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Abstract

Combining multiple ranked lists of items, called voters, into a single consensus list is a popular problem with
significant implications in numerous areas, including Bioinformatics, recommendation systems, metasearch
engines, etc. Multiple recent solutions introduced supervised and unsupervised techniques that try to model
the ordering of the list elements and identify common ranking patterns among the voters. Nevertheless,
these works either require additional information (e.g. the element scores assigned by the voters, or training
data), or they merge similar voters without the evidence that similar voters are important voters. Fur-
thermore, these models are computationally expensive. To overcome these problems, this paper introduces
an unsupervised method that identifies the expert voters, thus enhancing the aggregation performance.
Specifically, we build upon the concept that collective knowledge is superior to the individual preferences.
Therefore, the closer an individual list is to a consensus ranking, the stronger the respective voter is. By
iteratively correcting these distances, we assign converging weights to each voter, leading to a final stable
list. Moreover, to the best of our knowledge, this is the first work that employs these weights not only
to assign scores to the individual elements, but also to determine their population. The proposed model
has been extensively evaluated both with well-established TREC datasets and synthetic ones. The results
demonstrate substantial precision improvements over three baseline and two recent state-of-the-art methods.

Keywords: information retrieval, metasearch, weighted rank aggregation, unsupervised data fusion, rank
aggregation, ranking

1. Introduction

Rank aggregation is a well-studied problem with numerous applications in diverse fields of science,
economy, and society. In general, rank aggregation methods collect individual lists of ranked items from
various sources that may represent entities of any type including users, preferences, products, suggestions,
events, etc. Then, they merge all the input lists into a single aggregate list by applying a data fusion
technique, and they rearrange the elements of the aggregate list to generate an improved consensus ranking.

The problem of rank aggregation was firstly introduced over two centuries ago to satisfy the requirements
of a fair election system, both single and multi-winner (Bartholdi et al., 1989; Kilgour, 2010). Since then,
numerous state-of-the-art approaches have been proposed to confront problems related to Web metasearch
(Akritidis et al., 2011; Wang et al., 2017), Bioinformatics (Chen et al., 2016; Li et al., 2019), Web spam
detection (Dwork et al., 2001), Natural Language Processing (Rosti et al., 2007; Reyes Ayala et al., 2018),
social choice platforms (Caragiannis et al., 2019), collaborative filtering (Chatterjee et al., 2018), and so on.
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Hence, despite it is a fairly old problem, rank aggregation is still challenging for the research community
due to its significant adoption by a multitudinous family of expert systems.

For this reason, the relevant literature includes a large number of supervised and unsupervised solutions to
the problem. The supervised algorithms exhibit two significant drawbacks. First, they require the existence
of training data, a requirement that is frequently expensive and hard to satisfy (Klementiev et al., 2008).
The second issue is that the models learned by the supervised methods do not generalize well; in other words,
they work satisfactorily only on the particular problem in which they have been trained. For instance, a
supervised aggregation model that has been trained on the results of multiple Web search engines to support
a metasearch engine will potentially be ineffective in other types of applications such as Bioinformatics, or
collaborative filtering.

On the other hand, the unsupervised methods do not require training data and do not exhibit the
aforementioned generalization problem, because they always operate on previously unseen data. However,
the absence of training data removes ground truth, and limits the ability for optimization (e.g., minimize
a cost function); this usually leads to suboptimal solutions. The robust unsupervised models overcome
this limitation by employing exploratory analysis techniques, namely, by identifying hidden useful patterns,
structure, and information in the underlying data (Dı́az et al., 2008).

Attracted by the advantages of the unsupervised methods and motivated by i) the importance of the
problem and ii) the challenge of discovering hidden information within the ranked lists themselves, we
introduce an unsupervised method that automatically identifies the experts among a set of voters. Our
research objectives are, firstly, to identify and, subsequently, exploit this valuable information with the aim
of enhancing the quality of the aggregate list.

The majority of the state-of-the-art algorithms in the area are unweighted, that is, they consider that all
voters are of equal importance and treat them equivalently (Aslam & Montague, 2001; Aledo et al., 2021).
Nevertheless, in numerous cases (e.g., in recommender systems), some voters may have a greater knowledge,
or a richer experience about a subject than others. Hence, their opinion (i.e. their rankings) should be
assigned higher weights compared to the rankings of the normal, or irrelevant voters. The unweighted
methods ignore the existence of the expert voters, failing to incorporate this useful information in the
introduced models.

In the context of weighted rank aggregation, Pihur et al. (2007) treated the problem as an optimization
problem and introduced a weighted list distance function. However, this function requires knowledge not
only of the item rankings within the input lists, but also of the individual scores assigned by the voters
to the items. Consequently, this method is inapplicable to scenarios where these scores are not available.
Furthermore, it is computationally very expensive, even for short input lists (Onan & Korukoğlu, 2017).

On the other hand, Chatterjee et al. (2018) proposed a hierarchical algorithm that repeatedly merges the
two closest rankings until a single output list is produced. The weight of each merged list is calculated from
the weights of the two parent lists. A weakness of this approach is revealed when two or more low quality
rankings are very similar. These rankings will be merged early, producing a weighted list that will propagate
to the subsequent list merges. Moreover, the agglomerative methods introduce a cubic time complexity, and
a quadratic space complexity. On the other hand, the majoritarian method of Desarkar et al. (2016) assigns
weights by comparing the item rankings and by counting the number of winners. This work focuses on
metasearch applications that usually involve few short input lists, whereas its computational cost is high.

To overcome these limitations, this paper introduces an unsupervised rank aggregation algorithm that
quantifies the importance of the voters and exploits this information to generate an improved consensus
list. The proposed method initially establishes a converging form for the voter weights. Then, it repeatedly
updates the weights at each iteration by measuring the distances from a temporary aggregate list. The
temporary list is updated at each iteration, leading to a final stable list when the voter weights converge.
Furthermore, we enhance this algorithm by proposing a novel list pruning method that employs the learned
voter weights to adjust the number of items that will participate in the aggregation process.

Our approach builds upon the idea that the important voters can be identified by the quality of their
suggested elements. In the context of rank aggregation, the quality of an element can be determined by
several factors, such as the number of the voters who included it in their submitted lists, its rankings in these
lists, and so on. In other words, the quality of an element is reflected by its position in the final aggregate
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list, because this position depends on the aforementioned factors. This means that the importance of a voter
is connected to the number of the suggested elements that have been placed near the top of the aggregate
list. Then, it is naturally derived that the weight of a voter depends on the distance between the submitted
list and the aggregate list.

The introduced algorithm cures the weaknesses of the aforementioned solutions. In summary, the con-
tributions of this work are:

• We introduce an unsupervised rank aggregation algorithm that automatically quantifies the degree of
expertise of each voter. The proposed method builds upon the concept that the importance of the
voters is reflected by the distance of their submitted lists from the aggregate list. According to the
data analysis that we conducted, this concept is statistically significant.

• In contrast to the score-based methods, the suggested algorithm takes into consideration only the
individual rankings of the elements within the input lists, and does not rely on the element scores, in
opposition to the approach of Pihur et al. (2007). Consequently, its usefulness is broader, since it is
applicable to problems where this additional information (i.e., the individual item scores) is missing.

• Instead of performing pairwise list comparisons, our method updates the voter weights at each iteration,
by measuring the distances between each input list and a temporary aggregate list. This approach
has two important benefits. Firstly, the utilization of a temporary aggregate list allows us to avoid
expensive optimization problems (Pihur et al., 2007; Coppersmith et al., 2010). And, secondly, it is
less prone to local problems that occur when two or more low quality rankings happen to be very
similar.

• To the best of our knowledge, this is the first work to study how the learned weights can be exploited
not only to assign scores to the individual elements, but also to adjust the lengths of the input lists.
This goal is achieved by setting special cut-off points that determine the number of items from each
voter that will be taken into account during aggregation. The rationale is that the low ranked elements
of the less important voters are apparently of small value and should be discarded; otherwise, they
would append undesired noise.

• We also introduce a novel distance function named CODRA (Cosine Distance for Rank Aggregation)
that originates from the well-established cosine similarity metric. We experimentally demonstrate that,
compared to the traditional list correlation measures such as Spearman’s footrule distance, CODRA
yields better results.

• We evaluate the performance of the introduced algorithm by using both synthetic and real datasets
with different attributes (number of voters, list lengths, etc.). The statistical analysis of the data
indicates a significant correlation between the importance of the voters and the distances of their lists
from the aggregate list. Moreover, we demonstrate the superiority over the baseline and competitive
methods.

The rest of the paper is organized as follows: The most important relevant works are presented in Section
2. Section 3 describes the necessary background elements of the problem and establishes the article’s notation
and research objectives, whereas Section 4 analyzes the details of the proposed model for learning the voter
weights. Moreover, in Section 5, two methods for exploiting the weights are proposed, and a list pruning
method based on them is introduced. The results of the experimental evaluation of the model are presented
in Section 6, and discussed in Section 7. Finally, Section 8 summarizes the conclusions of the paper and
provides some insights of our future work.

2. Related Work

The current relevant literature includes a significant number of unsupervised methods that introduce
state-of-the-art solutions to the problem of rank aggregation. These solutions can be classified into several
categories according to the method they apply to perform aggregation.
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More specifically, the score-based methods take into consideration the scores assigned by the voters
themselves to the individual elements of their submitted lists (Amin & Emrouznejad, 2011). Since, in
general, these approaches introduce aggregate scoring functions, their most significant drawback is that
they cannot be applied when the item scores are not provided by the data sources (e.g., Web metasearch,
recommender systems, etc.), or they are assigned in a non uniform fashion.

On the other hand, the positional methods assign scores based solely on the individual rankings of the
examined elements. The most popular positional method is Borda Count (de Borda, 1781), introduced
nearly two centuries ago with the aim of providing an unbiased system for fair elections. It has been used
in numerous applications, ranging from voting platforms to social choice systems and metasearch engines.
In most cases, it has been proved both fast and effective. Hence, it attracted many researchers to further
study its properties (Emerson, 2013). Another group of methods identify Condorcet winners in accordance
to the Condorcet criterion; that is, elements that win (ranked higher than) every other element in the
input lists (De Condorcet, 1785; Montague & Aslam, 2002). The execution of pairwise comparisons between
every element in the dataset leads to a quadratic time complexity, rendering the majoritarian methods
computationally expensive, or even infeasible.

The works of Wang et al. (2017) and Akritidis et al. (2008) studied the problem of rank aggregation
from the perspective of personalized Web metasearch. They both developed effective score functions that
incorporate user-oriented data such as geographic location, language, user interest distribution, and so on.
In addition, Akritidis et al. (2011) introduced QuadRank, a personalized method that takes into account
additional IR features regarding the individual elements themselves. Another work which exploits the meta-
information of the objects to be ranked was presented by Bhowmik & Ghosh (2017). This method augments
the standard approaches and aids the recovery of the “true” rank order. Interestingly, Dwork et al. (2001)
considered the elements of the input lists as states, and employed Markov chains to address the problem.

Additionally, a portion of the relevant research adopted the Kemeny optimal aggregation criterion and
introduced approaches that optimize the average distance between the aggregate list and the input lists
(Ailon et al., 2008; Coppersmith et al., 2010). Notice that Kemeny optimal aggregation is a NP-hard
problem, even when the input lists are few, e.g., 4 (Dwork et al., 2001).

Regarding the applications of rank aggregation in multi-criteria decision making, the method of Samanli-
oglu & Ayağ (2021) employed hesitant fuzzy processes to calculate the criteria weights by using dependence
and feedback interactions. Omidi et al. (2021) applied the technique for order preference by similarity to an
ideal solution (termed TOPSIS) to rank the impact of various climate-related factors on safety performance.
On the other hand, Tseng et al. (2021) proposed a fuzzy Delphi method in combination with a bibliometric
approach that identifies and aggregates several indicators in order to solve supply chain problems.

Similarly to our work, Pihur et al. (2007) took into consideration the weights of the input lists during
rank aggregation. Their optimization problem is based on a weighted variant of Spearman’s footrule distance
that is used to measure the list distances. Nevertheless, this variant requires knowledge not only of the item
rankings within the input lists, but also of the individual scores that the items received by their voters.
Hence, similarly to all score-based methods, its functionality is limited when these scores are not provided.
Moreover, the combinatorial nature of the model renders it prohibitively expensive even for small-sized
datasets (Onan & Korukoğlu, 2017). In contrast to these approaches, the proposed algorithm does not
minimize the distance of the aggregate list from all individual input lists, but only from those that have
been submitted by experts. Moreover, we avoid expensive distance optimizations and propose a converging
form for the voter weights.

The usage of probabilistic models, such as the Mallows models (Mallows, 1957; Lebanon & Lafferty,
2002), on permutations is a common technique encountered in a handful of works. These approaches
compute a distance-based probability for each permutation (Klementiev et al., 2008, 2009), and select the
one that maximizes this probability. Their greatest drawback is their high computational complexity which
is O(n!). The approach of Clémençon & Jakubowicz (2010) employs the Luce model, and uses generalized
Kantorovich distances between rankings. Its O(n6) complexity is also prohibitively high.

The method of Caragiannis et al. (2019) assumes that partial access to an underlying true ranking is
available, and computes a scoring rule with respect to it. By applying this rule to the profile of individual
rankings, an outcome that is as close as possible to the aforementioned true ranking is obtained. Nevertheless,
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since the existence of a ground-truth ranking is necessary, this approach is rather considered as supervised.
Reyes Ayala et al. (2018), used rank aggregation methods to combine the outputs of multiple search engines
with the aim of comparing the performance of three machine translation techniques.

Another state-of-the-art paper employed the popular Bradley-Terry-Luce model, assuming that the pairs
can be selected in a random and non-adaptive fashion (Klementiev et al., 2008). The method of Cohen et al.
(1998) learns a query-independent vector that represents the voter weights, and then, it uses this vector to
perform rank aggregation. Moreover, Farah & Vanderpooten (2007) introduced an outranking approach,
whose operation also depends on pairwise comparisons, accompanied by four user-defined thresholds that
determine the degree of agreement or disagreement between the submitted input lists.

A weighted aggregation algorithm that is related to the proposed one was introduced by Desarkar et al.
(2016). The authors initially consider each input ranking as a preference graph, and derive the aggregate list
by aggregating these preference graphs. Simultaneously, the voter weights are determined by checking the
truth of several rules, based on pairwise comparisons between the list elements. As a majoritarian algorithm,
this method has a quadratic time complexity. In addition, it does not examine how the computed weights
can be further exploited. In contrast, we study the possibility of introducing a list pruning mechanism that
increases the performance substantially in many cases.

