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Abstract—Short text clustering deals with the problem of
grouping together semantically similar documents with small
lengths. Nowadays, huge amounts of text data is being generated
by numerous applications such as microblogs, messengers, and
services that generate or aggregate entitled entities. This large
volume of highly dimensional and sparse information may easily
overwhelm the current serial approaches and render them ineffi-
cient, or even inapplicable. Although many traditional clustering
algorithms have been successfully parallelized in the past, the
parallelization of short text clustering algorithms is a rather
overlooked problem. In this paper we introduce pVEPHC, a
short text clustering method that can be executed in parallel in
large computer clusters. The algorithm draws inspiration from
VEPHC, a recent two-stage approach with decent performance
in several diverse tasks. More specifically, in this work we employ
the Apache Spark framework to design parallel implementations
of both stages of VEPHC. During the first stage, pVEPHC
generates an initial clustering by identifying and modelling
common low-dimensional vector representations of the original
documents. In the sequel, the initial clustering is improved in the
second stage by applying cluster split and merge operations in
a hierarchical fashion. We have attested our implementation on
an experimental Spark cluster and we report an almost linear
improvement in the execution times of the algorithm.

Index Terms—short text clustering, clustering, machine learn-
ing, big data, parallel algorithms, Spark

I. INTRODUCTION

The problem of short text clustering concerns the unsuper-
vised grouping of semantically similar documents into distinct,
non-overlapping clusters. It is an emerging field of research
with an enormous number of important applications. Indica-
tive examples include the clustering of entitled entities (e.g.
news articles, scientific articles, products, etc.) for retrieval
and aggregation purposes, the discovery of knowledge from
microblogs, the sentimental analysis of user comments and/or
reviews in online communities, and numerous others.

In the majority of the aforementioned cases, the volume
of data that must be processed is huge and increases, or
changes at high rates. In such challenging conditions, a serial
algorithm running on a single workstation can be quickly
overwhelmed and become unable to handle the input data
efficiently. For this reason, the development of distributed
machine learning algorithms that can be executed in parallel
by multiple processing units is a strong and straightforward

solution. Here the term “processing unit” is rather abstract and
it may concern a standard CPU process, a CPU/GPU thread,
a virtual or a physical workstation, etc.

In the past years, there has been a significant amount of
research towards the introduction of parallel data clustering
algorithms. These efforts primarily focused on the traditional
algorithms such as k-Means [1], [2], hierarchical clustering
[3], [4], [5], spectral clustering [6], [7], DBSCAN [8], [9] and
so on. Conforming to the present requirements for efficiently
processing large volumes of text data, some recent works
introduced state-of-the-art parallel algorithms for clustering
massive document collections, [10], [11], [12].

In this paper we present a parallel short text clustering
algorithm which originates from VEPHC (the name derives
from Vector Projection - Hierarchical Clustering), a recently
introduced method for grouping similar short documents [13],
[14]. The new algorithm, called parallel VEPHC (or simply
pVEPHC), was designed to render VEPHC capable of effi-
ciently processing large document collections by employing
the Spark framework [15]. Spark was chosen over the well-
established Hadoop MapReduce [16] due to its ability to
handle massive amounts of data in main memory, its flexibility
in programming multiple successive operations in a single job,
its state-of-the-art job scheduler that organizes the execution
plan via a directed acyclic graph, and several other features
that render it faster and more attractive than its predecessor.

The original VEPHC algorithm includes two phases. The
first one processes the dataset, and for each input document,
it constructs a representative vectorial representation called the
Dominant Reference Vector (DRV) [14]. This is performed by
forming and scoring all possible word combinations (called
Projection Vectors (PVs)) of the document, under the con-
straint of a hyper-parameter k that determines their maximum
length. Then, the PV with the highest score becomes the DRV
of that document and its dimensional space is subsequently
utilized to form a new space where the document is projected.
At the end of the first phase, all the documents that have
been projected onto the same dimensional space are grouped
together into the same cluster. It is noticeable that this de-
sign allows VEPHC to automatically estimate the number of
clusters without requiring prior knowledge of this number.



