
Confronting Sparseness and High Dimensionality in
Short Text Clustering via Feature Vector Projections

Leonidas Akritidis
School of Science and

Technology
Int’l Hellenic University

Thessaloniki, Greece
Email: lakritidis@ihu.gr

Miltiadis Alamaniotis
Department of Electrical

and Computer Engineering
University of Texas at San Antonio

San Antonio, USA
Email: Miltos.Alamaniotis@utsa.edu

Athanasios Fevgas
Department of Electrical

and Computer Engineering
University of Thessaly

Volos, Greece
Email: fevgas@e-ce.uth.gr

Panayiotis Bozanis
School of Science and

Technology
Int’l Hellenic University

Thessaloniki, Greece
Email: pbozanis@ihu.gr

Abstract—Short text clustering is a popular problem that
focuses on the unsupervised grouping of similar short text
documents, or entitled entities. Since the short texts are currently
being utilized in a vast number of applications, the problem
in question has been rendered increasingly significant in the
past few years. The high cluster homogeneity and completeness
are two among the most important goals of all data clustering
algorithms. However, in the context of short texts, their fulfilment
is particularly difficult, because this type of data is typically
represented by sparse vectors that collectively comprise a very
high dimensional space. In this article we introduce VEPHC, a
two-stage clustering algorithm designed to confront the sparse-
ness and high dimensionality traits of short texts. During the
first stage (or else, the VEP part), the initial feature vectors are
projected onto a lower dimensional space by constructing and
scoring variable-sized combinations of features (that is, terms).
In the second stage (or else, the HC part), VEPHC improves the
homogeneity and completeness of the generated clusters through
split and merge operations that are based on the similarities of all
inter-cluster elements. The experimental evaluation of VEPHC on
two real-world datasets demonstrates its superior performance
over numerous state-of-the-art clustering algorithms in terms of
F1 scores and Normalized Mutual Information.

Index Terms—short text clustering, text mining, machine
learning, unsupervised learning, clustering, data mining

I. INTRODUCTION

Short texts constitute a popular form of text with numerous
diverse uses. Having lengths that range from only a few to
several tens of words, they are encountered in a broad variety
of applications, including microblogs, entitled entities, news
headlines, FAQs, search result snippets, etc. For this reason,
short text mining and knowledge discovery from short texts
have attracted the attention of multiple researchers. Indicative
examples of problems involving short text analysis include
named entity recognition, entity resolution, topic modeling,
person name disambiguation, NLP tasks (such as opinion
mining and sentiment analysis), clustering, and others.

In contrast to normal text collections, short texts suffer
from two particularly challenging issues [1], [2]. The first
one is data sparseness and concerns the absence of important
features (that is, terms) from a portion of the input records.
In general, data sparseness renders the problem of clustering
considerably more difficult, because it blurs the similarities
among the involved entities. The second undesired property

is high dimensionality, and originates from the utilization of
numerous diverse features (terms, n-grams, skip grams etc.) in
short texts. This subsequently leads to a series of side effects
which are collectively known as “curse of dimensionality”.

Short text clustering is a specialization of the general
text clustering problem, which in turn is a specialization of
the generic data clustering problem. Similarly to its gener-
alizations, an effective short text clustering algorithm must
group its input records by fulfilling two goals: homogeneity
and completeness. The former concerns the inclusion of only
similar elements within a cluster, whereas the latter verifies
that all similar elements are grouped into the same cluster.

A portion of the relevant works attempted to confront
the problem of sparseness by exploiting external sources
of information, like Wikipedia [3] and search engines [4].
Nonetheless, these methods are rather impractical, because the
process of fetching information from external sources can be
prohibitively expensive.

For this reason, several recent works employed corpus-based
methods without requiring the existence of an external source
[5], [2]. Other models, such as BTM [6] and Generalized
VSM [7], tried to overcome sparseness by capturing and
quantifying the relationships between pairs of terms in short
texts. The drawback of these approaches is that they ignore
the potential correlations between three or more terms. In
addition, they disregard the second crucial problem, namely,
high dimensionality.

In this article we introduce VEPHC, a two stage short text
clustering algorithm designed to address both the issues of data
sparseness and high dimensionality. The first stage constitutes
the VEP part of the algorithm and projects the original feature
vectors onto a lower dimensional space, based on a hyper-
parameter K. The projection is performed by generating all
the {1 . . .K}−feature combinations of the initial text vectors.
These combinations are then treated as candidate cluster labels.
In order to identify the most suitable (i.e., dominant) candidate,
a score is assigned to each projection vector. The vector scores
are computed by a function that incorporates several statistics
(e.g., the frequency of a candidate, the IDF of the component
terms, etc.), so that it accurately reflects the homogeneity
and the completeness of the generated cluster. All documents

whose feature vectors are projected onto the same dimensional
space are eventually grouped into the same cluster.

Since the dominant combination consists of only a subset
of the features of the initial vectors, it can be considered as a
projection of that vector onto a lower dimensional space. Con-
sequently, the problem of high dimensionality is controlled, if
not eliminated by this approach. Furthermore, in accordance
to the spirit of the aforementioned term co-occurrence models
[6], [7], the combination of multiple features also limits the
problem of data sparseness.

The second stage of VEPHC consists of a post-processing
algorithm that enhances the homogeneity and the completeness
of the clusters that were generated by the previous stage. The
process is divided in two phases. The first phase is responsible
for removing the elements that are prohibitively dissimilar to
the rest of the elements of a particular cluster. All removed
elements can then be inserted into other, more similar clusters,
or form new ones. The similarity of an element with a cluster
is determined by its (weighted) cosine similarity with the
corresponding clustroid element. In the sequel, the second
phase of this stage merges multiple similar clusters into one,
more complete cluster. This merging procedure is based on
the concepts of the traditional agglomerative clustering.