Inspired by the theory of clustering algorithms, the study of Chatterjee et al. (2018) introduced a weighted
aggregation algorithm that works similarly to agglomerative clustering. Initially, the two closest input lists
are merged. The resultant list is assigned a weight that derives from the weights of the parent lists. The
process continues by merging the two closest lists at each step, until a single output list is produced. As an
agglomerative method, the introduced time complexity is cubic, whereas the space complexity is quadratic
to the number of the lists. Moreover, while in clustering the objective is, indeed, to discover the most similar
elements, in rank aggregation we are primarily interested in reducing the distance from a consensus ranking.

From the perspective of clustering, it would be more suitable to adopt an algorithm that minimizes the
distances from a temporary artificial point that progressively moves towards an “optimal” place. Such a
strategy would be in agreement with the Kemeny optimal aggregation criterion (Ailon et al., 2008; Cop-
persmith et al., 2010) and the optimization problem of Pihur et al. (2007). One may easily distinguish the
similarity between this description and k-Means. Our proposed algorithm imitates k-Means to a degree,
since it creates a temporary aggregate list that is modified in an iterative fashion, until its distances from
all the input lists converge. Of course, in clustering, the primary goal is to group together similar elements,
and, to achieve that purpose, multiple clusters are created. In rank aggregation, we build a single list based
on the agreement or disagreement degree among the individual voters.

This paper is an extension of the preliminary unsupervised distance-based model that has been introduced
by Akritidis et al. (2019). This preliminary model is further enhanced in this work by the following aspects:

• The learned weights are applied not only to modify the rankings of the input elements, but also to
determine the number of results per voter that shall be utilized to build the aggregate list. The exper-
iments on the effectiveness of this pruning method indicate substantial gains in retrieval effectiveness.

• It utilizes a variant of the popular cosine similarity measure to determine the list-wise distances in a
more robust manner. Initially, the ranked lists are converted to weighted vectors according to several
criteria, and, in the sequel, the cosine measure is employed to compute their distance.

• The iterative weight computation is improved by checking the convergence of the weight of each voter
individually. Therefore, if the weight of a voter has converged, the execution flow ignores him/her, and
continues with the next one. This action saves the redundant weight calculations of Akritidis et al.
(2019), thus leading to enhanced efficiency.

• Additional experiments are conducted to attest the usefulness of the introduced model. The validity of
the presented results is verified and strengthened by the selection of the test datasets. Some of them are
synthetic ones, while the rest originate from the well-known TREC conference and are accompanied by
human judgments on the relevance of the submitted items; so, effectiveness measurements are rendered
both reliable and reproducible.
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Figure 1: The execution flow of an unweighted rank aggregation algorithm.

3. Overview and Notation

In this section, we present the basic theoretical elements of the article, and we review the most popular
distance metrics for full and partial lists. We also introduce a novel measure that treats the ranked lists as
weighted vectors, and employs cosine similarity to determine their distance.

3.1. Preliminary Elements

The problem of rank aggregation considers a set V of n sources, also called voters, or rankers. Each
voter v ∈ V accepts a query q and generates an ordered list Rv = {rv1 , . . . , rvk} of k = |Rv| items in response
to q. We call the Rv lists of the voters as input lists. The items in the input lists are arranged in decreasing
importance, or relevance order. In other words, the first item is considered as the most important (or the
most relevant) one, the second one is less important than the first one, and so on.

Apart from the items themselves, a voter may submit an additional score for each item. This value
reflects the importance of an item, and justifies its position in the list. In this work, we consider that
the items in the input lists are not accompanied by any score and that their ranking is the only available
information. In this context, the proposed method is more general compared to the score-based methods,
or the methods that require this information.

The notation rvi denotes the ith item in the input list of v. In addition, we assume that all the items of
the input lists are retrieved from a common universe U . A list that contains all the items of U is called a
full list, or permutation; otherwise, it is a partial list. A top-k list is a partial list that contains the k most
important items of U w.r.t. q. Notice that the proposed model operates on both full and partial lists.

Fig. 1 depicts an non-weighted rank aggregation method T that is fed with n ranked lists. Initially,
T merges the input lists by eliminating their overlapping elements. The output of this process is a single
aggregate list L = {r1, r2, . . . }, ri ∈ U that has its items ordered according to the fusion algorithm and
several additional criteria. On its simplest form, T considers that all voters are equivalent, therefore, their
lists are processed in an identical manner. Then, L is determined by the following operation:

L = T
(
Rv1 , Rv2 , . . . , Rvn

)
. (1)

In contrast, the weighted methods assign a weight wv to each voter v. This value reflects the significance
of the voter, and/or his/her trustworthiness, and/or his/her degree of expertise on a particular subject. In
this case, T accepts both the input lists Rv and the aforementioned weights, and generates the aggregate
list L in the following fashion:

L = T
(
wv1 , wv2 , . . . , wvn , R

v1 , Rv2 , . . . , Rvn
)
. (2)

The execution flow of a typical weighted rank aggregation method that implements Eq. 2 is illustrated in
Figure 2.
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Figure 2: The execution flow of a typical weighted rank aggregation algorithm. The weighting module
determines the voter weights and passes them to the aggregator T to satisfy Eq. 2.

3.2. Research Questions, Objectives, and Framework

The primary objective of rank aggregation research is the design of algorithms that improve the quality
of the aggregate list L. Combining this goal with Fig. 2, the following research questions can be stated:

• How can the weighting module of Fig. 2 learn the importance of each voter in an unsupervised manner?

• Which mechanism better quantifies the voter importance while it simultaneously avoids the disadvan-
tages of the current solutions, namely: i) the pairwise item comparisons of the majoritarian methods
(Desarkar et al., 2016), ii) the pairwise list merges of the agglomerative algorithms (Chatterjee et al.,
2018), and iii) the usage of the scores of the individual elements (which are frequently unknown)?

• How can the aggregation method T exploit the learned voter weights to improve the quality of the
consensus ranking?

• Does the current literature provide all the necessary tools to achieve our research objectives?

These issues establish the research objectives of this article. In summary, the proposed method is
inspired by the Kemeny optimal aggregation criterion and the optimization problem of Pihur et al. (2007)
that determine an aggregate list by minimizing its distance from the input lists. Apparently, the distance of
an input list from the aggregate list is indicative of its quality. Nonetheless, the optimization is frequently
a very expensive procedure, whereas the algorithm of Pihur et al. (2007) requires knowledge of not only the
the item rankings, but also their individual scores. Consequently, a more robust solution is required.

The research questions and objectives outline the contributions of this paper and have been used as a
guideline for designing our research framework. Initially, since the list distances are a central tool in our
approach, we examine the properties of the traditional functions, and we set an additional question/objective:

• Are the established list distance functions sufficient to achieve our objectives? Can we discover their
weak points and introduce a more robust metric?

In this work, we introduce CODRA, a novel measure that quantifies the distance between two ranked lists.
In contrast to the existing metrics, CODRA treats the ranked lists as vectors, and employs well-established
vector similarity metrics such as cosine similarity.

In the sequel, we develop an unsupervised model that assigns distance-dependent weights to the voters.
During this procedure, it is imperative that we avoid the three drawbacks that have been mentioned in the
second question. The research framework requires the introduction of a converging kernel function that will
progressively assign large (small) weights to the lists that are close to (away from) the aggregate list.

In the next phase, we examine additional strategies to exploit the learned weights. To the best of our
knowledge, this work is the first to investigate such strategies. More specifically, the rationale is:
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Domain Aggregation of Implications/Benefits

Politics, society Ballots Fair elections
E-commerce Recommender systems Increased profits, sales, traffic, user satisfaction
E-commerce, society User reviews/opinions Correct & targetted purchases, user satisfaction
Bioinformatics Gene sequences Enhanced models, more effective treatments
Machine learning Classifier outputs Ensemble models, enhanced classification accuracy
Information retrieval Search engine results Improved retrieval effectiveness, user satisfaction

Table 1: Broad implications and benefits of rank aggregation.

• Should a weak voter contribute the same number of elements in the aggregate list as a strong one?

For this purpose, we introduce a simple yet effective weight-dependent list pruning strategy that imple-
ments the aforementioned idea. According to it, the important voters (i.e., voters with high weights) deserve
to contribute more elements to the aggregate list compared to the irrelevant ones. This policy increases
the probability that more qualitative elements will be present in the consensus ranking, thus improving the
performance of the proposed algorithm.

The above discussion is aligned to the theoretical and methodological contributions enlisted in Section 1.
Now, let us elaborate the broader implications of this work. Nowadays, rank aggregation methods are utilized
extensively in numerous scientific, societal and industrial applications. Undoubtedly, the introduction of a
novel method that improves the current state-of-the-art leads to significant implications to these domains.
Table 1 includes some indicative areas that will benefit from the application of the proposed method.

3.3. Distance Measures

The core of the proposed method includes the computation of the distance d(Rv, L) between each input
list Rv from the aggregate list L. Here, we review the most popular metrics that have been proposed in
the relevant literature for computing these distances. For simplicity reasons, and without loss of generality,
we shall drop the exponent v from Rv in this subsection. The simplified notation R refers to a ranked list
submitted by any voter.

If the input lists are permutations of k items, then L is also a full list, and the distance between R and L
can be computed by using standard metrics. One such metric is the Spearman footrule distance DF , defined
by the following equation:

dF (R,L) =

k∑
j=1

|j − lj |, (3)

where j and lj are the rankings of rj in R and L, respectively. The distance of Eq. 3 is usually used on its
normalized form, which derives by dividing dF (R,L) by k2/2.

Another popular distance metric is Kendall’s τ , which counts the number of pairwise disagreements
between two lists. In other words, it is the minimum number of pairwise adjacent transpositions that are
required to transform one permutation into the other:

τ = dK(R,L) =
2

n(n− 1)

∑
i<j

sgn(i− j)sgn(li − lj), (4)

where sgn(x) is the sign function with outputs 1, 0, and −1, when x > 0, x = 0, and x < 0, respectively.
If the individual lists R of the voters are not permutations but top-k lists, then only L is a full list.

In this case, R and L have different lengths, and the aforementioned distance metrics are used in their
scaled versions, based on the sizes of the involved lists. For example, the scaled footrule distance (SFD) is
computed by using the following formula:

dSFD(R,L) =

k∑
j=1

∣∣∣∣ jk − lj
|L|

∣∣∣∣, (5)
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that can be normalized by dividing the distance of Eq. 5 by k/2.

3.4. Weighted Cosine Distance

The aforementioned distance metrics are well-established and have been utilized by many researches on
rank aggregation. Nevertheless, in several cases, their performance may become problematic for reasons
that are explained below. The following list provides some illustrative examples.

• When it is applied on input lists of different lengths, SFD favors the short lists. In other words, it
erroneously considers that the short lists are closer to L compared to similar but longer lists. This
issue mostly occurs when the voters submit partial lists of variable lengths, a situation that is quite
common in applications related to Web metasearch.

Example 1. Consider a list L = {a, b, c, d, e} that has been generated by the aggregation of multiple
input lists. Let R(1) = {c, d, e} and R(2) = {c, d, e, a, b} be two of these lists. Observe that R(1)

comprises only 3 items. On the other hand, R(2) enlists the same 3 items in the same positions as
R(1), and, moreover, it accommodates two additional elements (a and b), that also exist in L. In other
words, R(2) has all its items in common with L and, intuitively, it is closer to L compared to R(1).
According to Eq. 5, the scaled footrule distances of the two lists from L are dSFD(R(1), L) = |1/3 −
3/5|+|2/3−4/5|+|3/3−5/5| = 0.4 and dSFD(R(2), L) = (|1−3|+|2−4|+|3−5|+|4−1|+|5−2|)/5 = 2.4.
That is, dSFD(R(2), L) > dSFD(R(1), L). Even if we employ the normalized forms of these distances
by dividing them with k/2, we get dSFD(R(1), L) = 0.267, and dSFD(R(2), L) = 0.96. Consequently,
the issue is not resolved by normalization.

• The previous example highlights another problem of SFD: namely, the assignment of very high dis-
tances to seemingly similar lists. For instance, the normalized SFD of R(2) from L was found equal to
0.96, a value that indicates that R(2) and L are almost completely unrelated. Nevertheless, this is not
true according to the discussion of Example 1.

For these reasons, we devised a different strategy for the computation of the distance between two ranked
lists L and R. More specifically, each item of L and R is initially assigned a ranking-dependent weight β; we
shall provide more details on this procedure shortly. Then, the ranked lists can be expressed as vectors of

these weights. Specifically, λ =
(
β
(L)
1 , β

(L)
2 , . . .

)
, and ρ =

(
β
(R)
1 , β

(R)
2 , . . .

)
, where β

(v)
i represents the weight

of the ith element of list v. Notice that each element in a ranked list is transformed to a vector component
which lies in a dimensional space that identifies U . Therefore, the number of the non-zero components of
the resulting vector equals the number of the corresponding list items.

After the transformation of the ranked lists to vectors, their distance can be computed by using any of the
well-established vector similarity/distance metrics, such as cosine similarity, Jaccard index, and Sørensen-
Dice coefficient. For example, in the case of cosine similarity, the distance is calculated by applying the
following equation:

dCS(R,L) = 1− ρ · λ
||ρ|| ||λ||

= 1−
∑k

i=1 β
(R)
i β

(L)
y√∑k

i=1

(
β
(R)
i

)2√∑|L|
i=1

(
β
(L)
i

)2 , (6)

where y denotes the ranking of the ith item of R in the aggregate list L. We name this distance metric
CODRA (Cosine Distance for Rank Aggregation).

Now, we focus on the determination of the weights of the components of ρ and λ. A first approach to

this problem is to use the inverse ranking of each item as a weight, i.e., β
(v)
i = 1/i. This approach rewards

the highly ranked elements, since the higher their ranking, the greater their weight. With this setting, the
vectors of the lists of Example 1 are ρ(1) = ĵc +0.5ĵd +0.33ĵe = (0, 0, 1, 0.5, 0.33), ρ(2) = 0.25ĵa +0.2ĵb + ĵc +

0.5ĵd + 0.33ĵe = (0.25, 0.2, 1, 0.5, 0.33), and λ = ĵa + 0.5ĵb + 0.33ĵc + 0.25ĵd + 0.2ĵe = (1, 0.5, 0.33, 0.25, 0.2),

with ĵx the basis vector corresponding to x.
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However, in practice, this assignment method is proved rather inappropriate. The reason is that it will
assign high cosine similarities (namely, small distances) to pairs of lists that exhibit numerous disagreements
but have in common only a few highly ranked elements. The following example highlights this problem.

Example 2. Consider three lists, R(1) = {a, b, c, d}, R(2) = {e, f, g, h}, and L = {a, f, g, h}. R(1) shares
only its top element with L, whereas R(2) has all its items in common with L apart from the first one. Appar-
ently, R(2) is closer to L than R(1) is. If we applied the aforementioned strategy for setting the item weights

(i.e., β
(v)
i = 1/i), the corresponding vectors of these lists would written as ρ(1) = (1, 0.5, 0.33, 0.25, 0, 0, 0, 0),

ρ(2) = (0, 0, 0, 0, 1, 0.5, 0.33, 0.25), and λ = (1, 0, 0, 0, 0, 0.5, 0.33, 0.25). From Eq. 6 we compute the distances
dCS(R(1), L) = 1 − 1/2.08 ' 0.52, and dCS(R(2), L) = 1 − 0.42/2.08 ' 0.80. Consequently, we erroneously
find that R(1) is much closer to L than R(2) actually is.