The parallelization of this procedure seems straightforward.
However, the scoring function of the PVs requires several
diverse pieces of information (e.g. word inverse document
frequencies, the PV frequency in the corpus, and others),
therefore, a carefully designed execution plan is required. This
plan includes i) the vectorization of the documents by using
a previously constructed word dictionary, ii) the construction
and the partial scoring of PVs, iii) the final scoring of PVs
(by integrating the PV frequency into the scoring function)
and the declaration of the DRV, and iv) the projection of the
documents onto the space that is determined by that DRV.

The second phase continues from the point where the first
phase stopped. Its role is to improve the original clusterings
by applying a hierarchical procedure where the clusters are
merged together (if they are similar enough), or new clusters
may be formed. The parallelization of hierarchical clustering
is achieved by solving the Minimal Spanning Tree problem
on a fully connected graph of the involved data points [5].

The rest of the paper is organized as follows: Section II
contains an overview of the relevant literature on parallel
clustering algorithms. Section III provides a brief description
of the two stages of the serial VEPHC algorithm, whereas
the two subsections of Section IV describe the parallelization
strategy for each of these stages. The contributions of this pa-
per were experimentally attested on a Spark cluster; the results
are analyzed in Section V. Finally, Section VI summarizes the
conclusions of this work and provides some future insights.

II. RELATED WORK

Clustering is one of the most well-studied problems in the
data mining and machine learning disciplines. The literature
contains a variety of solutions based on different strategies.

The matrix decomposition and factorization methods consti-
tute one of the most popular techniques in the area [17], [18].
In particular, Non-negative Matrix Factorization (NMF) is a
generic mathematical method that applies well to the problem
of text clustering [19]. In the context of short text, NMF
was enriched with additional features (e.g. term co-occurrence
[20], and word weighting [21]) to confront the native problem
of data sparseness. Furthermore, DNMF is another notable
extension of NMF that takes into consideration the geometric
form of both the underlying data and feature manifolds [22].

Another category of text clustering methods is based on
topic modelling approaches such as Latent Dirichlet Allocation
(LDA) [23], [24]. Among the numerous models of this family,
GSDMM constitutes a state-of-the-art method that iteratively
performs Gibbs sampling on data with Dirichlet Multinomial
Mixture distribution [25]. On the other hand, BTM (BiTerm
Model) achieves clustering by identifying and modelling the
word co-occurrence patterns that exist in the corpus [26].

This article introduces a parallel version of VEPHC, a
short-text clustering algorithm that was introduced in [13] and
further extended in [14]. VEPHC draws its origins from an
unsupervised entity matching method that focused on product
entities in online comparison platforms [27], [28]. It is a two-
stage algorithm that initially generates clusters by identifying

common dominant lower-dimensional representations of the
documents. In the sequel, the clustering is improved firstly by
removing the most dissimilar items from the clusters, and then,
by merging the derived clusters in an hierarchical fashion.

The recent information explosion on the Web, the growth
of popular online communication networks and the emergence
of novel applications rendered the parallelization of the text
clustering methods particularly important. For this reason, a
large number of researchers focused on this problem and
devised solutions for the traditional algorithms, based on the
well-established MapReduce and Spark frameworks. In addi-
tion, another portion of relevant works addressed the problem
by studying techniques based on the modern parallelization
hardware such as shared/distributed memory CPUs, GPUs,
multi-threaded processes, and so on.

In this context, [2] presented a GPU accelerated k-Means
method, whereas [1] and [29] introduced variants of k-Means
for the MapReduce framework. Furthermore, [30] and [31]
provided parallel implementations of the algorithm for MPI
and shared memory multiprocessors respectively. Regarding
hierarchical clustering, a parallel algorithm for distributed
memory multiprocessor architectures was studied in [4]. Also,
in [5] the authors proposed an interesting Spark algorithm that
formulates the problem as a minimal spanning tree problem;
we adopted this approach during the agglomeration of the
clusters in the last part of pVEPHC. A survey on the most
important previous works on parallel hierarchical clustering is
provided in [3]. The literature also contains parallel variants
of spectral clustering [6], [7], DBSCAN [8], [9], affinity
propagation [32], OPTICS [33], mean shift [34], and others.