The rest of this paper is organized as follows: Section II
provides a brief discourse on the most successful short text
clustering methods. The basic preliminary elements and the
notation used in this article are presented in Section III. The
details of the proposed algorithm are described in Section
IV, followed by the experimental evaluation of Section V.
The article concludes in Section VI, which summarizes the
contributions and the findings of this work.

II. RELATED WORK

The broad utilization and the importance of short text
clustering attracted numerous researchers to study the problem
in depth. The works of these researchers enriched the literature
with a significant number of state-of-the-art solutions.

A portion of the relevant methods introduce probabilistic
models for discovering topics contained within a document
collection. In this context, the authors of [8] proposed GS-
DMM, an iterative Gibbs Sampling algorithm for the Dirich-
let Multinomial Mixture. The iterative nature of this model
renders it inefficient for large-scale corpora, especially when
the number of clusters is large. However, it does not require
(exact) prior knowledge of the number of clusters, while it
achieves satisfactory clustering performance.

Another topic modeling approach, named BTM (Biterm
Topic Model), was introducted in [6]. BTM learns the topics
by directly modelling the generation of word co-occurrence
patterns (i.e. biterms) in the entire dataset. However, BTM
does not take into consideration the correlations among three
or more words, and so it misses significant information that
derives from extended word co-occurrence.

On the other hand, non-negative matrix factorization (NMF)
is a quite common technique for learning topics in text
mining tasks. In this context, NMF has been successfully

employed in text clustering applications. Two relatively recent
methods based on NFM were introduced in [9] and [10],
respectively. The former explored term correlation data to
tackle the problem of data sparseness. Regarding the latter,
the authors proposed a novel term weighting scheme for NMF,
derived from the Normalized Cut (Ncut) problem on the term
affinity graph.

The research for word co-occurrence patterns in short
text document collections led to methods that extended the
traditional Vector Space Model. For example, the Generalized
Vector Space Model of [7] constructs the term-term correlation
matrix by randomly sampling terms with probabilities that are
proportional to the lengths of their vectors.

Alternatively, some techniques attempt to address the spar-
sity problem by employing external sources of information,
with the aim of enriching the representation of short texts
with additional features. Examples of such sources include
Wikipedia [3], WordNet [11], HowNet [12], search engines
[4], and others. The most important disadvantage of these
approaches is that the communication involved and the subse-
quent retrieval of relevant information is a very expensive pro-
cedure. In addition, some of these external information sources
do not provide unlimited access and tight usage restrictions
may hold [13]. These drawbacks led to the introduction of
several corpus-based methods that use no external information
in mining short text data [2], [5].

A portion of the relevant research works employed con-
cept decomposition methods, based on the identification of
common concepts shared among similar documents in the
corpus. Spherical k-means was among the first algorithms that
introduced concept vectors to perform text clustering [14].
Instead of creating concept vectors from the cluster centroids,
the method of [1], identifies semantic word communities from
a weighted word co-occurrence network.

On a wider scope, [15] introduced a a parameter-free
multiview clustering approach for detecting coherent groups in
crowd scenes. On the other hand, [16] extended the problem
by performing clustering on text streams by introducing an
online method which integrates the word occurrence semantic
information into a graphical model. Finally, [17] proposed a
data clustering algorithm based on the factorization of the
projected affinity matrix.

III. OVERVIEW AND NOTATION

Let us consider a corpus D composed of n short text
documents, {d1, . . . , dn}. According to the established vector
space model, each document di ∈ D can be represented by
a vector xi = {xi1, . . . , xili}, where xij is the weight of the
jth term of di. On the other hand, li denotes the length of di
in number of terms, in other words, the dimensionality of xi.

In many applications, the weights xij are determined by
adopting the tf -idf approach, that is,

xij = tfij · log(n/fj). (1)

In this formula, tfij and fj represent the number of the
occurrences of the jth term in di and in the entire corpus,

respectively. By adopting this strategy, the corpus D is finally
transformed into the vector space X = {x1, . . . ,xn}.

The problem of hard clustering concerns the partitioning
of the space X into a number of non-overlapping subspaces
{C1, . . . , Ck}, so that each vector xi falls into exactly one of
these subspaces. The goal of a clustering algorithm focuses
on the construction of subspaces that accommodate similar
elements. In the context of text clustering, this requirement
may concern documents of the same or similar semantics, or
documents belonging to the same category or class.

According to the related theory of vector projection, a
vector x, initially belonging to the space X, can be projected
onto another space X′ by multiplying it with an orthogonal
projection matrix P (that is, P = P 2 = PT). For example,
to project a three dimensional vector onto a plane one must
multiply it with a square 3×3 matrix P that has all its elements
equal to zero apart from p11 = p22 = 1.

Vector projection is a common technique for reducing the
dimensionality of the underlying feature space in machine
learning tasks. It has numerous benefits, such as the reduced
space and time complexity of the relevant algorithms. For this
reason, a vast amount of research has been devoted to the
development of effective dimensionality reduction methods in
many problems, including text clustering.

IV. SHORT TEXT CLUSTERING WITH VECTOR PROJECTION

This section is organized into two parts that present in
details the two stages of VEPHC. Hence, Subsection IV-A de-
scribes the initial formation of the clusters, whereas Subsection
IV-B presents a post-processing cluster refinement stage.