To confront the problems mentioned in the above examples, we apply a different strategy for the assign-
ment of weights to the items of R in L. More specifically, we set:

β
(R)
i =

{
1/i, if item ∈ R ∩ L
0, otherwise

(7), and β
(L)
i =

{
log(10 + i− 1), if item ∈ R ∩ L
0, otherwise

(8)

In this way, we assign large weights to the highly ranked items of R; the higher the ranking of an item
in R, the greater its weight is. In contrast, for the elements of L, the weights decay slowly, in a logarithmic
fashion, as the rankings increase. Now, let us examine how this approach cures the problems that were
presented in the Examples 1 and 2.

Example 3. Example 1: Following our previous discussion, the vectors of the lists of this example are
written as ρ(1) = ĵc + 0.5ĵd + 0.33ĵe = (0, 0, 1, 0.5, 0.33), ρ(2) = 0.25ĵa + 0.2ĵb + ĉ + 0.5ĵd + 0.33ĵe =

(0.25, 0.2, 1, 0.5, 0.33), and λ = log 10ĵa + log 11ĵb + log 12ĉ + log 13ĵd + log 14ê ' (1, 1.04, 1.08, 1.11, 1.15).
Their corresponding magnitudes are ||ρ(1)|| ' 1.17, ||ρ(2)|| ' 1.21, and ||λ|| ' 2.41. According to Eq. 6,
the cosine distances of the two lists R(1) and R(2) from L are dCS(R(1), L) = 1 − 2.01/2.82 ' 0.29 and
dCS(R(2), L) = 1 − 2.47/2.91 ' 0.15. Consequently, the proposed distance metric correctly identifies that
R(2) is more proximal to L than R(1) is, in contrast to SFD.

Example 2: Here the distances according to the proposed metric are dCS(R(1), L) = 1 − 1/2.4 ' 0.58
and dCS(R(2), L) = 1 − 2.235/2.4 ' 0.07. That is, R(2) is much closer to L than R(1) is. This outcome
demonstrates the capability of our metric to effectively handle the lists that present many disagreements, but
have in common only a few highly ranked elements.

We conclude the presentation of CODRA with two useful remarks. First, notice that the values returned
by Eq. 6 fall into the range [0, 1]. Consequently, there is no need for normalizing the computed distances.
The second remark concerns the integer argument of the logarithm in Eq. 8. This was a deliberate choice,
since the computation of the logarithm during runtime is an expensive operation. To improve the efficiency
of this metric, in our implementation we pre-computed the values of several thousands of logarithms and
stored them in a perfect hash table H, so that H(i) = log(10+ i−1). With this table, we are able to quickly
retrieve the weight of the ith element of L by simply accessing H(i).

4. Learning the Voter Weights

In this section, we present our distance-based model for the unsupervised computation of the voter
weights in rank aggregation problems. Initially, a preliminary 2-phase approach is introduced in Subsection
4.1. In the sequel, Subsection 4.2 extends this approach and transforms it into a generic iterative algorithm
for the determination of converging values for the weights. In the following analysis, we shall restore the
exponent v in the Rv notation to distinguish the ranked lists submitted by different voters.
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Figure 3: The execution flow of our proposed iterative weighted algorithm. The temporary aggregate list
is repeatedly “corrected” by recomputing its distances from the input lists. Then, the voter weights are
updated accordingly to construct a new temporary list. When the voter weights converge, the temporary
aggregate list becomes the output of the algorithm.

4.1. Preliminary 2-phase Approach

Let us consider that a query q is submitted to the previously introduced set V of n voters. The voters
respond by generating n ranked lists of answers, which are later aggregated by a method T , and a consensus
list L is eventually formed. According to our previous discussion, if the distance between a single input list
Rv and L is small, then these lists are similar. This means that many of the top answers of v have also been
included near the top of L, and, also, these answers have been submitted by multiple other voters. This, in
turn, reveals that the answers of v are of high informational value and, consequently, v is either an expert
on this specific subject or at least has a satisfactory perception of this particular query.

The aforementioned observations establish the basis of the proposed distance-based model. The idea is
to assign a voter v a weight wv according to the distance d(Rv, L) between the list of answers Rv and L.
More specifically, our method operates by assigning higher weights to the important voters, i.e., those whose
input lists are in close proximity to L, and lower weights to those who are less important.

This logic is implemented by a preliminary approach that consists of two phases. Initially, a draft
output list L0 is created by applying any of the well-known rank aggregation methods encountered in the
relevant literature. This method operates in a non weighted fashion. So, it treats all voters equally without
considering any weights (Eq. 1). Next, during the second phase, the distances d(Rv, L0) between all input
lists Rv and L0 are calculated by using one of the distance metrics presented in Subsection 3.3. The computed
distances are then utilized to modify the weight of each voter. Finally, T is re-executed on its weighted form
(Eq. 2), and another list L1 is obtained.

The changes in the voter weights are determined by a kernel function f that incorporates the aforemen-
tioned distances. We shall shortly discuss its form and its desired properties. In short, the equation that
employs f to quantify the weights modification is defined as follows:

wv,1 = wv,0 + f
(
d(Rv, L0)

)
, (9)

where wv,0 and wv,1 denote the initial and the updated weights of v, respectively. The weights wv,0 can be
initialized by employing an arbitrary fixed value (e.g., 0, 1, 1/n, etc.). In the experimental evaluation we
set wv,0 = 1, since this initial value leads to a slightly improved performance.

4.2. Iterative Approach

The interesting point in the aforementioned 2-phase approach is that it can be extended and transformed
into a generic, iterative process. Figure 3 depicts the block diagram of the proposed architecture. In this
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context, the weights of Eq. 9 are rewritten in the following form:

wv,i = wv,i−1 + f
(
d(Rv, Li−1)

)
, i ∈ N∗, (10)

where i denotes the ith iteration. Similarly to the preliminary 2-phase approach, the voters are initially
assigned equal weights, wv,0. Therefore, T is initially applied in a standard non weighted fashion.

Regarding the kernel function f , it must fulfil two requirements. The first one dictates that f
(
d(Rv,

L)
)
≤ f

(
d(Rv′

, L)
)

for d(Rv, L) ≥ d(Rv′
, L), and vice versa. In other words, f must return a large value

for small distances between an input list Rv and L, and vice versa. Under this condition, it follows that
Eq. 10 will assign higher (lower) weights to the lists having smaller (greater) distances from the aggregate
list L. The second requirement concerns the limitation of the returned value of f by an upper bound.
Without this limitation, the weights of Eq. 10 would grow infinitely large. To avoid the introduction of a
hyper-parameter, or setting a hard limit in an ad-hoc manner, we opted for a converging form for f so that
its returned values are asymptotically upper bounded.

We experimented with a large number of functions that possess these two properties. We concluded to
the simple exponential function because: i) this form has been previously used by other popular distance-
based methods such as the Mallows model (Mallows, 1957) and its extensions (Lebanon & Lafferty, 2002);
and ii) it achieved the highest performance amongst multiple candidate functions. Consequently, we define
f as follows:

f
(
d(Rv, L)

)
= exp

(
− i · d(Rv, L)

)
, (11)

where, as previously, i represents the ith iteration. Its presence in the exponent of Eq. 11 guarantees the
convergence of the weights, because, as it increases over time, the value of f decreases exponentially.

Now, if we plug Eq. 11 into Eq. 10, we acquire the final iterative form for the weights of the voters:

wv,i = wv,i−1 + exp
(
− i · d(Rv, Li−1)

)
, i ∈ N∗. (12)

Eq. 12 can be easily rewritten as an equivalent form of partial sums, so that the voter weight at the ith

iteration wv,i is connected to the initial weight wv,0:

wv,i = wv,0 +

i∑
j=1

exp
(
− j · d(Rv, Lj−1)

)
, i ∈ N∗. (13)

After the computation of the weights of Eq. 12 during an iteration i, the distance values d(Rv, Li) may
increase for some voters and decrease for some others. Regarding the latter, this decrease may lead the
algorithm to perform more iterations to reach convergence. To make Eq. 12 more stable, instead of using
the raw distance values d(Rv, Li), we employ their normalized versions, as described in Subsection 3.3. On
the other hand, recall that CODRA is free of this requirement, since its produced distances fall into the
range [0, 1] by default.

The execution of the proposed method is described in Algorithm 1. The process employs a small set of
temporary, auxiliary variables that control the flow of the algorithm. Specifically, converged is a bit array
of length n, whose bits are all initialized to zero. During the iterative procedure, the vth bit of converged is
set equal to 1 if and only if the weight of the vth voter has converged. The identification of convergence is
achieved by employing two temporary variables w′v and wv that store the weights of v during the previous
and the current iteration, respectively. If their difference gets smaller than a predefined threshold prec, then
we assume that the weight of v has converged, and we set converged[v] = 1. The last auxiliary variable is
allconverged, and determines whether all the voter weights have converged to their final values. It becomes
true if converged[v] = 1,∀v ∈ V .

The algorithm begins by initializing all bits of converged to 0 and assigning all voters identical weights
equal to w′v = 1/n,∀v ∈ V (steps 2–5). Next, a non weighted rank aggregation method T is employed to
generate the initial aggregate list L (step 6). The current iteration is monitored with the aim of the assistant
counter i; its value is updated at the beginning of each iteration (step 10) and it is plugged later into the
equation that determines the voter weights (step 15).
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Algorithm 1: Distance-based iterative algorithm for weight computation

1 initialize an empty aggregate list L;
2 for each voter v ∈ V do
3 w′v ← 1/|V |;
4 converged [v] ← false;

5 end

6 L← T
(
Rv1 , Rv2 , . . . , Rvn

)
(Eq. 1);

7 i← 0;
8 allconverged← false;
9 while not allconverged do

10 i← i+ 1;
11 allconverged← true;
12 for each voter v ∈ V do
13 if converged[v] = false then
14 compute d(Rv, L) (Eq. 3, 4, 5);

15 wv ← w′v + exp
(
− i · d(Rv, L)

)
(Eq. 12);

16 if wv − w′v > prec then
17 allconverged← false;
18 else
19 converged [v] ← true;
20 end

21 end

22 end

23 L← T
(
wv1 , . . . , wvn , R

v1 , . . . , Rvn
)

(Eq. 2);
24 for each voter v ∈ V do
25 w′v ← wv;
26 end

27 end

The main part of the algorithm consists of two nested loops. The main loop (steps 9–27) is responsible
for performing the iterations, and controls the main execution flow. Its exit condition is triggered when
allconverged is set equal to true, that is, when the weights of all voters have converged to their final values
and no change in L is possible hereafter. Before its start, allconverged is set to false (step 8). Then, it is
immediately switched to true before each iteration; it will remain true if and only if all the values of bit array
converged are equal to 1. At that instance, the algorithm assumes that convergence has been achieved, and
the execution flow exits the outer loop.

The inner loop (steps 12–22) modifies the weights, and updates the aforementioned bit array converged.
In particular, for each voter v ∈ V , the normalized distance d(Rv, L) of the input list Rv from the current
aggregate list L is computed (steps 14–15). In the sequel, the new weight wv of the voter v is calculated
according to Eq. 12. In steps 16–20, the algorithm checks the difference between the newly computed weight
of v with the previous one (wv − w′v). If it is found smaller than prec, converged[v] is set equal to 1; the
condition of step 13 guarantees that wv will never be modified again. When the weights of all voters have
converged, the weighted version of T is employed, and a new aggregate list L derives according to Eq. 2
(step 24). The current iteration ends by overwriting the previous voter weights with the newly computed
ones (steps 24–26) to allow a new check for convergence during the next iteration.

In overall, Algorithm 1 needs nit|V | distance and (nit+1) aggregate list computations, where nit denotes
the number of iterations. As it is exhibited in Section 6, nit primarily depends on the selected distance metric
and, on average, it takes values that can be characterized from small to moderate.

Notice how the proposed algorithm satisfies the research objectives that were set in Subsection 3.2.
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First, in contrast to the score-based methods, it is independent of the scores that an item may (or may
not) be assigned by its voter (Pihur et al., 2007). Second, it operates by computing the distances of all
input lists from the aggregate list. Therefore, contrary to the agglomerative method of Chatterjee et al.
(2018) that performs pairwise list merges, it complies with the spirit of Kemeny optimal aggregation and
the optimization problem of Pihur et al. (2007). It also maintains another advantage over these approaches,
since it does not solve expensive optimization problems. Instead, it adopts an iterative style. Finally, it is
not a majoritarian method, so it avoids the quadratic complexity of these algorithms (Desarkar et al., 2016).

5. Using the Computed Voter Weights

In this section, we explore two strategies for exploiting the computed weights, with the aim of improving
the effectiveness of rank aggregation. The first one dictates that the weights directly modify the ranking,
and, consequently, the score of each element according to the aggregation method T . The second strategy
determines the number of elements from each input list that will be considered during aggregation.

5.1. Ranking Modification

The issue of weights utilization in rank aggregation problems is not new and has been previously inves-
tigated by multiple researchers. The relevant works have shown that. if such weights are assigned to the
voters correctly, then considerable benefits in retrieval effectiveness can be achieved (Desarkar et al., 2016).

In this work we also adopt this strategy with the aim of implementing the essence of a weighted method,
as stated by Eq. 2. Initially, the weights can be used in T , either in their raw form (namely, as they derive
by Eq. 12), or normalized by using a standard normalization technique like min-max scaling:

w′v =
wv − wv,min

wv,max − wv,min
. (14)

Then, if T is a positional method (e.g., Borda Count), its weighted version merely replaces the plain ranking
j of an item rvj within a list Rv by the product j · w′v. For example, if an item has been ranked 2nd, 5th,

and 7th in three top-10 lists, then its non-weighted Borda Score is 8 + 5 + 3 = 16. Now, if the normalized
weights of the first, second, and third voters are 0.2, 0.3, and 0.4, respectively, then the weighted Borda
score becomes 0.2 · 8 + 0.3 · 5 + 0.4 · 3 = 4.3. The same modification is applicable to other rank aggregation
methods, like the Outranking Approach of Farah & Vanderpooten (2007).

On the other hand, in order-based methods, such as the Condorcet method, the weights can be used to
modify the number of wins of each element. That is, instead of increasing the number of wins by 1 each
time an element dominates over another, the weighted version increases it by a quantity that depends on
the weight wv of the voter v. A straightforward approach would be to increase the number of wins not by
1, but by wv.