Although the parallelization of the traditional algorithms is
a well-studied problem, this does not apply to the short text
clustering algorithms. In particular, [35] studied a Hadoop-
based k-Means variant for short documents. In [10] the au-
thors introduced another parallel k-Means algorithm based
on neighbors and devised a parallel pair-generating technique
to construct the neighbor matrix. Moreover, [36] adapted
the Jarvis-Patrick algorithm in MapReduce and conducted
experiments which demonstrated the efficiency of their work.
Finally, [12] proposed a Spark parallel method with the aim
of addressing the problem of high dimensionality through the
implementation of a novel document hashing strategy.

III. PRELIMINARY ELEMENTS

Here we briefly describe the two stages of VEPHC and we
introduce all the necessary background elements that will be
employed during the design of the parallel algorithm.

Given a document vector x and an integer hyperparameter
k ≥ 2, a projection vector (PV) px of x is defined as a vector
with components that derive from an arbitrary combination of
at most k components of x. Moreover, we introduce the set
Px,k that contains all the PVs of x with respect to k. Hence, for
a document vector x = (black, cats, white, dogs) and a setting
k = 3, the set Px,k will include the following PVs: (black,
cats), (black, white), (black, dogs), (cats, white), (cats, dogs),



(white, dogs), (black, cats, white), (black, cats, dogs), (black,
white, dogs), and (cats, white, dogs).

According to [14], each PV px ∈ Px,k is assigned a score
that is computed by applying the following function:

Spx =
1

lpx

log(fpx + 1)
∑
px

pkx,i. (1)

Equation 1 incorporates the length of the projection vector lpx

and its frequency in the collection fpx . In addition, it sums up
the coefficients of its components px,i raised in the kth power.
The simplest approach for specifying the values of px,i is to
adopt the well-known tf − idf model:

px,i = tfi · IDF(wi), (2)

where tfi represents the number of the occurrences of the ith
word of x in x, and IDF(wi) is its inverse document frequency:

IDF(wi) = log(n/tfi), (3)

Apart from tf− idf , [14] introduced tp− idf , a technique that
additionally takes into consideration the position(s) ri,j of a
word wi in a document x:

px,i = IDF(wi)
∑
∀wi∈x

1

α+ log(ri,j + 1)
(4)

where α ∈ [0, 1] is a decimal hyperparameter that regulates
the importance of the position(s) of a word in the final score.
Observe that the summation term in Eq. 4 rewards the potential
multiple occurrences of a word wi in a document x.

After the scoring of each PV, the algorithm selects the one
that achieved the highest score and declares it as the Dominant
Reference Vector (DRV) p∗x of x. In the sequel, the unit
components of p∗x are used to set up a lower dimensional space
where x is eventually projected. The first stage of VEPHC
concludes by grouping together all the documents that have
been projected onto the same (lower) dimensional space.

The second stage introduces a post-processing procedure
with the aim of enhancing the clustering quality of the
previous phase. Initially, the algorithm traverses the existing
cluster universe U and for each cluster C ∈ U it computes
its clustroid element πC (namely, the element that exhibits
the highest similarity with the rest of the elements of C).
Simultaneously, all the elements of C that are not similar
enough to πC are removed from C and they form an equal
number of new clusters. These new clusters are appended to
U and in the sequel, an agglomerative procedure is executed
iteratively in order to merge the most similar clusters. The
process terminates when no clusters can be further merged,
with respect to a pre-defined similarity threshold T .

IV. PARALLEL SHORT TEXT CLUSTERING

This section presents in details the key elements of the
proposed parallel Spark algorithm. It is organized in two
subsections, where the two stages of pVEPHC are analyzed
and the design choices are explained.

Spark supports three types of data structures to safely
distribute data across a cluster of interconnected nodes

(called executors): i) Resilient Distributed Datasets (RDDs),
ii) Dataframes, and iii) Datasets1. Without loss of generality,
throughout this presentation we use the term RDD for two
reasons: i) to avoid the confusion that may be caused by the
usage of “Dataset” (since in the majority of cases the term
“dataset” is used to describe the original input data), and ii)
RDDs can be very easily transformed to either Dataframes
or Datasets, and vice versa. Consequently, the presented logic
can be directly applied to these data structures too.