A. Stage 1: Feature Vector Projection (VEP Part)

The first stage of VEPHC (also called as VEP part), is
inspired by two recent algorithms for matching product titles,
namely [18] and [19]. The core idea is to project the vector
representations of all similar documents onto the same vector
space. Then, the documents that belong to the same vector
space will be eventually grouped into the same cluster.

To achieve this, an integer hyper-parameter K is set. Then,
for each input vector xi with dimensionality li we construct
a set X′i containing all the possible projections of xi with a
dimensionality of 1, 2, . . . ,K elements. That is, we create all
the {1, 2, . . . ,K}-combinations of the elements of xi.

For example, consider a document di of 4 terms t1, t2, t3, t4
having weights x1, x2, x3, x4, respectively. So, the vector
representation of di will be xi = {x1, x2, x3, x4}. Now,
for the setting K = 3, X′i will accommodate the follow-
ing projections of xi: {x1}, {x2}, {x3}, {x4}, {x1, x2},
{x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4}, {x1, x2, x3},
{x1, x2, x4}, {x1, x3, x4}, and {x2, x3, x4}.

Each of these projections is considered as a candidate cluster
label. The objective now is to identify the most appropriate
(namely, the dominant) candidate that will lead into a homo-
geneous and complete cluster. In this way, all the documents
that share a common dominant candidate will be considered as
similar and, thus, they will be grouped into the same cluster.

For this reason, each projection x′ij ∈ X′i is assigned a score
value Sx′

ij
according to the following equation:

Sx′
ij
=

1

lx′
ij

log fx′
ij

∑
∀xij∈x′

ij

xKij , (2)

where fx′
ij

is the frequency of the projection vector x′ij and
lx′

ij
is its dimensionality. The highest scoring projection x∗i is

then declared as the dominant projection of xi and labels a new
cluster. Then, all documents that have dominant projections
that lie in the same vector space as x∗i , are placed into the
(same) cluster that has been labeled by x∗i .

Now let us present the properties of Eq. 2 and justify its
form. One conclusion that easily derives from the proposed
methodology is that all the documents inside the same cluster
share at least those words which are also included in the dom-
inant projection. For example, if x1 = {x1, x2, x3, x4, x5},
x2 = {0, x2, x3, x4, 0}, and x∗1 = x∗2 = {x2, x4}, then it
follows that x1 and x2 share at least t2 and t4.

Apparently, the higher the dimensionality of the dominant
projection vector, the more similar documents the correspond-
ing cluster contains. This is because the documents included
in that cluster will have more words in common. Equivalently,
the higher the dimensionality of the dominant projection
vector, the more homogeneous the corresponding cluster is.
On the other hand, the sparsity of short texts make it difficult
for two documents to share numerous words. Therefore, the
second conclusion obtained is that high dimensional dominant
projections lead to less complete clusters.

The existence of the sum in Eq. 2 definitely favors the high
dimensional projection vectors. Consequently, it is oriented
towards the homogeneity of the clusters. However, this is
balanced by placing the dimensionality of the projection vector
into the denominator of the first term of Eq. 2; its integration
there increases the completeness of the produced clusters. The
goal of completeness is also served by fx′

ij
: it boosts the highly

frequent (i.e., contained in many documents) vectors.
Furthermore, notice that a similar strategy must be followed

for the selection of the value of K. In general, small values
of K lead to complete and inhomogeneous clusters and vice
versa. Typical values for K range from 2 to 6. Our experiments
showed that larger values of K lead to degraded performance,
combined with exponentially increased execution times.

As stated earlier, the documents are commonly transformed
into vectors by applying tf -idf (Eq. 1), a method adopted by
this work too. Hence, the combination of Eqs. 1 and 2 leads
to the following formula for scoring the projection vectors:

Sx′
ij
=

1

lx′
ij

log fx′
ij

∑
∀xij∈x′

ij

(
tfij · log

n

fj

)K
. (3)

Finally, we must note that some relevant works ([2], [8])
criticize the usage of tf -idf in short text documents since in
the vast majority of cases it holds that tf = 1. Our experiments
verified that, indeed, the omission of tfij from Eq. 3 has a very
small impact on the computed scores.

B. Stage 2: Cluster Refinement (HC Part)
At this point, the dominant projections of the input short

text documents have been computed. According to Subsection
IV-A, each dominant projection corresponds to a cluster that
contains all the documents with projections lying in the same
vector space. Next, we introduce the second stage of VEPHC,
which is designed to further improve the homogeneity and the
completeness of the generated clusters.

Before we proceed with the description of the algorithm,
we present the necessary notation. So, the universe that
accommodates all the clusters is denoted by C and c ∈ C
is a member of C. A candidate cluster for accepting a new
element x is denoted by c′, whereas c∗ is the most similar (i.e.,
less distant) cluster to x. We also require a special cluster C
for temporarily storing the deleted elements. Finally, nc is the
maximum number of elements contained in a cluster of C.

In addition, this stage requires the computation of the
similarity between an element x and a cluster c. The relevant
literature contains various methods for this purpose, including
the simple and complete linkage, the Euclidean distance from
the centroid of c, the Ward method, etc. In this work, we
utilized the clustroid uc; that is, the element of c that has
the maximum similarity with the rest of the elements of c. In
contrast to centroids, the clustroids are real elements and have
been proved more effective in text clustering applications.

The cluster refinement stage depends on two similarity
thresholds. The first one is called the homogeneity threshold
Th and determines whether an item should be removed from
a cluster or not. As its name suggests, Th is a factor that
regulates the homogeneity, since it decides for the eviction of
dissimilar elements from a cluster. On the other hand, Tc is
the completeness threshold and indicates the appropriateness
of an item for being inserted into a cluster. It also controls the
merging process of two similar clusters into a larger one.