Regarding the probabilistic methods for rank aggregation, in some cases, the weight of a voter is incor-
porated within the proposed models themselves, whereas in others, it can be used as a parameter to these
models. For instance, the Mallows model defines the probability that a voter v generates a permutation π
of the elements of U according to the following equation (Mallows, 1957):

p(π|wv, R
v) =

1

Z(wv, Rv)
exp(wvd(π,Rv)), (15)

where Z(wv, R
v) is a normalizing factor, and wv ≤ 0 is called the dispersion parameter. As it increases,

the probability distribution becomes more concentrated at Rv. Therefore, it could represent the weight of
v. Similar approaches for the weights are also valid for some of the extended Mallows models, including the
one presented by Lebanon & Lafferty (2002). In this method, the free parameters θ represent the degree of
expertise of the voters.

These remarks establish one of the basic properties of the proposed model: by directly modifying the
rankings of the elements or the number of wins, the proposed algorithm can be applied in conjunction with
the majority of the existing rank aggregation methods. In addition, the computed weights can be applied
as parameters to the most successful probabilistic models and enhance their performance.
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Algorithm 2: Input list pruning

1 for each voter v ∈ V do
2 initialize an empty list Rv

P ;
3 compute Cv (Eq. 16);
4 for each element rvi ∈ Rv do
5 if i ≤ Cv then
6 Rv

P ← Rv
P + {rvi };

7 end

8 end

9 end

10 L← T
(
w′v1 , . . . , w

′
vn , R

v1

P , . . . , R
vn

P

)
(Eq. 2);

5.2. Input List Pruning

Now, let us study a new possibility for exploiting the weights of the voters to further enhance the
aggregation quality. In short, the idea is to discard a certain amount of the low ranked elements of the
voters, and perform the aggregation on the resultant lists. The rationale is that the elements with low
rankings are assumed to be of smaller importance compared to those with higher rankings. To extend this
rationale, the elements that both have low rankings and are proposed by voters with small weights are of
even smaller importance. Consequently, their integration in the aggregate list may degrade its quality.

The aforementioned logic provides the motivation for the application of a list pruning technique with
respect to the voter weights. This process is initiated after the computation of the final, converged voter
weights; that is, after Algorithm 1 has been completed. At that point, a cut-off value is set for each input
list Rv, according to the following equation:

Cv = (δ1 + δ2w
′
v)k, (16)

where k = |Rv| is the number of elements in Rv, and w′v ∈ [0, 1] represents the normalized weight of v.
Furthermore, δ1 ∈ [0, 1] and δ2 ∈ [0, 1− δ1] are two constant parameters; their usefulness will be explained
shortly. The computed cut-off point also serves as a reference point. More specifically, the elements rvi ∈ Rv

whose ranking i exceeds Cv are removed from Rv. The result of this process is a new, pruned list Rv
P . In

the sequel, the weighted aggregation method T is reapplied on these pruned lists, and the final aggregate
list is constructed, as indicated by Eq. 2.

Before we proceed with the detailed presentation of the pruning algorithm, let us examine the roles of
the two parameters δ1 and δ2. The first one determines the minimum number of items of Rv that will be
copied to Rv

P . In other words, δ1 represents the minimum length of Rv
P . Its usefulness is to prevent the

pruned lists of the voters who have been assigned very small weights from including no, or very few items.
Regarding δ2, its role is to regulate the importance of the weights of the voters in the amount of pruning.
In particular, if δ2 is selected to be large, then Cv shall also be large; therefore, the number of the pruned
items will be small. The opposite statement is also valid.

According to Eq. 16, the value of the cut-off point in an input list Rv depends on the importance of the
corresponding voter v. For important voters, who have been assigned high weights, the value of Cv will be
greater compared to the cut-off points of the unimportant voters. In addition, notice that the parenthesized
quantity always falls into the range [0, 1]. This means that, essentially, Eq. 16 computes a percentage of the
length of the original input list. In the extreme case of δ1 = 1, we get that δ2 = 0; consequently, no pruning
takes place.

The steps of the pruning process are presented in Algorithm 2. Initially, for each voter v ∈ V , an empty
pruned list Rv

P is initialized (step 2) and the cut-off point Cv is computed by utilizing Eq. 16 (step 3). Next,
all the elements of the original input list Rv, whose rankings are lower than Cv, are inserted to Rv

P (steps
4–8). Finally, after the construction of the pruned lists of all voters, the weighted rank aggregation method
T is applied on them, and a final aggregate list L is obtained (step 10).
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6. Experimental Evaluation

In this section the experimental evaluation of the proposed methods is analyzed. The presentation is
organized as follows: In Subsection 6.1 the experimental setup is described, including the state-of-the-art
methods that are used for comparison, the utilized datasets, and the employed precision evaluation metrics.
Subsection 6.2 provides a statistical proof of the correctness of the key idea, which states that “the distance
between the ranked list of a voter and the aggregate list is a strong indication of the importance of this voter”.
A performance analysis against the fluctuations of the parameters δ1 and δ2 is conducted in Subsection 6.3.
The statistical significance of the obtained results through the execution of the Friedman and Wilcoxon tests
is discussed in Subsection 6.4, whereas the effectiveness of the model is attested in Subsection 6.5.

All the experiments have been conducted on a workstation equipped with 32GB of RAM, and a single
CoreI7 7700 processor with frequency equal to 3.6GHz.

6.1. Datasets, Competitive Methods, and Evaluation Metrics

Text Retrieval Conference1 (TREC) is a reputable and reliable source of datasets for a wide range of
tasks, related to the broad research areas of IR and Data Mining. In this work, we have utilized 9 datasets
originating from TREC. To minimize the random effects that would distort our results, we gathered data
from 3 different TREC tasks, spanning 9 years (i.e., from 2009 to 2017). In summary, we used data from:

• The Adhoc tasks of the Web Tracks of 6 TREC conferences, organized between 2009 and 2014. These
datasets are abbreviated WA-XX, where XX denotes the two trailing digits of the corresponding year;

• Two Clinical Decision Support (CDS-XX) tasks from TREC 2014 and 2015; and

• The Abstracts task of the Precision Medicine Track of TREC 2017 (PMA-17).

In the aforementioned tasks, the organizers release a set of queries and ask from the participant groups to
submit ranked lists of results as responses to these queries. The submissions of the groups are subsequently
evaluated by computing several measures, based on relevance judgments made by human judges. The
relevance judgments are made publicly available by the organizers. In most cases, the participant groups
are free to submit arbitrarily long lists. Nevertheless, in this work, we have restricted the size of all input
lists to 1000 elements to keep the running times of all methods within reasonable limits. This constraint
was necessary especially for the majoritarian methods that perform pairwise comparisons between all the
included list elements, such as the Condorcet method.

The TREC datasets satisfy most of the requirements for fairly evaluating rank aggregation methods.
Their main characteristics, along with their abbreviation in this article, are presented in Table 2. The
third, fourth, and fifth columns represent the number of topics, voters (n), and items in each input list
(k), respectively. In the last column, we briefly annotate each dataset. From these annotations it becomes
apparent that, although the TREC datasets are fair and reliable, they only cover scenarios where the input
lists are long and the number of voters is moderate to large.

To enhance the generalizability of the experiments, we created 6 additional synthetic datasets that
represent diverse scenarios2. The names of the synthetic datasets are in the form of XXYY, where XX and
YY denote the number of voters and the length of the participating lists, respectively.

More specifically, FELO (Few Long lists), FESO (Few Short lists), and FEMO (Few Moderate lists)
represent the cases where a small number of voters submit lists with many, few, and moderate number
of elements, respectively. FELO and FEMO are indicative in ensemble machine learning models, where a
limited number of component algorithms are evaluated by using different measures and the best algorithm
is chosen. On the other hand, MASO (Many Short lists) and MAMO (Many Moderate lists) are common
in scenarios where a large number of voters submit short, or medium-sized lists. Such cases are frequent

1http://trec.nist.gov
2A Github repository of the dataset generator tool can be found at https://github.com/lakritidis/RASDaGen
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Track/Task Abbr. Topics n k Attributes

Web/Adhoc - TREC 2009 WA-09 50 61 1000 Moderate number of long lists
Web/Adhoc - TREC 2010 WA-10 50 56 1000 Moderate number of long lists
Web/Adhoc - TREC 2011 WA-11 50 62 1000 Moderate number of long lists
Web/Adhoc - TREC 2012 WA-12 50 48 1000 Moderate number of long lists
Web/Adhoc - TREC 2013 WA-13 50 61 1000 Moderate number of long lists
Web/Adhoc - TREC 2014 WA-14 50 30 1000 Moderate number of long lists
Clinical Decision Support - TREC 2014 CDS-14 30 102 1000 Many long lists
Clinical Decision Support - TREC 2015 CDS-15 30 103 1000 Many long lists
Precision Medicine Abstr. - TREC 2017 PMA-17 30 125 1000 Many long lists

MASO - Synthetic MASO 20 1000 30 Many short lists
MAMO - Synthetic MAMO 20 1000 100 Many lists of moderate length
FESO - Synthetic FESO 20 10 30 Few short lists
FEMO - Synthetic FEMO 20 10 100 Few lists of moderate length
FELO - Synthetic FELO 20 10 1000 Few long lists
MOSO - Synthetic MOSO 20 50 30 Moderate number of short lists

Table 2: The characteristics of the utilized datasets.

in recommendation systems and crowdsourcing platforms, where a huge number of users express their
opinion on a fixed set of subjects (products, events, etc.). Moreover, the datasets that include long lists (i.e.
FELO, CDS-14/15, PMA-17) are representative of bioinformatics applications. Consequently, in comparison
to other competitive approaches that are targetted to only specific domains (e.g. recommender systems,
metasearching, or bioinformatics), the performance of our proposed algorithms is tested on a much broader
field of applications.

Now, let us describe the aggregation methods that have been implemented for the requirements of the
tests. Three of the most popular rank aggregation methods were employed to evaluate the performance of
the proposed model, namely: i) Borda Count (BC), ii) the Condorcet method (CM), and iii) the Outranking
approach (OA) of Farah & Vanderpooten (2007). For each of these methods we created four test cases:

• The original non-weighted aggregation methods, namely, BC, CM, and OA. These constitute the
baseline methods to which the proposed model is compared.

• The application of Algorithm 1 to each baseline method, in combination with the CODRA distance
metric, introduced in Subsection 3.4, and without list pruning. We will refer to these methods as
YY-CODRA, where YY is replaced by BC, CM, and OA, w.r.t. the employed aggregation method.

• The application of Algorithm 1 to each baseline method, in combination with the scaled footrule
distance metric (SFD), also without list pruning. These scenarios provide the bases for evaluating the
performance of CODRA, and will be called as YY-SFD, similarly to the previous methods.

• The application of Algorithm 1 to each baseline method, in combination with the CODRA distance
metric and accompanied by the proposed list pruning strategy (Algorithm 2). These methods are
abbreviated as YY-LP, where YY receives the aforementioned values BC, CM, or OA, whereas LP
stands for “List Pruning”.

In addition, we implemented two recent unsupervised weighted rank aggregation algorithms with the aim
of comparing our model to the state-of-the-art solutions of the relevant literature. In particular, we imple-
mented the Preference Relation Method (PRF) of Desarkar et al. (2016) and the Agglomerative Aggregation
Method (AAM), a variant of the method of Chatterjee et al. (2018). Regarding the hyper-parameters of the
competitive methods, we applied the values suggested in the respective studies, namely: i) for Outranking
Approach, the preference and veto thresholds were tuned to the 0% and 75% of the aggregate list lengths,
ii) for PRF, we set α = β = 0.5, and iii) for AAM, we set c1 = 2.5 and c2 = 1.5. Notice that Chatterjee
et al. (2018) describe a weight initialization technique based on the comparison of each voter opinion with
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the pairwise majority votes. However, the quadratic space complexity of this strategy renders AAM not
applicable to the TREC datasets, because the total number of items in all input lists is in the scale of many
tens of thousands. For this reason, we implemented a variant that assigns equal initial weights to the voters.

We close this subsection with a brief description of the metrics that were used for evaluating the retrieval
effectiveness of the involved methods. Precision is among the most popular metrics, and it is measured at
specific points of the aggregate list. Therefore, the notation P@X denotes the Precision at the Xth element
of the list; that is, the number of relevant items that were ranked in the first X positions of the list, divided
by X. Mean Average Precision (MAP) is another measure that has been broadly used in the literature.
Given a set of |Q| queries, MAP is defined as the mean of the average precision scores:

MAP =
1

|Q|

|Q|∑
q=1

P (q) =
1

|Q|

|Q|∑
q=1

1

|Relq|

|L|∑
k=1

rel(lk)P@k, (17)

where P (q) and |Relq| represent the average precision and the total number of relevant documents of a query
q, respectively, P@k is the precision value at the kth position of the aggregate list L, and rel(lk) is a binary
function which returns 1 if and only if lk ∈ L is relevant to q, else, its value is 0.

Furthermore, the normalized discounted cumulative gain (nDCG) is another popular evaluation metric,
defined by the ratio:

nDCG@k =
DCG@k

iDCG@k
, (18)

where

DCG@k =

|L|∑
k=1

2rel(lk) − 1

log2(k + 1)
, (19)

and iDCG@k is the value of the ideal DCG@k, which is obtained by sorting the aggregate list L in decreasing
relevance scores of its elements and computing DCG at the kth position of that ideal list.

6.2. Proof of Concept

The experimental analysis of the model begins with a statistical study on the correctness of its funda-
mental element. Namely, the statement that the distance between an input ranked list of a voter and the
aggregate list indicates the importance of this voter. Since the proposed model is designed on top of this
statement, the examination of its significance is crucial.

For each query of each dataset of Table 2, our methodology dictates the construction of two ranked lists:

• The first one contains all the voters sorted in decreasing MAP order. We call this list as the Real
Experts List (REL), because, for each query, it enlists the voters according to how relevant their
submitted results were. REL was constructed with the assistance of the TREC relevance judgments.
Thus, it reflects the real performance of the voters, and this justifies the term “real”.

• The second list is called the Computed Experts List (CEL), and, for each query, it includes the same
voters as the corresponding REL, ordered in increasing distance of their lists distance from the aggre-
gate list L. The list L was obtained by using any of the aforementioned aggregation methods, whereas
the distances were computed by utilizing either SFD or CODRA. Hence, CEL has on its top the voter
whose submitted list has the smallest distance from L, followed by the rest of the voters.