A. Stage 1: Initial Cluster Generation

The first stage of the algorithm focuses on the parallel
construction of suitable, low-dimensional representations of
the input documents. As mentioned earlier, the logic behind
this approach is to group together all the documents that share
such common vector representations.

1) Document vectorization and initial word scoring: This
process requires the existence of a dictionary that contains
all the unique words in the collection. For each entry, this
dictionary must also store:
• a unique integer identifier (WordID) that will be used

to convert the documents into vectors. We choose the
document vectors to be dense (with no zero elements), to
limit the effects of the well-known Curse of Dimension-
ality. Also, the usage of numerical vectors will accelerate
the computation of similarity scores, since numerical
comparisons are much faster than string comparisons.

• its inverse document frequency (IDF). This value is
essential for computing the PV scores according to either
the tf − idf (Eq. 2), or the tp− idf (Eq. 4) model.

Algorithm 1 illustrates the basic steps of the dictionary
construction process. The utilized notation adopts the estab-
lished Python syntax. More specifically, a set of brackets
[a, b, . . .] denotes a list, whereas a set of parentheses (a, b, . . .)
represents a tuple. For the reader convenience, we also use
Table I to report the form of an RDD after a transformation
or an action. In this table, the dagger symbol (†) denotes a key
that is unique in the RDD, so duplicate keys are not possible.

Initially, the input files are read from HDFS. The dataset
is stored in an RDD called rdd dataset and distributed in the
executors of the cluster (line 1). The number of entries in
this RDD provides the number of documents n in the corpus;
n will be employed later to compute the inverse document
frequencies of the words (line 2).

In line 3 we apply a sequence of transformations and actions
on rdd dataset. Hence, the flatMap operation of line 4 invokes
a tokenize() function to create a bag of words for each input
document. Each generated word w is subsequently passed
through a set of filters that apply casefolding, punctuation
removal, stopword removal, etc. Eventually, flatMap emits
a list of (w, 1) tuples for each document. In the sequel,
the reduceByKey action in line 5 sums up all the 1 values
associated with the same word, and thus, it computes its
frequency tfw in the corpus. The map transformation that

1Datasets are not supported by PySpark.



Algorithm 1: Word dictionary construction

1 rdd dataset ← read from HDFS;
2 n← |rdd dataset|;
3 rdd words ← rdd dataset
4 .flatMap(d→ tokenize(d))
5 .reduceByKey(x, y → x+ y)
6 .map(x→ (x[0], log(n/x[1])));
7 rdd dic ← rdd words
8 .zipWithIndex()
9 .map(x→ (x[0][0], (x[1], x[0][1])));

10 dictionary ←rdd dic.collectAsMap();
11 D ← broadcast(dictionary);
12 -OR-
13 dictionary file ← write(rdd dic);

TABLE I
INPUT AND OUTPUT RDDS FOR ALGORITHM 1

Line Operation Output RDD
1 read rdd dataset=[(docID†, T ext), . . .]
4 flatMap [(w, 1), . . .]
5 reduceByKey [(w†, tfw), . . .]
6 map rdd words=[(w†, IDF(w)), . . .]
8 zipWithIndex [((w†, IDF(w)), wID), . . .]
9 map rdd dic=[(w†, (wID, IDF(w)), . . .]

follows, simply computes the IDF(w) of each word according
to Eq. 3. The produced data structure is a list of (w, IDF(w))
tuples stored in a new RDD called rdd words.

After the IDFs of the words have been calculated, we
focus on the assignment of a unique integer identifier to each
word. Line 8 calls the native zipWithIndex() Spark operation
to assign a monotonically increasing integer to each row
in rdd words. In the next line, the RDD is rearranged by
performing another map transformation so that the word alone
becomes the key of the tuples contained within.

The generated rdd dic contains all the necessary informa-
tion: each word in the collection is accompanied by a unique
integer identifier and its respective IDF. Nevertheless, before
we proceed with document vectorization and PVs construction,
we must make a critical choice. Our dictionary is stored in a
distributed data structure; in case the input dataset is large, the
aforementioned operations will perform millions of look-ups
against rdd dic. However, the submission of a huge number
of requests against a data structure that is distributed across
hundreds, or even thousands of executors will significantly de-
grade the performance. This problem dictates that all executors
possess a local copy of the entire word dictionary.