The HC Part of VEPHC is divided into two phases. The
first phase transfers elements from one cluster to another, more
similar one. If this is not possible, a new cluster is created and
the deleted element is moved there. After this operation, the
second phase merges highly similar clusters into a larger and
more complete cluster.

1) Element Transfer and Creation of New Clusters: The
basic operations of phase 1 are presented in Algorithm 1. The
process begins with the initialization of the special cluster C
that will temporarily handle the deleted elements. The clustroid
for each cluster is also computed at this point (steps 2–4).

The purpose of steps 5–25 is to detect elements that are
loosely connected to their clusters. Such elements are immedi-
ately deleted from their clusters and moved to a more suitable
cluster, if one exists. Hence, this part aims at improving both
the completeness and the homogeneity of the output clusters.

More specifically, the process iterates through all elements
of all clusters of C. For each item x ∈ c the similarity with
the clustroid uc is computed. If this similarity value Tx,uc

is
smaller than Th, then the item is considered irrelevant to c
and it is evicted from it (steps 7–9). Apparently, this strategy
improves the homogeneity of c.

Algorithm 1: HC Part, Phase 1: Element Transfer and
Creation of New Clusters

1 initialize an empty cluster C;
2 for each cluster c ∈ C do
3 uc ← clustroid of c;
4 end
5 for each cluster c ∈ C do
6 for each element x ∈ c do
7 Tx,uc

← similarity between x and uc;
8 if Tx,uc

< Th then
9 remove x from c;

10 Tmax ← 0, c∗ ← NULL;
11 for each cluster c′ ∈ C do
12 Tx,u′

c
← similarity between x and u′c;

13 if Tx,u′
c
> Tmax then

14 Tmax ← Tx,u′
c
;

15 c∗ ← c′;
16 end
17 end
18 if Tmax ≥ Tc then
19 c∗ ← c∗ ∪ {x};
20 else
21 C ← C ∪ {x};
22 end
23 end
24 end
25 end
26 Cnew ← ∅;
27 for each element x ∈ C do
28 remove x from C;
29 Tmax, c

∗ ← perform steps 11–17 on Cnew;
30 if Tmax ≥ Tc then
31 c∗ ← c∗ ∪ {x};
32 else
33 create and initialize new cluster cnew ← ∅;
34 cnew ← cnew ∪ {x}, ucnew

← x;
35 C ← C ∪ {cnew}, Cnew ← Cnew ∪ {cnew};
36 end
37 end

Next, a search for the most similar cluster c∗ is performed.
The loop in the steps 11–17 treats all clusters as candidates
and identifies the candidate c∗ that has the maximum similarity
Tmax with x. If Tmax ≥ Tc, then the document is highly
related to c∗ and it is transferred there. In the opposite case,
it is inserted in the special cluster C for further processing.
Notice how this approach improves the completeness of c∗.

Now the issue is to determine the destiny of the elements
of C that have been left without a cluster. Although these
elements match none of the existing clusters, they could match
each other. The steps 26–37 show that an evicted item may
lead to the creation of a new cluster. However, before this is
done, we firstly check if it matches any of the newly created
clusters Cnew. If it does, we move it to its most similar cluster.

Algorithm 2: HC Part, Phase 2: Cluster Merging

1 for each cluster c ∈ C do
2 uc ← clustroid of c;
3 end
4 sim array[∗]← 0, msc array[∗]← −1;
5 for each cluster c ∈ C do
6 msc array[c]← most similar cluster (MSC);
7 sim array[c]← similarity with MSC;
8 end
9 while merge do

10 merge←FALSE;
11 c′ ←NULL, c′′ ←NULL;
12 for each cluster c ∈ C do
13 Tmax ← 0;
14 if sim array[c] > Tmax then
15 Tmax ← sim array[c];
16 c′ ← c, c′′ ← msc array[c];
17 end
18 end
19 if Tmax > Tc then
20 merge←TRUE;
21 c′ ← c′ ∪ c′′;
22 u′c ← clustroid of c′;
23 msc array[c′]← MSC;
24 sim array[c′]← similarity with MSC;
25 C ← C − {c′′};
26 update msc array, sim array;
27 end
28 end

In the opposite case, a new cluster cnew is created and x is
transferred there. The new cluster is inserted to the universe
C, whereas x becomes its clustroid. Therefore, cnew will be
a candidate during the processing of the next elements of C.

Finally, the worst-case time complexity of Algorithm 1 is
O(|C|n2c + |C|n). The first term concerns the computation of
clustroids (steps 2–4), whereas the second term derives from
the two loops of steps 5–25 and 26–37.

2) Cluster Merging: As stated earlier, during the second
phase the highly similar clusters are merged into larger and
more complete clusters. This is performed in a spirit that
is similar to the traditional agglomerative clustering method.
Algorithm 2 summarizes the basic steps of the operation.

Initially, the clustroids are computed for all clusters (steps
1–3). In the sequel, two auxiliary arrays are created and
initialized. Namely, msc array and sim array store in their
ith element the most similar cluster of ci and the value of the
similarity between their clustroids, respectively.

These arrays will be employed later in the cluster merging
loop (steps 9–28). The execution flow is controlled by a
boolean variable merge that is immediately set to false at the
beginning of each iteration. If a merging between two clusters
is possible during the current iteration, merge becomes equal
to true to allow the execution of the next iteration. On the

other hand, if no similarity exceeds Tc, merge remains false
and the merging process is terminated at this point.