To examine the correctness of the model, we investigate the correlation between REL and CEL. If REL
and CEL are indeed correlated, then that would provide an adequate evidence of the relation between MAP
(namely, the ranking criterion of REL), and the distance of R from L (namely, the ranking criterion of
CEL). A commonly employed method to measure the correlation between two ranked lists is Spearman’s ρ,
defined by the following equation:

ρ = 1− 6

n(n2 − 1)

∑
∀v∈V

(
zvREL − zvCEL

)2
, (20)
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Dataset
Borda Count Condorcet Method Outranking Approach

SFD CODRA SFD CODRA SFD CODRA

WA-09 0.238 (0.203) 0.476 (0.098) 0.201 (0.231) 0.457 (0.091) 0.228 (0.207) 0.537 (0.064)
WA-10 0.333 (0.087) 0.471 (0.094) 0.227 (0.179) 0.467 (0.098) 0.240 (0.178) 0.482 (0.082)
WA-11 0.254 (0.170) 0.337 (0.106) 0.211 (0.258) 0.373 (0.101) 0.114 (0.226) 0.175 (0.141)
WA-12 0.061 (0.353) 0.245 (0.120) 0.028 (0.355) 0.254 (0.111) 0.017 (0.350) 0.196 (0.165)
WA-13 0.088 (0.306) 0.164 (0.192) 0.053 (0.304) 0.172 (0.140) 0.031 (0.309) 0.081 (0.258)
WA-14 0.237 (0.266) 0.269 (0.197) 0.196 (0.290) 0.274 (0.188) 0.141 (0.302) 0.214 (0.268)
CDS-14 0.479 (0.041) 0.510 (0.055) 0.496 (0.026) 0.503 (0.060) 0.455 (0.055) 0.478 (0.042)
CDS-15 0.397 (0.079) 0.470 (0.028) 0.380 (0.075) 0.487 (0.030) 0.357 (0.082) 0.437 (0.019)
PMA-17 0.491 (0.002) 0.617 (0.003) 0.473 (0.005) 0.627 (0.007) 0.422 (0.019) 0.606 (<0.001)

Table 3: Ranking correlation between REL, which arranges the voters in decreasing MAP order, and CEL,
which enlists the authors in increasing distance of their submitted ranked list from the aggregate list. The
correlation is measured by using Spearman’s ρ. High values of ρ indicate a statistically significant connection
between distance and performance. The parenthesized numbers denote the respective p-values. Namely, the
probability of obtaining these test results given that the null hypothesis (ρ = 0) is correct.

where zvREL and zvCEL denote the ranking of v in REL and CEL, respectively. In short, if ρ → 1, then
the two variables (namely, MAP and distance) are highly correlated; that is, the precision tends to increase
when the distance from the aggregate list L decreases. In contrast, when ρ → −1, the two variables are
fully opposed, whereas a value of ρ → 0 indicates that there is no tendency for the performance to either
increase or decrease when the list distance increases.

Table 3 contains the values of ρ for all datasets and aggregation methods. The cor.test method of
the R language was employed to obtain these values. For each method, two values of ρ were measured,
according to the metric that was used to compute the distance between an input list and the aggregate list.
The parenthesized numbers denote the respective p-values, that quantify the statistical significance of our
measurements3.

The results demonstrate the ability of the proposed model to identify the most important voters. In
particular, for Borda Count in combination with CODRA, ρ received values between roughly 0.16 and 0.62.
In 5 out of the 9 datasets, ρ was near or above 0.5, a value that is considered satisfactory, given that the
respective p-values are all lower than 0.1. In contrast, in the WA-12, WA-13, and WA-14 datasets, the
value of ρ was considerably lower. This indicates a clear tendency for the performance to increase when the
distance from the aggregate list L decreases. Consequently, the introduced strategy to assign high weights
to the voters whose ranked lists are proximal to L is proven solid.

Furthermore, the values of ρ that were obtained by using SFD were lower than those achieved by using
CODRA. The greatest difference was observed in the WA-12 dataset, where the value of ρ of CODRA was
more than 4 times greater than that of SFD. However, the statistical significance of this measurement was
not so high in this case, since p-value was roughly 0.353. Other remarkable differences were also observed
in WA-09 and WA-10, where CODRA outperformed SFD by more than two times. Consequently, our
introduced distance metric was proved to be more effective than the well-established footrule distance in
identifying the important voters. As we will discuss shortly in Subsection 6.5, this effectiveness leads to
substantial improvements in the quality of the generated aggregate list.

Similar results were obtained by applying the other two methods, i.e., the Condorcet method and the
Outranking approach. Regarding the first method, the measured values of ρ for CM-CODRA were very
close to those of BC-CODRA. This is also valid for the associated p-values. Nevertheless, in some cases, ρ
for CM-SFD was much lower than that of BC-SFD. This was particularly true for the WA-12 and WA-13

3p-value represents the probability of observing the same results as the real ones, under the assumption that the null
hypothesis is valid. In our case, the null hypothesis states the statistical independence of the voters’ performance and the
distance of their submitted lists from the computed aggregate list. Consequently, the lower the p-value, the stronger the
statistical significance of the measured ρ values.
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Figure 4: Scatter plots of the real vs. computed ranking of the voters for the 9 TREC and the 6 synthetic
datasets of Table 2. The plots concern the 12th query from each dataset. Each dot represents a voter;
the vertical and horizontal coordinates of each dot denote the real and the computed rankings of the
corresponding voter respectively. The values of the Spearman’s ρ is reported in the title of each diagram.
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datasets. In contrast, the values of ρ for OA-CODRA were in general considerably lower than the respective
of BC-CODRA and CM-CODRA, with only two exceptions, namely, WA-09 and WA-10. This partially
justifies the worse retrieval effectiveness of OA compared to BC and CM, as we discuss in Subsection 6.5.

Figure 4 provides a visual sample of the correlation between the performance of the voters and the
distance of their submitted lists from the aggregate list. More specifically, it contains 15 scatter plots of the
real vs. the computed rankings of the voters for one random query selected from each one of the 9 TREC,
and the 6 synthetic datasets. Unfortunately, due to space restrictions,it is impossible to present such scatter
plots for all six involved aggregation methods; that is, 3 YY-CODRA and 3 YY-SFD and for all 510 queries
of the 15 datasets. Nevertheless, to provide an indicative visual sample, we have randomly selected the 12th

query from each dataset and executed BC-CODRA to generate the voter rankings.
The top-left scatter plot of Figure 4 concerns the twelfth query of WA-09. Each dot in the plot represents

a voter, and, according to Table 2, there are 61 such dots in the diagram. The vertical co-ordinate of each
dot denotes the real ranking of the voter, as this derives from the calculation of MAP in this query. On the
other hand, the horizontal co-ordinate of each dot is the ranking of the corresponding voter, obtained by
the computation of the distance of the submitted input list from the aggregate list. The aggregate list was
constructed by using BC, whereas the distance was measured with CODRA. On the horizontal axis, we also
report the value of Spearman’s ρ for this particular query.

The scatter plots, in general, reveal a significant association between distance and performance, visu-
alizing a monotonic relation of these two variables. Regarding the TREC datasets, the positive monotone
increasing relation is obvious on six out of nine cases (namely, WA-09, WA-10, WA-11, CDS-14, CDS-15, and
PMA-17). Therefore, the tendency of retrieval effectiveness, in terms of MAP, to increase as the distance
from the aggregate list decreases is also apparent. Especially for the WA-09, WA-10, and PMA-17 datasets,
the high value of Spearman’s ρ is remarkable. Regarding the rest 3 diagrams that correspond to the WA-12,
WA-13, and WA-14 datasets, the correlation between the performance and the distance of the input lists
from L is not equally strong, although the differences in the values of Spearman’s ρ are not very high. This
indicates that, for these three queries, the distance of the input lists from L alone may not be sufficient to
precisely predict the performance of the voters.

Similar results were obtained for the six synthetic datasets. More specifically, on FESO, FEMO, and
FELO (diagrams 12, 13, and 14 of Fig. 4 respectively), the Spearman’s ρ value was particularly high and
the correlation between performance and the distance of the input lists from L was visually verified. On
the other three datasets, the strength of this correlation was also significant, albeit smaller than the one
that was observed on the first three cases. On the MAMO dataset, although the value of ρ = 0.528 was
satisfactory, the existence of 1000 dots on the respective diagram renders the visual inspection quite hard.

6.3. Parameter Tuning

In this subsection, we examine the assignment of values to the parameters that govern the proposed
model. We begin with prec, a tolerance parameter that checks the convergence of the voter weights in
Algorithm 1. Recall that, at each iteration, all the weights are compared with the respective ones from
the previous iteration. In our experiments, we consider that the convergence is achieved as long as all the
weights agree at the third decimal digit. Consequently, we set prec = 10−3. Lower values of prec lead to a
greater number of iterations, with practically infinitesimal performance gains.

We proceed with the examination of the performance of the proposed pruning method against the
fluctuations of the parameters δ1 and δ2 of Eq. 16. Recall that these parameters control the placement of
the cutoff points in the input ranked lists according to Algorithm 2. Therefore, they essentially determine
the size of the pruned lists. The goal of this experiment was to investigate the effectiveness of the proposed
pruning policy and its dependence on the values of these parameters.

More specifically, we measured the retrieval effectiveness of the model by simultaneously modifying δ1
and δ2 as follows: Initially, δ1 was gradually increased from 0.1 to 0.9 by taking steps of 0.1 each time.
At each step, δ2 was also modified in the range [0.1, 1 − δ1], and for each pair of (δ1, δ2) values, the MAP
achieved by the model was recorded. Three TREC and one synthetic datasets were randomly selected for
this purpose, namely, WA-12, WA-14, CDS-15, and FESO. Then, the pruning algorithm was applied in
combination with either BC-DOBRA, or CM-DOBRA, or OA-DOBRA.
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Figure 5: Performance fluctuation (in terms of Mean Average Precision) of the model’s pruning policy
against the parameters δ1 and δ2, for various methods and datasets (reported in the horizontal axis). The
“hotter” points indicate better performance.

methods, these values of δ1 and δ2 concern the utilized datasets with the characteristics of Table 2. For
other types of datasets, with more or fewer voters and longer or shorter input lists, the values of these
parameters may vary significantly.

6.4. Statistical Significance

6.5. Performance Evaluation

In this subsection we investigate the overall usefulness of the proposed model. Since it is not a stan-
dalone method but operates in combination with the existing rank aggregation methods, there are primarily
two points of research. The first one concerns the magnitude of the benefits in retrieval effectiveness, in
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Figure 5: Performance fluctuation (in terms of Mean Average Precision) of the model’s pruning policy
against the parameters δ1 and δ2, for various methods and datasets (reported in the horizontal axis). The
“hotter” points indicate better performance.

The results are illustrated in the 12 triangular “heat maps” of Fig.5. Each row in the figure represents
the execution of a different rank aggregation method; specifically, BC-LP, CM-LP, and OA-LP, for columns
1–4, respectively. The details are shown in the label of the horizontal axis of each diagram.

Regarding the 3 TREC datasets, the 9 heat maps of the first 3 columns reveal that for each dataset and
each aggregation method, the best performance was achieved for small values of δ1 and δ2. More specifically,
the “hotter” areas were observed for δ1 = 0.1 to 0.2, and, similarly, δ2 = 0.1 to 0.2. In some cases, MAP is
also high for values of δ1 and δ2 that are equal to 0.3, or even 0.4. Nevertheless, the results were different
for the “small” FESO dataset. In this case, the highest precision was achieved for δ1 = 0.5 and δ2 = 0.1.

The first conclusion that derives from this experiment is that on the examined TREC datasets, large
amounts of pruning lead to better results, independently of the employed aggregation method. More specifi-
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AAM BC
BC- BC- BC-

CM
CM- CM- CM-

OA
OA- OA- OA-

COD LP SFD COD LP SFD COD LP SFD
BC 7.2e-4
BCCODRA 6.1e-5 6.1e-5
BCLP 6.1e-5 6.1e-4 2.1e-2
BCSFD 6.1e-5 2.7e-2 1.2e-3 2.0e-3
CM 7.2e-4 6.0e-1 2.1e-3 1.5e-3 1.6e-1
CMCODRA 6.1e-5 4.1e-3 4.7e-1 4.1e-3 3.8e-1 3.4e-3
CMLP 6.1e-5 3.3e-2 5.9e-1 2.7e-3 2.1e-1 4.3e-3 1.4e-1
CMSFD 6.1e-5 7.3e-2 4.3e-3 6.1e-4 8.8e-1 6.9e-2 1.6e-2 6.4e-2
OA 6.1e-5 4.7e-3 6.1e-5 8.5e-4 2.2e-3 5.5e-2 2.6e-3 1.3e-2 1.1e-2
OACODRA 6.1e-5 3.5e-2 1.3e-3 2.2e-3 4.9e-3 1.9e-1 7.6e-3 4.8e-2 5.0e-2 2.1e-2
OALP 6.1e-5 2.7e-1 3.1e-4 3.1e-4 6.5e-2 2.5e-1 1.5e-3 4.3e-3 2.5e-2 4.5e-2 7.3e-2
OASFD 6.1e-5 4.5e-2 2.2e-3 3.8e-3 3.4e-3 2.1e-1 1.0e-2 6.5e-2 2.6e-2 6.8e-2 2.2e-1 6.5e-2
PRF 1.5e-1 3.8e-2 1.8e-2 1.5e-2 3.3e-2 4.8e-2 2.9e-2 3.5e-2 4.1e-2 3.8e-2 3.8e-2 1.1e-2 4.8e-2

Table 4: Post hoc statistical analysis of the performance of the attested algorithms with the Wilcoxon
signed-rank test.

cally, the setting δ1 = 0.1 guarantees that all input lists will retain at least 10% of their top ranked elements,
as dictated by Eq. 16. Additional elements with lower rankings may also enter the pruned list, according
to the weight of the corresponding voter. The number of these items may not exceed the next 10% of the
list size, since δ2 = 0.1. In total, the selected values of δ1 and δ2 indicate that the pruned list shall contain
at least 10% and at most 20% of the elements of the original ranked list.

This in turn means that the lower ranked elements of all voters are both non-relevant and harmful for
a rank aggregation method, evidently introducing the requirement for a list pruning strategy. According to
the proposed method, the placement of cutoff points at the top rankings of the input lists eventually leads to
substantial improvements in retrieval effectiveness, as we demonstrate in the next part of our experiments.

On the other hand, the FESO synthetic dataset has different characteristics, since it includes a few very
short input lists (k = 30, Table 2). Thus, by setting δ1 = 0.1, we will perform a rather aggressive pruning
process, because the minimum number of elements that will be preserved is just 3. Consequently, we run
the risk of discarding multiple relevant items with this setting. This explains why the setting δ1 = 0.5 is
ideal for datasets that are similar to FESO. Remarkably, the best setting for δ2 in FESO was also equal to
0.1.

The results presented in the following subsections have been obtained by setting δ1 = 0.1 in the TREC
datasets, and δ1 = 0.5 in the synthetic ones. Additionally, the value of δ2 was fixed to 0.1 in all tests. The
convergence tolerance prec was set equal to 10−3. Of course, similarly to all unsupervised methods, the
selected hyper-parameter values concern the utilized datasets. For other types of datasets, with more or
fewer voters and longer or shorter input lists, the optimal values of these parameters may vary significantly.

