = = =     (1.4b) 

The world line of O in the ( ), xO   is determined by the parametric equations:  

0 1

0 0 0
, , 0, 0ct ct L x ct L v t y z    = = = = =      (1.4c) 

…where t' is defined as the world time in the coordinate system ( ), xO   

The world line of a fixed space point A in the ( ), xO  with spatial coordinates ( )0 0
, ,0x y , in the 

( ), xO   is determined by the equations:  

0 1

0 1 0 0 1
, , , 0

A A A A A
ct ct x L x v t x L y y z     = + = + = =     (1.4d) 

 

The world line of P in the ( ), xO   frame is accomplished by transforming 1.1 via 1.4a and b:   

0 0 1 1

0 1 0 1
, , , 0x x

P P P y P

v v
ct ct L L x ct L L y v t z

c c

   
   = + = + = =   

   
  (1.5a) 

…or choosing the world time t' as the free parameter:  



( )
( )

0

2

0

0

1 tanh 1

tanh , , 0

xx
P

yx
P x P P

v vv
ct ct θ ct

c c

vv
x ct θ t v v y t z

c γ v

  
  = + = +  

   

 
     = + = + = = 

 

   (1.5b) 

The P's spatial velocity coordinates in the ( ), xO   system, are:  

0

0
2

0
0 2

tanh

tanh
1

, 0

( ) 1

xP x
x

xP x

yP
y z

xP

v vΔx v c θ
v

v vΔt c v θ

c

vΔy
v v

v vΔt
γ v

c

 ++
 = = =

 +
+


 = = =

  
+ 

 

      (1.5c) 

The angle formed by the straight path of P and the x-axis in the ( ), xO   frame is calculated by 

the equation:  

1 1

0 0

1
tan tan

( )

y y

x x

v v
Θ

v γ v v v

− −
   

 = =   
 +   

     (1.5d) 

The corresponding angle in the ( ), xO  frame is: 1tan y

x

v
Θ

v

−
 

=  
 

 

 

Return to the contents. 

 

Paragraph 2: Uniform circular motion in a Minkowski space with respect to two different 

inertial Cartesian reference systems  

 

In the present paragraph, we consider that particle P describes a circular uniform motion with 

respect to the reference frame ( ), xO  The center of the circular path is the spatial point ( )0 0
, ,0x y  

of the reference system ( ), xO  and its radius equals R. The angular velocity ω  of the motion is a 

constant -independent of time.  

The parametric equations and the world line of P are:  

( ) ( )
0 0

( ) cos , ( ) sin , 0

x ( ) , ( ), ( ),0 , ( ) x ( )
P P P

x t x R ωt y t y R ωt z

t ct x t y t X t Φ t M

= + = + =

= = 
    (2.1a) 

sin , cos , 0
x y z

Δx Δy Δz
v Rω ωt v Rω ωt v

Δt Δt Δt
= = − = = = =  

The infinitesimal interval and the proper time along the world line are calculated by the equations:  
22 2 2

2 2 2 2 2 2 2

2 2 2
1 1yx

vv R ω
Δs c Δτ c Δt c Δt

c c c

   
= = − − = −    

  

 

1/2
2 2

2

1
, 1

R ω
Δτ Δt γ

γ c

−

 
= = − 

 
 

Consider the inertial Cartesian coordinate system ( ), xO   related to ( ), xO  with the Lorentz 

transformation 1.4. The world line of P in this coordinate system is expressed as follows:  
0 0 1 1

0 1 0 1
( ), ( )

( ), 0

P P

P P

ct ct L L x t x ct L L x t

y y t z

 = + = +

 = =
     (2.1b) 

…where the analytic expressions of ( ), ( )x t y t  are given by 2.1a. 

The P's spatial velocity coordinates in the ( ), xO   system, are:  

( )1 1

0 1 0

0 0 0
20 1

( ) sin( )

1
1 sin( )( )

P
x

P

Δ ct L L x t v Rω ωtΔx
v

RωvΔt
ωtΔ tL L x t

cc

+ −
 = = =

  
−+ 

 

    (2.1c) 



( )

0 0 0 0
0 1 0 2

( ) cos( )
, 0

1
( ) 1 sin( )

P
y z

P

Δ y tΔy Rω ωt
v v

RωvΔt
Δ tL L x t L ωt

c c


 = = = =

    
+ −   

   

  (2.1d) 

 

Return to the contents. 

 

Paragraph 3: The Newtonian point of view 

 

From the Newtonian point of view, the inertial frames in Cartesian coordinates, are related by the 

Galileo transformations (1,2). Hence, relations 1.5 are written (the index 'P' has been dropped):  

( )0

0

, , , 0

, , 0

x y

x x y y z

t t x v v t y v t z

v v v v v v

   = = + = =

  = + = =
     (3.1) 

Relations 2.1, for the circular uniform motion take the form:  

0

0

, ( ), ( ), 0

sin , cos , 0
x y z

t t x v t x t y y t z

v v Rω ωt v Rω ωt v

   = = + = =

  = − = =
     (3.2) 

 

The user is prompted to study the simulations for each case in the relativistic and the Newtonian 

context, write down the arising data, and form his/her conclusions.  

 

Return to the contents. 
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