We now distinguish the two following cases:
• The dictionary is relatively small (e.g. a few million

words) and it fits in the executor memory. In this case,
we can collect the contents of rdd dic in the Driver
program and build an in-memory data structure from
these contents. Then, the Driver can broadcast this data
structure D to all the executors (lines 10–11).

Algorithm 2: Projection vector construction

1 function vectorize(x)
2 docID ← x[0];
3 text← x[1];
4 W ← tokenize text;
5 dataList← [];
6 for each w ∈W do
7 w ← liguistic processing (case folding, etc.);
8 (wID, IDF(x))← D.search(w);
9 dataList← dataList+ (wID, IDF(x));

10 end
11 return (docID, dataList);
12 end
13 rdd vec ← rdd dataset
14 .map(x← vectorize(x));
15 function construct pv(x)
16 docID ← x[0];
17 Vx ← x[1];
18 pos← 0;
19 tempList← [];
20 for each tuple (wID, IDF(w)) ∈ Vx do
21 pos← pos+ 1;
22 pw ← Eq. 4;
23 tempList← tempList+ (wID, pw)
24 end
25 P ← create combinations of all wIDs of length k

by using tempList;
26 dataList← [];
27 for each combination (PV) p ∈ P do
28 S′p ← Eq. 7;
29 dataList← dataList+ (p, (docID, S′p));
30 end
31 return dataList;
32 end
33 rdd pv ← rdd vec
34 .flatMap(x← construct pv(x));

TABLE II
INPUT AND OUTPUT RDDS FOR ALGORITHM 2 (Vx IS GIVEN BY EQ. 5)

Line Operation Output RDD
13 map rdd vec=[(docID†, Vx), ..]
33 flatMap rdd pv=[(px, (docID, S

′
px

)), ...]

• In the opposite case, the dictionary is prohibitively large
to fit in the executor memory. Consequently, we must
persist the contents of rdd dic in HDFS (line 13). In this
way, each executor can copy the dictionary file/s on its
local filesystem and perform disk-based look-ups.

2) Projection vectors construction and partial scoring:
Algorithm 2 displays the basic steps of the construction of the
projection vectors. Similarly to the previous discussion, Table
II presents the form of the output RDDs after the execution
of either a transformation, or an action.



In line 13 we apply a map transformation to our starting
RDD, i.e. rdd dataset (see row 2 of Table I). The invoked
vectorize() function employs the previously broadcasted dic-
tionary D to perform one look-up per word w, per document
of rdd dataset. In this way, the identifier wID and the inverse
document frequency IDF(w) of the word w are retrieved and
a tuple (wID, IDF(w)) is formed. All the created tuples for
a document x are stored in a list:

Vx = [(wID, IDF(w)), ...], (5)

and then, Vx is associated with the docID. The form of the
created RDD, rdd vec, is shown in the second row of Table II.

The second part of Algorithm 2 concerns the construction
and scoring of the required projection vectors (PVs). To
achieve this goal, a flatMap transformation accompanied by
a call to the construct pv function (lines 15–32) is performed
on rdd vec. For each row of the input RDD, we traverse
the attached list Vx and we create a new temporary list of
(wID, pw) tuples, where pw is the tp− idf score of Eq. 4.

In the sequel, the aforementioned temporary list is used to
create all possible word combinations with lengths that do not
exceed k (line 25). At this point, we possess all the required
parameters to compute the score of each projection vector
(according to Eq. 1), apart from its frequency in the collection.
For this reason, we split Eq. 1 into two parts, as follows:

Spx = S′px
log(fpx + 1), (6)

where S′px
is the partial score of the projection vector, that is:

S′px
=

1

lpx

∑
px

pkx,i. (7)

The partial score S′px
can be directly computed inside the

present flatMap operation, since the parameters it involves (i.e.
the length lpx and the tp− idf score) are already known. The
full score of the projection vector will be calculated later, when
the frequency fpx becomes available. The details of the partial
score computation are shown in lines 27–30.