6.4. Statistical Significance Tests

Before we present the performance measurements of the proposed algorithm against the competitive
ones, we conduct an analysis of the statistical significance of the results of the next subsection. In this case,
the null hypothesis states that there are no significant differences among the 12 examined methods. To test
its validity, we performed the Friedman test, by employing the friedman.test method of R, including all
the 12 methods. The output of the test was a p-value of 5.559e-14. Consequently, we can safely reject the
null hypothesis (with significance level < 0.05).

Since the output of the Friedman test was promising, we performed pairwise comparisons to estimate
the statistical significance of the observed performance discrepancies between the various methods. For this
purpose, we employed the two-tailed Wilcoxon signed-rank test (for a 5% significance level), and we report
its output in Table 4. The results indicate that, in some cases, the null hypothesis can be rejected, whereas
in others, it cannot.
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However, here we are primarily interested in two issues: Firstly, to estimate the significance of the discrep-
ancies between our proposed model and the respective baseline methods. In this context, the performance
difference between all YY-CODRA models and all YY baseline methods was always found statistically sig-
nificant (recall that YY is replaced by either BC, CM, or OA). The same applies to the list pruning policy
YY-LP, since the measured p-values for the three YY vs. YY-LP comparisons were all lower than 0.05.
Regarding the usage of the SFD distance metric, only the null hypothesis on the equivalence of CM and
CM-SFD cannot be rejected (p-value ' 0.07).

The second point of interest is the evaluation of the significance of the performance comparisons between
our proposed model and the competitive PRF and AAM methods. Interestingly, the first column and the
last row of Table 4 contain encouraging p-values. Namely, none of them exceeds the critical significance
level of 0.05.

6.5. Performance Evaluation

In this subsection we investigate the effectiveness of the proposed model. Two primary points of research
are set here: i) to evaluate the magnitude of the benefits in comparison to the ones achieved by the baseline
approaches, and ii) to estimate the cost at which these benefits derive, in terms of consumed execution times
or iteration cycles.

Tables 5, 6, 7, 8, and 9 contain the results of this double evaluation. Each of them is divided into three
subtables so that, in total, there are 15 subtables that depict the performance of the various methods on the
15 datasets of Table 2. Each subtable is in turn divided into three groups of 4 rows: the first row denotes the
performance of a baseline method (i.e. BC, CM, and OA), whereas the next two concern the performance
of the proposed model accompanied by either SFD (YY-SFD, row 2), or CODRA (YY-CODRA, row 3).
The fourth row illustrates the performance of the proposed model in combination with CODRA and the
proposed list pruning algorithm (YY-LP). At the bottom of each subtable we report the performance of the
adversary PRF and AAM methods. Regarding the vertical organization, the tables include 12 columns, of
which, the first two contain the aggregation method and the number of the executed iterations, respectively.
Finally, the next 10 columns contain the effectiveness measurements with the metrics of Subsection 6.1.

The second column of the tables reveals a remarkable property of CODRA: in all TREC datasets and
in all the attested YY-CODRA methods, the voter weights required 6 iterations to converge. In fact, in
some queries, that number was either 5 or 7, however these cases were rare. Consequently, only a few
iterations are sufficient for the model to produce its results. In contrast, SFD required a significantly larger
number of iterations to produce stable weights, especially when it was used in combination with Borda
Count. For example, in all datasets apart from CDS-15, BC-SFD performed more than 20 iterations to
generate the voter weights (in WA-13 that number was 26.4). CM-SFD and OA-SFD required significantly
fewer iterations (i.e, 11–16) than BC-SFD, but they were still 2–3 times slower than the respective CM-
CODRA and OA-CODRA. Consequently, the utilization of CODRA increases the efficiency of the model in
comparison to the well-established SFD metric.

The explanation of this small and constant number of iterations is based on multiple elements, starting
from the number of voters, which in the 9 TREC datasets is, on average, 72. This is rather a high number
of voters, and leads to aggregate lists that are much longer than the individual input lists. Hence, the
denominator of Eq. 6 becomes much greater than the nominator, and, eventually, the distances between the
input and the aggregate lists become roughly equal to 1 for all voters. This is turn means that, according to
Eq. 6, at each iteration, the weight of each voter is modified by a quantity that exponentially depends on
the number of this iteration almost solely (recall that the weights are increased by exp (−i · d(Rv, L)). The
exponential dependence of the weights almost only on the number of iteration explains their fast convergence.

Now, there is another interesting question that requires explanation: “If all the distances from the
aggregate list are almost equal to 1 and all the weights are increased by a quantity that depends almost solely
on the number of the current iteration, then are all the voter weights approximately equal?”. The answer
to this question is negative for two reasons. First, the quantity at which the weights are modified depends
almost solely on the number of the current iteration. In other words, although these distances are all close
to 1, they are still different. These differences may be small at each iteration. However, their accumulation
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WA-09 nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.204 0.504 0.498 0.462 0.296 0.134 0.395 0.397 0.376 0.352
BC-SFD 20.8 0.215 0.552 0.516 0.458 0.305 0.136 0.422 0.406 0.368 0.355
BC-CODRA 6.0 0.221 0.552 0.516 0.461 0.309 0.140 0.434 0.422 0.384 0.359
BC-LP 7.0 0.234 0.624 0.557 0.482 0.311 0.147 0.444 0.420 0.401 0.369

CM - 0.190 0.424 0.438 0.441 0.287 0.117 0.322 0.344 0.345 0.334
CM-SFD 10.7 0.203 0.488 0.478 0.432 0.296 0.128 0.379 0.373 0.345 0.342
CM-CODRA 6.0 0.209 0.500 0.508 0.464 0.307 0.131 0.385 0.387 0.358 0.354
CM-LP 7.0 0.188 0.468 0.436 0.400 0.273 0.106 0.343 0.326 0.307 0.306

OA - 0.192 0.544 0.506 0.445 0.289 0.118 0.390 0.369 0.342 0.333
OA-SFD 15.6 0.199 0.549 0.508 0.450 0.291 0.121 0.392 0.369 0.339 0.330
OA-CODRA 6.0 0.206 0.568 0.516 0.450 0.291 0.123 0.399 0.373 0.346 0.334
OA-LP 7.0 0.214 0.566 0.528 0.477 0.294 0.128 0.396 0.386 0.355 0.339

PRF - n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
AAM - 0.047 0.038 0.034 0.032 0.032 0.033 0.032 0.031 0.031 0.031

WA-10 nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.218 0.496 0.458 0.408 0.277 0.144 0.268 0.260 0.257 0.289
BC-SFD 22.2 0.230 0.504 0.472 0.417 0.291 0.149 0.277 0.271 0.264 0.303
BC-CODRA 6.0 0.248 0.500 0.468 0.443 0.306 0.160 0.268 0.264 0.270 0.316
BC-LP 7.0 0.252 0.524 0.507 0.462 0.311 0.167 0.324 0.288 0.299 0.323

CM - 0.200 0.432 0.398 0.390 0.281 0.115 0.195 0.212 0.229 0.274
CM-SFD 10.7 0.231 0.452 0.440 0.421 0.295 0.136 0.229 0.240 0.250 0.298
CM-CODRA 6.0 0.241 0.492 0.454 0.431 0.313 0.144 0.248 0.244 0.258 0.314
CM-LP 7.0 0.229 0.460 0.410 0.382 0.309 0.124 0.220 0.216 0.222 0.301

OA - 0.215 0.476 0.456 0.418 0.282 0.136 0.245 0.251 0.255 0.290
OA-SFD 16,1 0.222 0.488 0.460 0.415 0.282 0.138 0.247 0.254 0.260 0.299
OA-CODRA 6.0 0.229 0.490 0.464 0.413 0.284 0.143 0.253 0.259 0.263 0.299
OA-LP 7.0 0.213 0.480 0.400 0.387 0.272 0.107 0.236 0.221 0.229 0.282

PRF - 0.054 0.114 0.094 0.094 0.085 0.041 0.077 0.070 0.071 0.083
AAM - 0.041 0.030 0.033 0.031 0.030 0.032 0.030 0.030 0.033 0.033

WA-11 nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.229 0.408 0.360 0.336 0.233 0.154 0.266 0.242 0.239 0.306
BC-SFD 21.1 0.233 0.440 0.356 0.325 0.222 0.156 0.283 0.241 0.237 0.299
BC-CODRA 6.0 0.241 0.444 0.370 0.328 0.239 0.161 0.282 0.247 0.245 0.313
BC-LP 7.0 0.290 0.440 0.400 0.385 0.273 0.183 0.282 0.263 0.272 0.372

CM - 0.246 0.452 0.376 0.361 0.249 0.171 0.294 0.271 0.270 0.335
CM-SFD 11.7 0.247 0.468 0.390 0.358 0.246 0.170 0.317 0.272 0.262 0.331
CM-CODRA 6.0 0.258 0.476 0.396 0.375 0.248 0.183 0.303 0.279 0.280 0.342
CM-LP 7.0 0.280 0.448 0.400 0.369 0.269 0.191 0.301 0.278 0.274 0.372

OA - 0.186 0.412 0.346 0.301 0.193 0.131 0.276 0.238 0.218 0.258
OA-SFD 15.0 0.188 0.416 0.342 0.302 0.192 0.131 0.279 0.238 0.218 0.259
OA-CODRA 6.0 0.193 0.416 0.352 0.309 0.195 0.135 0.277 0.241 0.221 0.261
OA-LP 7.0 0.230 0.432 0.372 0.350 0.229 0.157 0.278 0.255 0.258 0.318

PRF - 0.054 0.082 0.070 0.078 0.068 0.041 0.071 0.062 0.066 0.083
AAM - 0.056 0.071 0.065 0.081 0.030 0.036 0.045 0.035 0.051 0.060

Table 5: Comparison of the retrieval effectiveness of the examined rank aggregation methods with various
precision evaluation measures, on the WA-12, WA-13, and WA-14 datasets.
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WA-12 nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.224 0.400 0.380 0.342 0.237 0.356 0.155 0.161 0.163 0.253
BC-SFD 20.2 0.230 0.428 0.382 0.346 0.239 0.360 0.172 0.155 0.169 0.252
BC-CODRA 6.0 0.239 0.448 0.382 0.348 0.236 0.400 0.175 0.170 0.179 0.259
BC-LP 7.0 0.275 0.442 0.410 0.393 0.282 0.476 0.174 0.182 0.181 0.275

CM - 0.239 0.472 0.452 0.396 0.245 0.486 0.200 0.207 0.205 0.275
CM-SFD 11.5 0.239 0.448 0.444 0.400 0.246 0.475 0.187 0.189 0.202 0.274
CM-CODRA 6.0 0.246 0.472 0.452 0.398 0.251 0.494 0.203 0.208 0.211 0.282
CM-LP 7.0 0.275 0.468 0.444 0.402 0.270 0.509 0.185 0.192 0.193 0.294

OA - 0.178 0.312 0.296 0.288 0.203 0.303 0.145 0.133 0.148 0.208
OA-SFD 14.2 0.177 0.308 0.284 0.290 0.202 0.282 0.135 0.130 0.148 0.205
OA-CODRA 6.0 0.185 0.320 0.324 0.300 0.212 0.308 0.147 0.139 0.149 0.218
OA-LP 7.0 0.231 0.392 0.394 0.367 0.249 0.392 0.157 0.162 0.176 0.272

PRF - 0.057 0.094 0.086 0.106 0.076 0.055 0.050 0.056 0.056 0.068
AAM - 0.123 0.158 0.142 0.134 0.115 0.132 0.075 0.077 0.087 0.122

WA-13 nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.255 0.488 0.462 0.419 0.272 0.160 0.237 0.251 0.268 0.314
BC-SFD 26.4 0.247 0.504 0.478 0.426 0.275 0.155 0.237 0.252 0.266 0.315
BC-CODRA 6.0 0.267 0.524 0.472 0.437 0.278 0.171 0.255 0.260 0.277 0.324
BC-LP 7.0 0.328 0.524 0.470 0.440 0.319 0.210 0.257 0.267 0.309 0.379

CM - 0.248 0.460 0.422 0.409 0.268 0.150 0.220 0.239 0.264 0.310
CM-SFD 12.2 0.262 0.496 0.470 0.430 0.287 0.174 0.248 0.261 0.277 0.336
CM-CODRA 6.0 0.277 0.500 0.486 0.444 0.290 0.185 0.257 0.274 0.291 0.346
CM-LP 7.0 0.305 0.484 0.476 0.443 0.311 0.203 0.248 0.272 0.294 0.371

OA - 0.209 0.496 0.442 0.387 0.244 0.133 0.235 0.231 0.243 0.285
OA-SFD 26.0 0.210 0.488 0.452 0.396 0.244 0.133 0.231 0.235 0.245 0.285
OA-CODRA 6.0 0.213 0.500 0.448 0.395 0.245 0.134 0.239 0.235 0.248 0.287
OA-LP 7.0 0.259 0.504 0.470 0.430 0.287 0.170 0.252 0.264 0.283 0.349

PRF - 0.046 0.050 0.054 0.071 0.085 0.034 0.037 0.040 0.047 0.056
AAM - 0.077 0.110 0.086 0.091 0.082 0.047 0.057 0.058 0.062 0.088

WA-14 nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.284 0.596 0.582 0.546 0.338 0.198 0.265 0.282 0.302 0.337
BC-SFD 22.1 0.282 0.576 0.568 0.507 0.340 0.198 0.262 0.270 0.280 0.339
BC-CODRA 6.0 0.306 0.592 0.560 0.536 0.354 0.209 0.269 0.278 0.299 0.351
BC-LP 7.0 0.396 0.620 0.594 0.571 0.426 0.269 0.293 0.303 0.325 0.415

CM - 0.298 0.600 0.580 0.572 0.371 0.212 0.282 0.288 0.318 0.360
CM-SFD 11.7 0.290 0.620 0.590 0.573 0.369 0.208 0.291 0.289 0.319 0.366
CM-CODRA 6.0 0.320 0.624 0.594 0.564 0.368 0.224 0.287 0.296 0.319 0.369
CM-LP 7.0 0.380 0.608 0.594 0.569 0.419 0.262 0.297 0.300 0.325 0.416

OA - 0.225 0.516 0.508 0.453 0.298 0.159 0.234 0.239 0.249 0.304
OA-SFD 15.1 0.229 0.524 0.504 0.464 0.302 0.166 0.235 0.240 0.259 0.304
OA-CODRA 6.0 0.239 0.556 0.512 0.465 0.306 0.163 0.243 0.238 0.258 0.308
OA-LP 7.0 0.293 0.600 0.578 0.556 0.344 0.212 0.276 0.279 0.305 0.348

PRF - 0.064 0.090 0.098 0.099 0.081 0.041 0.055 0.055 0.061 0.073
AAM - 0.127 0.230 0.234 0.225 0.157 0.066 0.100 0.115 0.124 0.143