Now, inside the loop, the most similar pair of clusters c′ and
c′′ is identified at steps 11–18. If their similarity exceeds the
aforementioned completeness threshold Tc, then c′ and c′′ are
merged. This is performed by transferring all the elements of
c′′ to c′ and subsequently deleting c′′. Finally, the new clustroid
of c′ is computed, and its most similar cluster is stored in the
corresponding position of msc array.

The worst-case time complexity of Algorithm 2 is upper
bounded by O(|C|n2c + |C|2). In details, O(|C|n2c) for steps
1–8, plus O(|C|) for step 4, plus O(|C|2) for steps 5–8, plus
O(|C|(|C|+ n2c)) for the merging loop (steps 9–28).

V. EXPERIMENTS

This section presents the experiments that highlight the
usefulness of the proposed method. It is organized in 4 parts
that describe: i) the employed datasets (Subsection V-A),
ii) the utilized performance evaluation measures (Subsection
V-B), iii) the effects of the hyper parameter K in the perfor-
mance of VEPHC (Subsection V-C), and iv) the results of the
performance evaluation against numerous clustering methods.

A. Datasets

The evaluation process was performed by utilizing two real-
world experimental datasets. The first one1, (abbrev. PRUN),
consists of 35311 product titles that were acquired by manually
crawling PriceRunner2, a popular online product comparison
platform. The titles in this dataset are grouped in 13233
clusters of similar products that match each other. The average
and maximum title lengths are 8.23, and 41 terms, respectively.

The second dataset, named UNA, is a subset of the UCI
News Aggregator dataset3 that we created by random sam-
pling. This was done to allow some slow methods (e.g.,
Agglomerative) to be executed within acceptable times. This
subset comprises 50138 titles of news articles, grouped in 823
distinct stories (i.e., clusters). The titles of the news articles
were shorter than those of the products, since they included on
average 7 terms, whereas the longer among them had 15 terms.
Table I summarizes the characteristics of these two datasets.

TABLE I
EXPERIMENTAL DATASETS

n |C| lmax lave
PriceRunner (PRUN) 35311 13233 41 8.23
UCI News Aggregator (UNA) 50138 823 15 7.05

B. Evaluation Measures

The performance of the compared algorithms was measured
by calculating the values of F1 and NMI (Normalized
Mutual Information). Both of them are commonly utilized
in the relevant literature for evaluating clustering methods.

1https://www.kaggle.com/lakritidis/product-classification-and-
categorization

2https://www.pricerunner.com/
3https://www.kaggle.com/uciml/news-aggregator-dataset

2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

Pe
rf

or
m

an
ce

Precision Recall F1 NMI

2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

Pe
rf

or
m

an
ce

Fig. 1. Performance fluctuation of VEPHC (without the verification stage) against varying values of the hyper parameter K, on the PriceRunner (left), and
UCI News Aggregator (right) datasets.

B. Evaluation Measures

The performance of the compared algorithms was measured
by calculating the values of F1 and NMI (Normalized Mutual
Information). Both of them are commonly utilized in the
relevant literature for evaluating clustering methods. More
specifically, F1 is a score that determines the clustering
accuracy and is given by the formula:

F1 = 2PR/(P +R), (4)

where P and R denote Precision and Recall, respectively. The
computation of P and R was performed by firstly creating
all pairwise matches between the elements of all constructed
clusters. In the sequel, the created matches were compared
against the ground truth matches, thus allowing the calculation
of the number of the True/False Positive/Negative entries.

On the other hand, NMI measures the mutual information
shared by the cluster assignments C of the algorithm in
question and the ground truth clusters CT :

NMI(CT , C) = 2
I(CT ;C)

H(CT) +H(C)
(5)

where H(CT) and H(C) represent the entropies of the la-
belled and clustered sets respectively, whereas I(CT ;C) =
H(C)−H(C|CTG) is the mutual information shared between
C and CT .

C. The impact of K in the Performance of VEPHC

As stated earlier, K is a crucial hyper parameter of VEPHC,
since it determines the upper bound of the dimensionality
of the produced projection vectors. Figure 1 illustrates the
impact of this hyper parameter in the overall performance of
the proposed algorithm. The performance fluctuations on the
PRUN and UNA datasets are depicted on the left and right
diagrams, respectively. Each diagram contains the plots of

the four aforementioned evaluation metrics, namely, Precision,
Recall, F1 and NMI. Notice that in order to accurately
estimate the impact of K, we report the performance of the
VEP part of the proposed algorithm only.

On the PRUN dataset, the values of all four metrics were
maximized by setting K = 6. In particular, F1 and NMI
were measured equal to 0.323 and 0.928, respectively. On the
other hand, for K = 2, the Precision was very small and this
directly affected the value of F1, according to Eq. 4. NMI
was approximately equal to 0.802 for this setting. The plotted
curves show that the values of all measures were progressively
improved as the value of K was increased.

In contrast, on the UNA dataset the variations in the value
of K led to only slight performance changes. Therefore, the
impact of K in this case was smaller than it was on the PRUN
dataset. This is especially true for values of K ≥ 3, where
all four evaluation metrics are modified by only infinitesimal
margins. Another difference is that here, F1 and NMI were
maximized for K = 2. More specifically, their values were
found roughly equal to 0.408 and 0.837, respectively. This
observation reveals that the best projections of the initial
feature vectors were the two-dimensional ones and correspond
to plain pairs of words (that is, bigrams).

The discrepancies between the performance differences on
the two datasets lead to the remarkable inference that the ideal
value of K depends on the number n of input documents vs.
the number |C| of the generated clusters. Equivalently, the
ideal K value depends on the ratio n/|C|.