3) Initial clustering: The last part of Stage 1 includes the
full scoring of PVs, the identification of the DRV (i.e., the PV
with the highest score) for each document, and the grouping
of the documents with common DRVs into the same cluster.

Algorithm 3 presents the steps of the aforementioned proce-
dure. Initially, a combineByKey action on rdd pv gathers all
the values (i.e. the (docID, S′px

) tuples) that are associated
with equal keys (i.e. the PV px) to the same executor. Hence,
the number of these values represents the frequency fpx that
we were missing. Consequently, we are now able to compute
the scores of all projection vectors by applying Eq. 6.

Let us discuss in details this action. At first, combineByKey
sends all the values that are associated with the same key to
the same executor. In contrast to reduceByKey, this one allows
the output RDD to receive a completely different form than the
input RDD. Second, combineByKey accepts three methods:
• make lists: it converts all the values of an RDD to lists.

Here we multiply the partial scores with log 2 (lines 1–3).

Algorithm 3: PV scoring and initial clustering

1 function make lists(A)
2 return [(A[0], A[1] · log 2)];
3 end
4 function append(A, B)
5 return A.append(B);
6 end
7 function extend(A, B)
8 A.extend(B);
9 fp ← 0;

10 for each tuple (docID, S′px
) in A do

11 fp ← fp + 1;
12 end
13 dataList← [];
14 for each tuple (docID, S′px

) in A do
15 Spx ← fp · S′px

/ log 2;
16 dataList← dataList+ (docID, Spx);
17 end
18 return dataList;
19 end
20 function reorder byDocID(x)
21 p← x[0];
22 dlist← x[1];
23 dataList← [];
24 for each tuple (docID, Spx) in dlist do
25 dataList← dataList+ (docID, (Spx ,p));
26 end
27 return dataList;
28 end
29 rdd drv ← rdd pv
30 .combineByKey(make lists, append, extend)
31 .flatMap(x← reorder byDocID(x))
32 .reduceByKey(max)
33 .map(x← (x[0], x[1][1]))
34 rdd clusters ← rdd drv.map(x← (x[1], x[0]))

TABLE III
INPUT AND OUTPUT RDDS FOR ALGORITHM 3

Line Operation Output RDD
30 combineByKey [(p†x, (docID, Spx)), . . .]
31 flatMap [(docID, (Spx ,px)), . . .]
32 reduceByKey [(docID, (Spx ,p

∗
x)), . . .]

33 map rdd drv=[(docID,p∗x)), . . .]
34 map rdd clusters=[(p∗x, docID)), . . .]

In this way, we calculate correctly the final scores of the
PVs that appear only once in the collection. Regarding
the ones with more occurrences, this is erroneous, since
Eq. 6 dictates that we should multiply with log(fpx +1).
We will correct this error in the extend function.

• append: a merging function that appends a value into the
previously collected values.

• extend: it combines the merged values together. Notice
how the scores of PVs are computed in line 15; we divide
with log 2 to correct the previous deliberate error.



The flatMap transformation that follows combineByKey just
rearranges the tuples, so that the score of the PVs is placed
first. This is useful for the next action, reduceByKey(max),
that among all the entries with the same key, keeps the one
the highest value and discards the rest of them. In other words,
this reduceByKey(max) action directly identifies the Dominant
Reference Vector of a document. Now, the DRV score is no
longer needed, so we remove it via a new map call obtaining
a new RDD, called rdd drv.

The components of the DRV are used to form a new low-
dimensional space where the document is projected. All the
documents that lie on the same dimensional space (i.e. they
share common DRVs) are grouped together into the same
cluster. This operation is performed in the last map operation,
where each DRV (i.e. cluster) is associated with a document.

B. Stage 2: Improvement of the Initial Clustering

The second stage of pVEPHC consists of two phases. In
phase 1, the most dissimilar documents of each cluster are
removed and each one of them is placed into a new singleton
cluster. In phase 2, an agglomerative algorithm merges the
highly similar clusters until no clusters can be merged further.