Table 6: Comparison of the retrieval effectiveness of the examined rank aggregation methods with various
precision evaluation measures, on the WA-12, WA-13, and WA-14 datasets.
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CDS-14 nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.197 0.460 0.407 0.368 0.233 0.153 0.385 0.345 0.314 0.276
BC-SFD 23.7 0.206 0.460 0.417 0.353 0.238 0.158 0.397 0.359 0.313 0.289
BC-CODRA 6.0 0.207 0.473 0.427 0.378 0.242 0.160 0.402 0.366 0.317 0.288
BC-LP 7.0 0.216 0.433 0.423 0.357 0.249 0.157 0.357 0.341 0.306 0.292

CM - 0.196 0.447 0.427 0.365 0.236 0.152 0.370 0.351 0.309 0.280
CM-SFD 12.2 0.201 0.440 0.400 0.372 0.235 0.154 0.360 0.333 0.314 0.281
CM-CODRA 6.0 0.202 0.460 0.423 0.368 0.237 0.157 0.384 0.355 0.318 0.284
CM-LP 7.0 0.212 0.447 0.417 0.362 0.246 0.158 0.368 0.345 0.310 0.291

OA - 0.180 0.393 0.377 0.313 0.227 0.134 0.319 0.306 0.273 0.267
OA-SFD 19.7 0.180 0.393 0.373 0.317 0.229 0.133 0.310 0.295 0.273 0.267
OA-CODRA 6.0 0.180 0.393 0.373 0.317 0.229 0.134 0.312 0.300 0.272 0.267
OA-LP 7.0 0.168 0.427 0.380 0.347 0.225 0.128 0.346 0.323 0.299 0.272

PRF - n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
AAM - 0.038 0.041 0.037 0.040 0.044 0.035 0.050 0.052 0.050 0.043

CDS-15 nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.211 0.487 0.453 0.420 0.292 0.125 0.368 0.343 0.312 0.290
BC-SFD 16.4 0.218 0.473 0.440 0.418 0.297 0.128 0.366 0.333 0.312 0.291
BC-CODRA 6.0 0.221 0.493 0.443 0.418 0.299 0.132 0.375 0.336 0.306 0.292
BC-LP 7.0 0.238 0.553 0.497 0.418 0.313 0.139 0.380 0.358 0.312 0.314

CM - 0.214 0.540 0.487 0.430 0.300 0.128 0.379 0.347 0.321 0.298
CM-SFD 11.5 0.219 0.527 0.490 0.413 0.297 0.133 0.390 0.359 0.319 0.297
CM-CODRA 6.0 0.216 0.540 0.487 0.428 0.298 0.128 0.376 0.351 0.320 0.299
CM-LP 7.0 0.232 0.553 0.493 0.432 0.310 0.133 0.371 0.348 0.316 0.311

OA - 0.197 0.447 0.407 0.370 0.281 0.111 0.315 0.299 0.278 0.271
OA-SFD 13.2 0.197 0.454 0.403 0.368 0.281 0.113 0.315 0.299 0.278 0.272
OA-CODRA 6.0 0.199 0.440 0.410 0.368 0.281 0.113 0.310 0.301 0.278 0.272
OA-LP 7.0 0.206 0.500 0.463 0.427 0.298 0.116 0.352 0.334 0.312 0.306

PRF - n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
AAM - 0.044 0.092 0.090 0.074 0.057 0.029 0.070 0.075 0.064 0.057

PMA-17 nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.272 0.620 0.560 0.492 0.315 0.242 0.619 0.558 0.507 0.445
BC-SFD 22.4 0.289 0.620 0.590 0.500 0.326 0.251 0.607 0.575 0.512 0.456
BC-CODRA 6.0 0.294 0.627 0.573 0.497 0.331 0.254 0.612 0.567 0.511 0.462
BC-LP 7.0 0.298 0.627 0.550 0.480 0.344 0.259 0.632 0.563 0.507 0.482

CM - 0.271 0.613 0.557 0.493 0.324 0.246 0.621 0.560 0.519 0.462
CM-SFD 13.0 0.287 0.627 0.560 0.500 0.338 0.255 0.620 0.562 0.516 0.468
CM-CODRA 6.0 0.282 0.613 0.570 0.502 0.333 0.252 0.616 0.571 0.522 0.468
CM-LP 7.0 0.291 0.607 0.550 0.487 0.334 0.252 0.608 0.549 0.504 0.464

OA - 0.255 0.580 0.553 0.458 0.302 0.217 0.547 0.528 0.462 0.412
OA-SFD 18.4 0.255 0.580 0.555 0.460 0.306 0.218 0.548 0.529 0.462 0.412
OA-CODRA 6.0 0.255 0.580 0.557 0.465 0.308 0.218 0.548 0.529 0.462 0.414
OA-LP 7.0 0.231 0.600 0.570 0.502 0.294 0.225 0.609 0.566 0.514 0.435

PRF - n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
AAM - 0.035 0.057 0.057 0.052 0.053 0.032 0.044 0.044 0.041 0.046

Table 7: Comparison of the retrieval effectiveness of the examined rank aggregation methods with various
precision evaluation measures, on the CDS-14, CDS-15, and PMA-17 datasets.
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MASO nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.315 0.290 0.280 0.263 - 0.294 0.291 0.284 0.273 -
BC-SFD 18.4 0.324 0.310 0.325 0.285 - 0.298 0.298 0.315 0.292 -
BC-CODRA 8.0 0.333 0.280 0.310 0.300 - 0.305 0.303 0.316 0.312 -
BC-LP 9.0 0.330 0.290 0.285 0.303 - 0.299 0.288 0.284 0.301 -

CM - 0.313 0.270 0.270 0.275 - 0.290 0.257 0.261 0.270 -
CM-SFD 21.0 0.317 0.280 0.290 0.275 - 0.295 0.279 0.285 0.279 -
CM-CODRA 9.0 0.317 0.230 0.270 0.287 - 0.294 0.245 0.267 0.286 -
CM-LP 10.0 0.309 0.180 0.210 0.273 - 0.285 0.184 0.205 0.255 -

OA - 0.320 0.260 0.265 0.273 - 0.294 0.256 0.261 0.271 -
OA-SFD 21.0 0.321 0.260 0.265 0.275 - 0.294 0.256 0.261 0.271 -
OA-CODRA 8.8 0.320 0.260 0.265 0.273 - 0.294 0.256 0.261 0.271 -
OA-LP 9.8 0.303 0.210 0.230 0.218 - 0.270 0.210 0.221 0.249 -

PRF - 0.324 0.290 0.300 0.302 - 0.300 0.295 0.301 0.306 -
AAM - 0.198 0.360 0.325 0.318 - 0.278 0.380 0.349 0.339 -

MAMO nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.342 0.270 0.275 0.302 0.335 0.261 0.253 0.264 0.288 0.324
BC-SFD 9.3 0.343 0.320 0.280 0.295 0.330 0.264 0.342 0.305 0.308 0.329
BC-CODRA 5.0 0.344 0.340 0.300 0.307 0.336 0.265 0.353 0.322 0.319 0.335
BC-LP 6.0 0.349 0.300 0.345 0.367 0.349 0.266 0.300 0.332 0.353 0.346

CM - 0.342 0.300 0.290 0.315 0.336 0.262 0.282 0.281 0.302 0.327
CM-SFD 9.4 0.340 0.270 0.270 0.277 0.330 0.261 0.268 0.269 0.274 0.320
CM-CODRA 5.0 0.344 0.320 0.305 0.310 0.334 0.264 0.339 0.326 0.321 0.334
CM-LP 6.0 0.349 0.280 0.320 0.365 0.343 0.266 0.292 0.318 0.351 0.342

OA - 0.342 0.280 0.315 0.318 0.328 0.262 0.265 0.294 0.304 0.321
OA-SFD 10.2 0.342 0.300 0.310 0.333 0.321 0.263 0.295 0.307 0.325 0.320
OA-CODRA 5.0 0.345 0.320 0.315 0.320 0.326 0.264 0.313 0.311 0.316 0.325
OA-LP 6.0 0.345 0.350 0.345 0.340 0.333 0.265 0.349 0.346 0.342 0.335

PRF - 0.347 0.340 0.320 0.325 0.339 0.265 0.344 0.331 0.331 0.338
AAM - 0.254 0.310 0.283 0.313 0.330 0.207 0.324 0.305 0.298 0.199

FESO nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.243 0.140 0.155 0.153 - 0.288 0.164 0.246 0.373 -
BC-SFD 19.8 0.249 0.160 0.185 0.158 - 0.291 0.169 0.277 0.395 -
BC-CODRA 10.2 0.252 0.180 0.160 0.170 - 0.292 0.192 0.262 0.406 -
BC-LP 11.2 0.260 0.180 0.170 0.155 - 0.297 0.194 0.276 0.392 -

CM - 0.243 0.140 0.165 0.158 - 0.287 0.161 0.258 0.382 -
CM-SFD 16.4 0.237 0.150 0.185 0.165 - 0.280 0.143 0.268 0.391 -
CM-CODRA 10.4 0.235 0.140 0.155 0.160 - 0.285 0.160 0.243 0.376 -
CM-LP 11.4 0.250 0.150 0.140 0.163 - 0.293 0.178 0.246 0.398 -

OA - 0.236 0.140 0.165 0.158 - 0.284 0.152 0.247 0.375 -
OA-SFD 12.4 0.262 0.160 0.155 0.163 - 0.301 0.194 0.266 0.416 -
OA-CODRA 11.7 0.241 0.160 0.175 0.155 - 0.287 0.170 0.266 0.375 -
OA-LP 12.7 0.195 0.170 0.160 0.138 - 0.277 0.196 0.267 0.384 -

PRF - 0.225 0.160 0.170 0.148 - 0.277 0.159 0.240 0.353 -
AAM - 0.159 0.170 0.145 0.110 - 0.163 0.186 0.241 0.366 -

Table 8: Comparison of the retrieval effectiveness of the examined rank aggregation methods with various
precision evaluation measures, on the MASO, MAMO, and FESO synthetic datasets.
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FEMO nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.343 0.390 0.370 0.352 0.341 0.275 0.380 0.372 0.358 0.353
BC-SFD 8.8 0.341 0.450 0.425 0.362 0.332 0.276 0.417 0.411 0.370 0.346
BC-CODRA 6.0 0.350 0.410 0.400 0.365 0.342 0.280 0.427 0.415 0.386 0.362
BC-LP 7.0 0.348 0.390 0.380 0.345 0.340 0.284 0.410 0.396 0.366 0.375

CM - 0.334 0.380 0.380 0.345 0.341 0.274 0.377 0.378 0.353 0.353
CM-SFD 7.8 0.341 0.380 0.405 0.368 0.331 0.276 0.376 0.394 0.372 0.349
CM-CODRA 6.0 0.345 0.410 0.385 0.372 0.339 0.279 0.438 0.410 0.393 0.361
CM-LP 7.0 0.346 0.280 0.285 0.348 0.331 0.280 0.311 0.303 0.342 0.354

OA - 0.344 0.420 0.365 0.352 0.338 0.276 0.416 0.380 0.366 0.353
OA-SFD 9.5 0.336 0.340 0.335 0.360 0.327 0.272 0.324 0.326 0.346 0.336
OA-CODRA 6.0 0.351 0.420 0.385 0.352 0.343 0.279 0.418 0.395 0.370 0.359
OA-LP 7.0 0.357 0.390 0.425 0.380 0.350 0.287 0.424 0.437 0.402 0.391

PRF - 0.337 0.300 0.355 0.322 0.336 0.271 0.278 0.325 0.312 0.339
AAM - 0.275 0.360 0.365 0.333 0.332 0.246 0.370 0.372 0.346 0.344

FELO nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.246 0.200 0.235 0.220 0.232 0.258 0.201 0.225 0.219 0.402
BC-SFD 11.4 0.248 0.270 0.215 0.220 0.226 0.263 0.291 0.245 0.238 0.404
BC-CODRA 7.9 0.247 0.260 0.250 0.235 0.225 0.061 0.255 0.247 0.238 0.399
BC-LP 8.9 0.234 0.200 0.230 0.222 0.227 0.054 0.181 0.207 0.211 0.397

CM - 0.241 0.170 0.210 0.233 0.232 0.255 0.170 0.196 0.217 0.397
CM-SFD 7.1 0.244 0.220 0.235 0.263 0.220 0.259 0.224 0.233 0.254 0.389
CM-CODRA 6.9 0.248 0.230 0.235 0.217 0.231 0.258 0.211 0.221 0.213 0.400
CM-LP 7.9 0.237 0.210 0.210 0.240 0.225 0.257 0.237 0.205 0.229 0.402

OA - 0.239 0.150 0.200 0.217 0.231 0.252 0.132 0.172 0.194 0.387
OA-SFD 6.4 0.241 0.155 0.213 0.217 0.231 0.252 0.132 0.172 0.194 0.387
OA-CODRA 7.1 0.241 0.155 0.213 0.217 0.231 0.252 0.132 0.172 0.194 0.387
OA-LP 8.1 0.223 0.140 0.180 0.197 0.202 0.233 0.114 0.156 0.187 0.365

PRF - 0.255 0.350 0.280 0.215 0.238 0.266 0.340 0.294 0.244 0.428
AAM - 0.135 0.240 0.245 0.245 0.219 0.140 0.238 0.243 0.245 0.401

MOSO nit
Precision NDCG

MAP P@5 P@10 P@20 P@100 Mean N@5 N@10 N@20 N@100

BC - 0.483 0.430 0.460 0.467 0.463 0.436 0.434 0.454 0.463 0.789
BC-SFD 24.5 0.487 0.490 0.425 0.440 0.463 0.433 0.472 0.430 0.440 0.785
BC-CODRA 5.4 0.492 0.550 0.485 0.467 0.463 0.445 0.543 0.501 0.484 0.801
BC-LP 6.4 0.493 0.500 0.485 0.495 0.463 0.443 0.499 0.489 0.495 0.799

CM - 0.478 0.420 0.475 0.475 0.458 0.435 0.426 0.465 0.469 0.789
CM-SFD 24.2 0.484 0.460 0.425 0.445 0.457 0.435 0.476 0.444 0.452 0.791
CM-CODRA 5.5 0.491 0.550 0.495 0.490 0.460 0.445 0.545 0.508 0.500 0.802
CM-LP 6.5 0.485 0.530 0.475 0.477 0.458 0.441 0.517 0.482 0.482 0.796

OA - 0.480 0.440 0.485 0.445 0.463 0.435 0.434 0.467 0.446 0.786
OA-SFD 23.4 0.481 0.460 0.435 0.430 0.463 0.439 0.491 0.463 0.449 0.793
OA-CODRA 5.1 0.494 0.460 0.475 0.478 0.463 0.444 0.485 0.487 0.485 0.801
OA-LP 6.1 0.500 0.540 0.520 0.493 0.463 0.448 0.540 0.528 0.505 0.807

PRF - 0.462 0.350 0.405 0.430 0.458 0.423 0.335 0.382 0.407 0.768
AAM - 0.241 0.460 0.455 0.468 0.224 0.380 0.444 0.447 0.457 0.788

Table 9: Comparison of the retrieval effectiveness of the examined rank aggregation methods with various
precision evaluation measures, on the FEMO, FELO, and MOSO synthetic datasets.