Particularly, if n/|C| is high, then the number of clusters
is relatively small, which also means that these few clusters
will accommodate numerous data points. Thus, according to
the discussion of Subsection IV-A, this situation is better
served by small values of K, since this setting creates very
low-dimensional projector vectors that correspond to few,

Fig. 1. Performance fluctuation of VEPHC (without the verification stage) against varying values of the hyper parameter K, on the PriceRunner (left), and
UCI News Aggregator (right) datasets.

More specifically, F1 is a score that determines the clustering
accuracy and is given by the formula F1 = 2PR/(P +R),
where P and R denote Precision and Recall, respectively. The
computation of P and R was performed by firstly creating
all pairwise matches between the elements of all constructed
clusters. In the sequel, the created matches were compared
against the ground truth matches, thus allowing the calculation
of the number of the True/False Positive/Negative entries.

On the other hand, NMI measures the mutual information
shared by the cluster assignments C of the algorithm in
question and the ground truth clusters CT :

NMI(CT , C) = 2
I(CT ;C)

H(CT) +H(C)
(4)

where H(CT) and H(C) are the entropies of the labelled and
clustered sets respectively, and I(CT ;C) = H(C)−H(C|CT)
is the mutual information shared between C and CT .

C. The impact of K in the Performance of VEPHC

As stated earlier, K is a crucial hyper parameter of VEPHC,
since it determines the upper bound of the dimensionality of
the produced projection vectors. Figure 1 illustrates the impact
of K in the overall performance of the proposed algorithm.
The performance fluctuations on the PRUN and UNA datasets
are depicted on the left and right diagrams, respectively.
Each diagram contains the plots of the four aforementioned
evaluation metrics, namely, Precision, Recall, F1 and NMI .
In order to accurately estimate the impact of K, we report the
performance of the VEP part of the proposed algorithm only.

On the PRUN dataset, the values of all four metrics were
maximized when K = 6. In particular, F1 and NMI were
measured equal to 0.323 and 0.928, respectively. On the other
hand, for K = 2, the Precision was very small and this directly
affected the value of F1. NMI was roughly equal to 0.802 for
this setting. The plotted curves show that all measures were
progressively improved as the value of K was increased.

In contrast, on the UNA dataset the variations in the value
of K led to only slight performance changes. Therefore, the

impact of K in this case was smaller than it was on the PRUN
dataset. This is especially true for values of K ≥ 3, where
all four evaluation metrics are modified by only infinitesimal
margins. Another difference is that here, F1 and NMI were
maximized for K = 2. More specifically, their values were
found roughly equal to 0.408 and 0.837, respectively. This
observation reveals that the best projections of the initial
feature vectors were the two-dimensional ones and correspond
to plain pairs of words (that is, bigrams).

The discrepancies between the performance differences on
the two datasets lead to the remarkable inference that the ideal
value of K depends on the number n of input documents vs.
the number |C| of the generated clusters. Equivalently, the
ideal K value depends on the ratio n/|C|.

Particularly, if n/|C| is high, then the number of clusters
is relatively small, which also means that these few clusters
will accommodate numerous data points. Thus, according to
the discussion of Subsection IV-A, this situation is better
served by small values of K, since this setting creates very
low-dimensional projector vectors that correspond to few,
complete, and inhomogeneous clusters. On the contrary, if
n/|C| is small, then, obviously, the number of the created
clusters is high. This means that they contain fewer data points,
making them more homogeneous and less complete.

D. Performance Evaluation

In this subsection we compare the proposed VEPHC method
with a series of existing state-of-the-art clustering techniques.
More specifically, we implemented four generic data clustering
algorithms, including DBSCAN [20], Leader Clustering [21],
Agglomerative Clustering, and k-Means. The first three among
them require the setting of a similarity threshold (as a hyper
parameter) that determines whether two clusters are similar
enough to be merged, or an element is similar to a cluster. We
executed each of these three methods ten times with different
values of the similarity threshold and we report the best run.
Regarding k-Means, we used random initialization and we set

TABLE II
PERFORMANCE EVALUATION OF VARIOUS CLUSTERING ALGORITHMS ON THE PRICERUNNER AND UCI NEWS AGGREGATOR DATASETS

Method Setup PriceRunner UCI News Aggregator
F1 NMI Time F1 NMI Time

VEPHC K1 = 6,K2 = 2 0.385 0.946 305.1 0.471 0.851 10.2
k-Means k = |C|, I = 10 0.048 0.399 494.2 0.028 0.697 104.3
Agglomerative – 0.314 0.935 166.7 0.454 0.835 2492.8
Leader Clustering – 0.306 0.934 17.2 0.284 0.778 17.1
DBSCAN minPoints = 2 0.055 0.425 58.4 0.256 0.790 130.5
GSDMM-1 α = β = 0.1, k = 1.5 · |C| 0.002 0.404 3246.2 0.171 0.753 390.4
GSDMM-2 α = 0.001, β = 0.01, k = 1.5 · |C| 0.008 0.631 3317.3 0.424 0.820 453.9
Spherical k-Means k = |C|, I = 10 0.226 0.903 426.1 0.335 0.757 119.6
vk-Means k = |C|, I = 10 0.220 0.900 484.4 0.154 0.614 104.7
Cosine similarity tf − idf weights 0.248 – 31.3 0.388 – 75.2
Jaccard Index tf − idf weights 0.237 – 31.5 0.388 – 74.9

k equal to the real number of the clusters, that is, k = |C|. In
DBSCAN, the minPoints parameter that determines whether
a data point is an outlier (noise) or not, was set equal to 2.