1) Removal of the Dissimilar Elements: This process re-
quires a method for computing the similarity of an element
with a cluster. According to [13], [14], this is achieved by
computing the similarity of an element with the clustroid πC
of a cluster C. Recall that πC is a member of C that has the
highest similarity with the rest of the items of C. An element
x of C is called dissimilar to C, if its cosine similarity with
πC is smaller than a pre-defined similarity threshold T , i.e:

cos(x, πC) < T (8)

Such elements are removed from their respective clusters and
they are placed into new, singleton clusters (that is, clusters
with only one element). Unfortunately, rdd clusters is not in
the appropriate form to support this operation because: i) it
does not contain the document vectors, so the computation of
similarities is not possible, and ii) it includes associations of
a cluster with a single document; however, what we require
here is to associate each cluster with the list of its contained
documents, so that we can determine the clustroid elements.

For this reason, we perform a series of transformations and
actions, as shown in lines 1–5 of Algorithm 4. At first, the
union of line 2 merges rdd drv and rdd vec. Consequently, the
output RDD contains for each document two tuples of different
forms, as shown in second row of Table IV. These two
different tuples are subsequently merged via a reduceByKey
action (line 3), leading into a new RDD that includes unique
docIDs, accompanied by a tuple of their cluster and their
vectorial representation Vx. The purpose of the following map
and combineByKey operations is to rearrange the generated
RDD so that their key is the RDV of the cluster, followed by
the list of documents that fall into that cluster.

The second part of Algorithm 4 (lines 6–22) includes a
flatMap transformation (line 22) that for each input cluster
may generate multiple clusters: i) the input cluster itself

Algorithm 4: Removal of dissimilar elements

1 rdd ← rdd drv
2 .union(rdd vec)
3 .reduceByKey(x, y ← (x, y))
4 .map( x← (x[1][0], (x[0], x[1][1])))
5 .combineByKey(make lists 2, append, extend 2);
6 function findDissimilarElements(x)
7 docList← x[1];
8 πC ← ComputeClustroid(docList);
9 cDocs← [];

10 dataList← [];
11 for each (docID, Vx) tuple in docList do
12 if cos(πC , Vx) > T then
13 cDocs← cDocs+ (docID, Vx);
14 else
15 dataList←

dataList+ (Vx, [(docID, Vx)]);
16 end
17 dataList← dataList+ (πC , cDocs);
18 end
19 return dataList;
20 end
21 rdd ← rdd
22 .flatMap(x← findDissimilarElements(x));

TABLE IV
INPUT AND OUTPUT RDDS FOR ALGORITHM 4(Vx IS GIVEN BY EQ. 5)

Line Operation Output RDD
2 union [(docID,p∗x), (docID, Vx), ...]
3 reduceByKey [(docID†, (p∗x, Vx), ...]]
4 map [(p∗x, (docID, Vx)), . . .]
5 combineByKey rdd=[(p∗x, [(docID, Vx), ...]), ...]
22 flatMap rdd=[(πp∗

x
, [(docID, Vx), ...]), ...]

excluding the removed documents, and ii) one singleton cluster
for each one of these removed documents. More specifically,
the invoked findDissimilarElements() function performs two
operations. First, it computes the clustroid element πC of a
cluster C (line 8), and ii) it removes all the elements of C
whose cosine similarity is smaller than the value of a threshold
T (lines 11–18). For these elements, one singleton cluster is
created and appended in the ClusterList object (line 15). In
this object we also store the input cluster C, after the removal
of the dissimilar elements (line 17). Notice that, at this point,
we no longer need the DRV to be present, so we do not so
we do not include it in the cluster RDD.

All that is left now is to merge the most similar clusters.
This is a challenging task, since the agglomerative clustering
algorithm exhibits inherent data dependency. Specifically, it
requires pairwise comparisons among all the clusters in the
RDD, a procedure that does not scale well in a distributed
environment. Nevertheless, [5] confronted the problem by
formulating it as a Minimum Spanning Tree problem with
satisfactory results. Consequently, in this part we adopted this
promising solution to obtain the final output of the algorithm.
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Fig. 1. Running times of pVEPHC for various cluster sizes (left), and acceleration factor vs. number of processing nodes (right).