29



across six iterations will eventually produce weights with significant discrepancies. The second reason is
that, according to the discussion of Subsection 5.1 and Eq. 14, the weights are normalized with min-max
scaling before they are plugged into a rank aggregation method. Consequently, even the smallest of the
differences among them is enlarged.

The performance of PRF was remarkably low in all TREC datasets, since its precision was hugely smaller
than all the other methods, with the exception of AAM. A different selection for the values of its hyper-
parameters, other than the default ones, would probably improve its effectiveness; here, we used α = β = 0.5,
as it was suggested by Desarkar et al. (2016). Moreover, PRF failed to complete some experiments in our
32GB workstation. The reason is that this method creates a preference aggregate graph in its last stage.
Each node in the graph is connected to every other node by 1 or 2 edges. Consequently, its space complexity
is quadratic to the number of elements in the aggregate list, leading to “out of memory” conditions when
that list is very long. Furthermore, as a majoritarian method, PRF was very slow on these tests.

The performance of AAM was even worse. However, as mentioned earlier, it is not comparable to the
algorithm of Chatterjee et al. (2018) due to the different weight initialization approach. The bad results is
an indication of the ineffectiveness of the greedy nature of AAM that immediately merges the two closest
input lists. Although this interesting approach originates from the hierarchical clustering theory, it was
found inferior to other majority-based methods (e.g., the Condorcet method), or the techniques that try to
minimize the distances between the input lists and the aggregate list (e.g., Kemeny optimal aggregation).

The effectiveness of our distance-based technique was verified again by the experiments with the six
synthetic datasets (Tables 8 and 9). Specifically, the proposed model enhanced the precision of BC in all
cases. The gains were larger in MASO (' 5.7%), and smaller in FELO (< 1%). This observation combined
with the results on the TREC datasets indicates that the impact of our method is magnified in the presence
of many voters, because the aggregate list is generated by multiple rankings. The situation was similar on
CM and OA, with only a few individual exceptions (e.g. CM-SFD and CM-CODRA in FESO, CM-SFD in
the MAMO, and OA-SFD in FEMO).

On the other hand, the application of the list pruning method led to mixed results. In some cases, the
improvement was substantial, for example, BC-LP and CM-LP in FESO, whereas, in others, the precision
degradation was significant, e.g., the OA-LP methods in 4 out of 6 synthetic datasets. Apparently, the list
pruning strategy maximizes the obtained benefits when it is applied to long input lists. In the opposite case,
the omission of specific list elements may hurt performance, because the probability that these elements are
indeed relevant increases.

The performance of PRF was hugely improved in the experiments with the synthetic datasets. More
specifically, this algorithm outperformed all its adversaries in the FELO dataset, whereas on MASO, its
precision was inferior only compared against BC-CODRA. In contrast, PRF was outperformed by all of its
counterparts, both weighted and non-weighted, on FELO and on MOSO.

Regarding AAM, its measured precisions were improved, albeit in terms of MAP, they were all still
significantly smaller than those of the other attested methods. Nevertheless, in several cases, the local
Precision and nDCG measurements were rather satisfactory. Indicatively, the values of P@5, P@10, N@5
and N@10 of AAM on the MOSO dataset were higher than those of PRF, and of those of the non-weighted
methods.

7. Discussion

Undoubtedly, there is a large number of measurements presented in Tables 5, 6, 7, 8, and 9. For
this reason, we attempt to simplify and interpret their reading by summarizing the percentile performance
benefits of the various methods in Table 10. More specifically, in the second column we report the average
number of iterations performed by each method, whereas the next four columns contain the average and the
maximum improvements in MAP and Mean nDCG.

The primary conclusion that derives from the numbers of Table 10 is that the distance between an
input list and the aggregate list is indeed indicative of the importance of the corresponding voter. Hence,
the introduction of distance-based voter weights is a reasonable approach that enhanced all the baseline
methods, regardless of the utilized distance metric.
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Specifically, the MAPs and Mean nDCGs of BC-SFD were on average 2.9% and 1.5% higher than those
of the original Borda Count method, respectively. These gains were magnified by employing CODRA, since
BC-CODRA was more effective than BC by 7.2% and 6.7% in terms of MAP and Mean nDCG, respectively.
Similar results were obtained for the Condorcet method, where the application of CODRA instead of SFD
was beneficial in terms of both effectiveness and number of iterations. Compared to the baseline CM, the
MAPs and Mean nDCGs of CM-CODRA were on average 7.3% and 9% higher, respectively. The Outranking
approach was the hardest method to improve. Thus, the application of the proposed model in combination
with SFD yielded small improvements of 0.7% and 0.4% in terms of MAP and Mean nDCG, respectively.
The usage of CODRA improved the situation and, on average, it led to an improvement of 3% for MAP,
and 2.2% for Mean nDCG.

Remarkably, the list pruning algorithm led to substantial gains over all baseline methods. For Borda
Count, the MAPs and Mean nDCGs were increased on average by 20% and 18.5%, respectively. The max-
imum performance of BC-LP was measured in the WA-14 dataset, where MAP and Mean nDCG were
boosted by almost 40% and 36%, respectively. Regarding CM-LP, MAP and Mean nDCG were also sub-
stantially enhanced by an average margin of 27.5% and 35.3%, respectively. In OA, the average MAP and
Mean nDCGs were improved on average by 12.7% and 11.3%, respectively. Their maximum values were
measured in the WA-14 dataset and approached 30.2% and 33.3%, respectively.

Compared to the recent state-of-the-art solutions, all our weighted models outperformed both the Prefer-
ence Relation (PRF) method of Desarkar et al. (2016), and the variant of the agglomerative approach (AAM)
of Chatterjee et al. (2018) in all TREC datasets. These methods were proved both ineffective and expensive
in these datasets. PRF failed to complete several tests due to memory shortage. For the same reason, we
could not apply the original AAM method, and we were forced to implement a variant that assigns equal
initial weights to the voters. On the other hand, the effectiveness of these approaches was substantially
improved in the synthetic datasets. PRF was also able to win all its adversary methods (including our own)
in the MASO dataset, where numerous voters submit short ranked lists.

In some isolated cases, the application of our model led to negative results. Namely, the achieved
performance was lower than that of the corresponding baseline methods. For example, in the WA-13 and
WA-14 datasets, the measured MAPs and nDCGs of BC-SFD were lower than those achieved by the non-
weighted BC. Similarly, in WA-14, the effectiveness of CM-SFD was also negative compared to that of
CM. However, notice that the employment of CODRA cured most of these problems, and the gains were
rendered positive. These results indicate the importance of employing a robust technique to measure the
list distances, and highlight the usefulness of CODRA.

Moreover, the computation of the voter weights using SFD requires on average more iterations than
the introduced CODRA. Therefore, BC-SFD, CM-SFD, and OA-SFD performed or average 21.7, 11.7, and
17 iterations, respectively. On the other hand, CODRA rendered our model significantly faster and more
stable, since six iterations were adequate to generate converged voter weights on the TREC datasets. A

Method nit
MAP Mean nDCG

avg (%) max (%) avg (%) max (%)

BC-SFD 21.7 2.9 6.3 (PMA-17) 1.5 3.7 (PMA-17)
BC-CODRA 6.0 7.2 13.8 (WA-10) 6.7 12.4 (WA-12)
BC-LP 7.0 20.0 39.4 (WA-14) 18.5 35.9 (WA-14)

CM-SFD 11.7 4.1 15.5 (WA-10) 5.3 18.3 (WA-10)
CM-CODRA 6.0 7.3 20.5 (WA-10) 9.0 25.2 (WA-10)
CM-LP 7.0 13.0 27.5 (WA-14) 9.4 35.3 (WA-13)

OA-SFD 17.0 0.7 3.7 (WA-09) 0.4 4.4 (WA-14)
OA-CODRA 6.0 3.0 7.3 (WA-09) 2.2 5.2 (WA-10)
OA-LP 7.0 12.7 30.2 (WA-14) 11.3 33.3 (WA-14)

Table 10: Average and maximum percentile improvements in MAP and nDCG of the proposed methods
over the corresponding baseline approaches.
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similar improvement was also observed in the three synthetic datasets.
Having commented adequately on the average and maximum MAP and Mean nDCG, we annotate some

additional indicative numbers. Regarding the measured values of Precision at several points of the aggregate
list, the average beneficial effects of our model on P@5 were similar to those of MAP. Hence, BC-SFD and
BC-CODRA improved this metric by margins, which, on average, were roughly equal to 2.6% and 4.8%,
respectively. These values were slightly greater in the case of CM, since the gains of CM-SFD and CM-
CODRA approached 3.1% and 6%, respectively. On the other hand, P@5 was not significantly affected by
the application of our model in combination with OA; the enhancements were about 0.5% for OA-SFD and
2% for OA-CODRA.

As expected, list pruning enhanced P@5 further. Therefore, BC-LP, CM-LP, and OA-LP outperformed
their respective baselines by 7.6%, 6.0% and 8.6%, respectively. Benefits of similar or slightly greater
magnitudes were observed for the other Precision values, namely, P@10, P@20, and P@100. Indicatively,
CM-CODRA enhanced P@10 by 16% and 15.2% in WA-09 and WA-13, respectively, while the average
increase in all nine datasets was 6%. Regarding list pruning, BL-LP increased P@10 by 11.9% and 11.1%
in WA-09 and WA-11, respectively, CM-LP boosted P@10 by 12.8% in WA-13, and OA-LP achieved a
substantial improvement of approximately 33% in WA-12.

We conclude our discussion by summarizing the limitations of the proposed method. As mentioned
earlier, a common feature of the TREC datasets is that the input lists are long. Therefore, there is a large
number of elements that can be discarded. Nevertheless, when the input lists are short, then the erroneous
removal of even a single element may substantially degrade the performance. This behavior was exhibited
in the MASO synthetic dataset. A strategy to minimize this effect is to increase the values of the hyper-
parameters δ1 and δ2. This manual solution will prevent the algorithm from pruning too many elements
from the input lists. This is in fact a subject of future work, and a new line of research can be set from this
point.

Similarly to the vast majority of the unsupervised learning methods, the effectiveness of the proposed
algorithm depends on the values of several hyper-parameters. More specifically, the list pruning strategy
includes two such hyper-parameters, δ1 and δ2. According to the analysis of Subsection 6.3, their values
may have a significant impact on the accuracy of the algorithm, so an amount of manual fine-tuning may
be necessary with respect to the underlying dataset. Of course, the competitive unsupervised aggregation
methods of Desarkar et al. (2016) and Chatterjee et al. (2018) also introduce their own hyper-parameters
that require manual fine tuning.

The proposed method is neither majoritarian, as the Condorcet method or the unsupervised algorithm
of Desarkar et al. (2016), nor agglomerative, i.e., it does not perform repeated pairwise list merges as the
technique of Chatterjee et al. (2018) does. Instead, its running times depend on the complexity of the non-
weighted method that is used to perform the initial aggregation. Consequently, if it is applied in combination
with an expensive algorithm, such as the Outranking Approach of Farah & Vanderpooten (2007), its iterative
nature will decelerate the execution even further. In such cases, the size of the data will determine which
non-weighted algorithm should be employed. If the data is large, e.g., we have very long input lists, then
Borda Count is the preferred method to utilize, because it was proved much faster than the majoritarian
CM and OA, especially in the large TREC datasets. Alternatively, the number of iterations can be reduced
by lowering the convergence precision of the voter weights.

8. Conclusions and Future Work

In this paper we introduced a new unsupervised weighted rank aggregation method that automatically
determines the importance of the voters. The relevant literature includes several such methods. A portion
of them set and solve optimization problems that are computationally very expensive, whereas some others
require not only the item rankings, but also their individual scores that are often unavailable. Another
category of works are majoritarian, focusing on specific applications, e.g., Web metasearch, where the
number of voters is small and/or the input lists are short.

Motivated by these disadvantages, we developed our model by applying the concept that the importance
of the voters is reflected by the distances between their submitted lists and the list that derives after the
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aggregation of multiple input lists. We conducted an analysis by using 9 real and 3 synthetic datasets, and
we verified the statistical significance of the aforementioned idea. More specifically, the correlation between
the importance of a voter and the distance of its input list from the aggregate list was proved statistically
significant.

Avoiding the computationally expensive optimization problems and the majority votes, the introduced
model initially applies a typical non-weighted method to generate a temporary aggregate list. Then, it
repeatedly enhances this temporary list by measuring its distances from all the input lists. The voter weights
are determined by a converging kernel function that assigns high weights to the voters whose submitted lists
are more proximal to the aggregate list, and vice versa. This process is repeated until all the weights converge
to their final values and the aggregate list becomes stable.

The experimental evaluation of the model indicated a statistically significant improvement of the achieved
precision of the generated aggregate list. Compared to its non-weighted counterparts and two recent state-of-
the-art unsupervised methods, the proposed model exhibited superior performance in terms of both precision
and nDCG. The benefits in performance depend on the employed rank aggregation method. The average
improvement for MAP was approximately 7-8%, and for nDCG was in the 7-9% range. In some datasets,
the benefits approached 25%.

The experiments have also revealed that the role of the metric that is employed to measure the list-
wise distances is crucial. It was shown that, although the traditional Spearman’s footrule distance (SFD)
yields decent results, other techniques can improve the aggregation quality even further. For this reason,
we introduced a new distance measure, named CODRA, that treats the input lists as weighted vectors.
This approach provides the ability to employ standard vector distance/similarity measures such as Cosine
similarity and the Jaccard co-efficient. Compared to SFD, we demonstrated that CODRA is both faster
and more effective. More specifically, our model in combination with this metric required fewer iterations
to produce stable weights for the voters.

Moreover, we investigated additional ways of exploiting the learned weights. To the best of our knowledge,
this work is the first to apply the voter weights not only to assign improved scores to the involved list elements,
but also to determine their population. In this context, we introduced a pruning algorithm that discards the
low ranked elements from the input lists of the weaker voters. Despite its simplicity, this method has been
proved very effective, especially when the input lists are long. At the cost of only one additional iteration, it
led to large improvements in performance, which, on average, approached 18.5–20% for Borda Count, and
10–13% for the rest of our attested methods.

Nevertheless, the effectiveness of this pruning strategy was limited, or even reversed, when it was applied
to short input lists. In such cases, an aggressive removal of elements from the input lists may hurt the
overall performance. Consequently, one of the most interesting topics of future work is to develop an
efficient strategy that will address this issue. Furthermore, we intend to investigate additional scenarios for
exploiting the learned weights, such as identifying and discarding the irrelevant voters (or the spammers)
completely from the aggregation process, instead of just pruning their respective lists. We are also planning
to study more forms for the converging kernel function that determines the user weights. CODRA is also
included in this future work. The objective of this investigation is double: first, to reduce the number of
iterations even further, and, second, to enhance the precision of our model.
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