We also developed three text clustering methods, namely,
GSDMM [8], Spherical k-Means [1], [14], and another variant
of k-Means (which we named vk-Means), where the centroids
and the Euclidean distances of the original algorithm have been
replaced by clustroids and weighted cosine similarity, respec-
tively. We used two settings for the α and β hyper parameters
of GSDMM: the first one is α = β = 0.1 and complies with
the suggestions mentioned in [8] and [22]. Nevertheless, we
discovered that the setting α = 0.001, β = 0.01 that was uti-
lized in a public implementation4 yielded considerably higher
performance. Additionally, GSDMM requires an estimation of
the real number of clusters. This estimation must be greater
than the real number of clusters. Therefore, we set k = 3|C|/2.
Regarding the number of iterations, in all iterative methods we
adopted the selection of [1] and we set it equal to 10.

Moreover, we report results from the direct application
of two popular string similarity measures, namely, cosine
similarity and Jaccard index. Although they do not constitute
hard clustering methods (in fact, no clusters are constructed),
we considered their comparison with VEPHC interesting. In
both cases, the plain token counts have been replaced by tf -
idf scores. Similarly to the aforementioned data clustering
methods, we executed both metrics 10 times, by setting
different values for the similarity threshold each time.

All the attested algorithms have been implemented in C++
and have been included in SHTECLib5, a short text clustering
library that was developed for the requirements of this work.
The code was executed on a machine equipped with an Intel
CoreI7-7700 and 32GB of RAM, running Linux Mint 19.03.

The results of the performance evaluation of the compared
algorithms are presented in Table II. The second column
briefly reports the values of the various hyper parameters of
each reported method. VEPHC outperformed all the adversary
approaches in terms of F1 and NMI on both datasets.
More specifically, in the PRUN dataset VEPHC achieved

4https://github.com/rwalk/gsdmm
5https://github.com/lakritidis/SHTECLib

F1 = 0.385 and NMI = 0.946. According to Figure 1,
this performance was measured for K = 6. Regarding the
refinement stage, multiple values of Th and Tc led to similar
results, e.g. 0.4 ≤ Th ≤ 0.5 and 0.8 ≤ Tc ≤ 0.9.

The method that followed VEPHC in performance was
agglomerative clustering; its F1 and NMI scores were 0.320,
and 0.936, respectively. In other words, VEPHC outperformed
its strongest adversary by more than 20% in terms of F1, and
more than 1% in terms of NMI . The accuracy of Leader Clus-
tering was also close to the one achieved by Agglomerative
Clustering, that is, F1 = 0.306 and NMI = 0.934.

On the other hand, k-Means and DBSCAN definitely failed
on effectively clustering the products of PRUN, even though
the former was supplied with the correct number of clusters.
The measured values of their F1 and NMI scores were
considerably lower than 0.1 and 0.45, respectively.

Regarding the family of the examined text clustering al-
gorithms, Spherical k-Means and vk-Means had similar per-
formances, with the first being infinitesimally more effective.
Nevertheless, they were both outperformed by VEPHC by
huge margins, ranging from 70% to 75%, respectively, in
terms of F1 scores. However, their achieved NMI scores
were significantly better: 0.903 and 0.9, respectively.

Similarly to k-Means and DBSCAN, GSDMM also failed
in this task in both hyper parameter settings. Although the
relevant literature has highlighted the usefulness of this model,
in this particular case, it was the weakest method among
all. Nevertheless, in our second dataset its performance was
substantially improved and, under the setting α = 0.001, β =
0.01, it became the third most effective approach. In contrast,
under the setting α = 0.1, β = 0.1 that was suggested in [8],
the performance of GSDMM was not satisfactory.

Regarding the UNA dataset, VEPHC was again the most ef-
fective algorithm, achieving F1 = 0.471 and NMI = 0.851.
These values were obtained by setting its hyper parameters to
K = 2, Th = 0.2, and Tc = 0.3. This reveals that VEPHC
requires some fine tuning before it is effectively applied in
datasets with different characteristics.

Similarly to the previous case, the second algorithm in the
performance ranking was Agglomerative Clustering (F1 =
0.454, NMI = 0.834), followed by Spherical k-Means

(F1 = 0.335, NMI = 0.757) and Leader Clustering (F1 =
0.284, NMI = 0.778). Other significant observations include
the low accuracy of k-Means and vk-Means, as well as the en-
hancement of the clustering quality of DBSCAN. Apparently,
density-based clustering worked better on this case.

In Table II we also present indicative running times of the
compared algorithms. As stated earlier, the performance of the
algorithm is significantly affected by the value of the hyper
parameter K. Indeed, in the case of UNA dataset (where K =
2), VEPHC was the fastest method among all. Regarding the
other methods, Leader Clustering was about 1.7 times slower;
GSDMM, all the variants of k-Means and DBSCAN were
outperformed by more than one order of magnitude.

On the PRUN dataset (K = 6), the execution duration
of VEPHC was considerably larger. In particular, Leader,
Agglomerative, and DBSCAN were faster than the proposed
method. The other methods were again outperformed by
VEPHC. As an indication of the effect of K in the overall
running times, we made measurements for K = 2, 3, 4, and 5,
which were 34.5, 30.3, 36.7, and 85.1 seconds, respectively.

Obviously, in the first three cases the overall time is dom-
inated by the HC part. For K ≥ 5 the situation is reversed
and the creation of the projection vectors becomes the main
bottleneck. For K = 5, the performance of VEPHC was
F1 = 0.364 and NMI = 0.935, that is, it still outperformed
all its adversary methods. Notice that with this setting the
execution is more than 3.5 times faster than it was with K = 6;
consequently, it constitutes an attractive alternative.