V. EXPERIMENTS

This section presents the experimental evaluation of
pVEPHC. The parallel algorithm was implemented with Java
1.8 and was deployed on a cluster comprised on 8 virtual
machines (VMs). Each VM was running Ubuntu 18.04 LTS
and was equipped with 16 CPUs and 64 GB of RAM. The
software that was installed on the cluster included Hadoop
3.2.2 and Spark 3.1.2 (the latest stable release). In addition,
Hadoop was accompanied by the YARN resource manager and
the Hadoop Distributed File System (HDFS).

Regarding the cluster configuration settings, each processing
node was set up to launch two YARN containers and each one
of these containers was configured to deploy a single Spark
executor. This is translated into a total of 2 executors per VM.
Furthermore, each executor was assigned 2 vCores and 24GB
of RAM. In total, the entire Spark cluster included one driver
process and 15 executors; or equivalently, an amount of 30
vCores and 360 GB of memory was allocated and evenly
distributed to 15 executors.

The dataset we used was FakeNewsOnlyTitles2, a large
collection of news articles that were manually classified by
special tags such as “reliable”, “unreliable”, “clickbait” and
others. FakeNewsOnlyTitles consists of approximately 400
thousand titles, however, it requires some cleansing procedures
before it becomes suitable for use.

The hyper-parameters of pVEPHC were tuned as follows:
The maximum lengths of the projection vectors were limited to
k = 5 components, the parameter that regulates the importance
of word positions was set equal to α = 0.5, whereas the
similarity threshold in phase 2 was T = 0.7.

In the left diagram of Figure 1 we present the running
times of pVEPHC for different cluster sizes (that is, number
of processing nodes). In general, we observe a significant

2https://www.kaggle.com/luizfkcunhautfpr/fakenewsonlytitles

acceleration of the algorithm for moderate number of nodes.
More specifically, the execution of the algorithm consumed
roughly 1290 seconds on a single-node cluster. The insertion
of one additional vCore led to a remarkable speedup of 65%;
the duration of the execution was 780 seconds. Next, we
doubled further the size of the cluster so that it included
4 vCores; this resulted in a drop of the execution time to
480 seconds. Finally, the durations for 8, 16, and 30 vCores
were 310, 214, and 156 seconds respectively. The curve in
the left diagram reveals that for this dataset, the performance
benefits are starting to shrink as the number of processing
nodes becomes greater than 16.

Furthermore, the right diagram of Figure 1 depicts the
growth of the acceleration factor as the size of the clus-
ter increases. The results reveal a satisfactory behaviour of
pVEPHC, since its performance is proportional to the number
of the processing nodes that participate in the execution.
Hence, when the size of the cluster doubles, the speedup that
we achieve ranges between 45% (for a number of vCores
greater than 16) and 65% (for smaller clusters). This result
reveals the scalability of pVEPHC and demonstrates the ro-
bustness of the proposed solution.

VI. CONCLUSIONS

In this paper we presented pVEPHC, a parallel short text
clustering algorithm implemented on the Apache Spark frame-
work. The proposed method parallelizes a recently published
sequential variant, called VEPHC.

Similarly to its predecessor, pVEPHC includes two stages:
the first stage processes the input data and for each document,
it determines a low dimensional vector representation that
reflects the content as accurately as possible. In the sequel,
it projects the document in the dimensional space of this
representative vector and in the last phase, it groups together
all the documents that lie onto the same dimensional space.
The parallelization of this stage was carefully orchestrated to



allow the robust scoring scheme of VEPHC. More specifically,
the full score of each projection vector is performed in multiple
phases, and only when a new required parameter is computed.
This maximizes the efficiency of the algorithm and speeds up
its execution.

In the second stage, the clustering of the first stage is im-
proved further. At first, we remove all the dissimilar documents
from their clusters and we generate a new singleton cluster
for each evicted element. Then, we apply an agglomerative
clustering method with the aim of merging the most similar
clusters. Since hierarchical clustering is challenging to paral-
lelize due to its inherent data dependence, in this stage we
adopted a state-of-the-art strategy that treats the problem as a
typical Minimal Spanning Tree problem.
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