VI. CONCLUSIONS

In this paper we introduced VEPHC, a two-stage clustering
algorithm for short text documents. The proposed method is
designed to limit the native sparseness and high dimensionality
of short texts, whereas it attempts to improve the homogeneity
and completeness of the generated clusters.

Initially, for each input text vector, VEPHC constructs a set
of low-dimensional projection vectors that include variable-
sized combinations of K features at most. The projections are
then assigned a score by a function that focuses on cluster
homogeneity and completeness. The projection that achieved
the highest score becomes the label of a new cluster. The
documents whose projection vectors lie in the same feature
space are also inserted into the corresponding cluster. During
the second stage, a refinement mechanism further improves
the homogeneity and completeness by transferring elements
from one cluster to another and by merging similar clusters.

VEPHC was evaluated against numerous state-of-the-art
methods by using two real-world datasets, and was found
superior in terms of clustering performance. In particular, it
outperformed 4 generic and 3 text clustering methods in terms
of both F1 and NMI scores.

The main conclusion of this work is that the projection of
the initial feature vectors onto a lower dimensional space is
a promising technique in short text clustering applications.
Further benefits also derive by carefully transferring elements
from one cluster to the other, or by merging similar clusters.

REFERENCES

[1] C. Jia, M. B. Carson, X. Wang, and J. Yu, “Concept decompositions
for short text clustering by identifying word communities,” Pattern
Recognition, vol. 76, pp. 691–703, 2018.

[2] C. T. Zheng, C. Liu, and H. San Wong, “Corpus-based topic diffusion
for short text clustering,” Neurocomputing, vol. 275, pp. 2444–2458,
2018.

[3] S. Banerjee, K. Ramanathan, and A. Gupta, “Clustering short texts using
Wikipedia,” in Proceedings of the 30th ACM Conference on Research
and Development in Information Retrieval, 2007, pp. 787–788.

[4] M. Sahami and T. D. Heilman, “A Web-based kernel function for
measuring the similarity of short text snippets,” in Proceedings of the
15th International Conference on World Wide Web, 2006, pp. 377–386.

[5] D. Pinto, P. Rosso, and H. Jiménez-Salazar, “A self-enriching method-
ology for clustering narrow domain short texts,” The Computer Journal,
vol. 54, no. 7, pp. 1148–1165, 2011.

[6] X. Yan, J. Guo, Y. Lan, and X. Cheng, “A biterm topic model for short
texts,” in Proceedings of the 22nd International Conference on World
Wide Web, 2013, pp. 1445–1456.

[7] S. Seifzadeh, A. K. Farahat, M. S. Kamel, and F. Karray, “Short-
text clustering using statistical semantics,” in Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 805–810.

[8] J. Yin and J. Wang, “A Dirichlet multinomial mixture model-based
approach for short text clustering,” in Proc. of the 20th ACM Conference
on Knowledge Discovery and Data Mining, 2014, pp. 233–242.

[9] X. Yan, J. Guo, S. Liu, X. Cheng, and Y. Wang, “Learning topics in
short texts by Non-Negative Matrix Factorization on term correlation
matrix,” in Proceedings of the 2013 SIAM International Conference on
Data Mining, 2013, pp. 749–757.

[10] X. Yan, J. Guo, S. Liu, X.-q. Cheng, and Y. Wang, “Clustering
short text using ncut-weighted non-negative matrix factorization,” in
Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, 2012, pp. 2259–2262.

[11] X. Hu, N. Sun, C. Zhang, and T.-S. Chua, “Exploiting internal and exter-
nal semantics for the clustering of short texts using world knowledge,” in
Proceedings of the 18th ACM International Conference on Information
and Knowledge Management, 2009, pp. 919–928.

[12] L. Wang, Y. Jia, and W. Han, “Instant message clustering based on
extended Vector Space Model,” in 2nd International Symposium on
Intelligence Computation and Applications, 2007, pp. 435–443.

[13] D. Milne, O. Medelyan, and I. H. Witten, “Mining domain-specific the-
sauri from Wikipedia: A case study,” in IEEE/WIC/ACM International
Conference on Web Intelligence, 2006, pp. 442–448.

[14] I. S. Dhillon and D. S. Modha, “Concept decompositions for large sparse
text data using clustering,” Machine Learning, vol. 42, no. 1-2, pp. 143–
175, 2001.

[15] Q. Wang, M. Chen, F. Nie, and X. Li, “Detecting coherent groups in
crowd scenes by multiview clustering,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 1, pp. 46–58, 2018.

[16] J. Kumar, J. Shao, S. Uddin, and W. Ali, “An online semantic-enhanced
Dirichlet model for short text stream clustering,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
2020, pp. 766–776.

[17] M. Chen, Q. Wang, and X. Li, “Adaptive projected matrix factorization
method for data clustering,” Neurocomputing, vol. 306, pp. 182–188,
2018.

[18] L. Akritidis, A. Fevgas, P. Bozanis, and C. Makris, “A self-verifying
clustering approach to unsupervised matching of product titles,” Artifi-
cial Intelligence Review, pp. 1–44, 2020.

[19] L. Akritidis and P. Bozanis, “Effective unsupervised matching of product
titles with k-combinations and permutations,” in Proceedings of the 14th
IEEE International Conference on Innovations in Intelligent Systems and
Applications, 2018, pp. 1–10.

[20] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the 2nd International Confernece on Knowledge
Discovery and Data Mining, 1996, pp. 226–231.

[21] H. Spath, Cluster analysis algorithms for data reduction and classifica-
tion of objects. Ellis Horwood Chichester, 1980.

[22] J. Yin and J. Wang, “A text clustering algorithm using an online
clustering scheme for initialization,” in Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2016, pp. 1995–2004.

