
Conditional Data Synthesis with Deep Generative
Models for Imbalanced Dataset Oversampling

Leonidas Akritidis
School of Science and

Technology
Int’l Hellenic University

Thessaloniki, Greece
Email: lakritidis@ihu.gr

Athanasios Fevgas
Department of Electrical

and Computer Engineering
University of Thessaly

Volos, Greece
Email: fevgas@e-ce.uth.gr

Miltiadis Alamaniotis
Department of Electrical

and Computer Engineering
University of Texas at San Antonio

San Antonio, USA
Email: Miltos.Alamaniotis@utsa.edu

Panayiotis Bozanis
School of Science and

Technology
Int’l Hellenic University

Thessaloniki, Greece
Email: pbozanis@ihu.gr

Abstract—The problem of data imbalance is defined as the
uneven distribution of the training examples to the existing classes
of a dataset. Among a wide variety of solutions, the oversampling
techniques try to mitigate the problem by synthesizing artificial
examples associated with the minority class. The huge success
of Generative Adversarial Networks (GANs) rendered them an
attractive choice for oversampling and numerous researchers
proposed modifications of GANs for imbalanced datasets. Nev-
ertheless, the existing models employ the entire minority class
for sample generation, thus being vulnerable to outliers and
noisy data instances. In addition, the majority of the relevant
research concerns image classification tasks, leaving a large gap
for research with tabular data. Finally, another powerful and
popular generative model, the Variational Autoencoder (VAE)
has been rather overlooked by the community in class imbalance
solutions. In this paper we present SB-GAN and SB-VAE, two
generative models that identify borderline and noisy samples
before they are trained. In this manner SB-GAN and SB-VAE
learn better class distributions that are not distorted by the
existence of outliers. The experimental evaluation of SB-GAN and
SB-VAE with 4 tabular datasets revealed a superior performance
against 8 state-of-the-art oversampling techniques.

Index Terms—imbalanced datasets, oversampling, generative
models, GAN, VAE

I. INTRODUCTION

Class imbalance concerns data collections consisting of
samples with an uneven distribution to the underlying classes.
An intrusion detection dataset with 100 legitimate actions
and 5 malicious attempts is a representative example of class
imbalance. Nowadays, imbalanced datasets are present in
almost every classification task including intrusion, malware,
and fraud detection, object recognition, sentiment analysis,
medical diagnosis, and so on.

Training classifiers with imbalanced data degrades their
performance significantly, because their output models are
strongly biased towards the majority class. The minority class
is not learned effectively, so the classifiers do not generalize
well. The importance of the problem has attracted the attention
of multiple researchers who introduced a wide variety of

This research is co-financed by Greece and the European Union (European
Social Fund-SF) through the Operational Programme “Human Resources
Development, Education and Lifelong Learning 2014-2020” in the context
of the project “Support for International Actions of the International Hellenic
University” (MIS 5154651).

methods to address it. These methods are usually classified
into 4 general categories: cost sensitive, algorithm based, data
preprocessing, and hybrid methods [1].

The four aforementioned categories can be further divided
into tens of smaller subcategories. In this work we are dealing
with one of the most popular among them, the oversampling
techniques, which fall into the category of data preprocessing
methods. Oversampling refers to the generation of synthetic
samples, associated with the minority class, with the aim of
alleviating the problem of class imbalance. SMOTE and its
dozens of variants are among the most traditional oversam-
pling approaches [2], [3].

During the past years, enormous advances have been made
to the field of generative modelling. In this context, Generative
Adversarial Networks (GANs) are architectures comprised of
two parts: the Generator and the Discriminator [4]. Both
models are trained simultaneously in an adversarial fashion,
where: i) the Generator produces fake samples with the aim
of deceiving the Discriminator, and ii) the Discriminator tries
to predict whether an example is fake or real. GANs have been
primarily utilized to confront imbalance problems in computer
vision tasks, leaving much space for research with tabular
data. Indicatively, the recent survey of Sampath et al. studied
numerous papers using GANs for image generation only [5].

The Variational Autoencoder (VAE) is another popular gen-
erative framework based on the Autoencoder architecture [6],
[7]. VAEs encode an input sample as a probability distribution
over the latent space (instead of encoding it as a simple vector).
The encoded distribution, usually a Gaussian, is regularized
during training to ensure that the latent space has meaningful
properties. Despite their good performance, VAEs have been
rather overlooked by the researchers, since the majority of the
relevant works utilize GANs for oversampling purposes.

In this paper we introduce two variants of GAN and
VAE, termed SB-GAN ans SB-VAE, respectively. Unlike the
existing works, both models are fed not with the entire
minority class, but only with carefully selected data instances.
In short, the selection criterion depends on the classes of the
neighboring data points. In particular, in case all the neighbors
of a training sample belong to different classes, then the
sample is considered as an outlier and as such, it does not

comply with the distribution of its own class. In SB-GAN/SB-
VAE such samples are ignored during training, thus improving
the learned class distributions.

The contributions of this paper are summarized in the
following list:

• We introduce SB-GAN and SB-VAE, two conditional
models based on GAN and VAE respectively, for minority
data oversampling in imbalanced datasets. Both of them
include a preprocessing layer that identifies the outlier
and noisy examples and excludes them from training.
Therefore, the models learn improved distributions of the
minority class from safe and borderline data instances.

• The majority of relevant works utilize GANs to mitigate
class imbalance in computer vision tasks. In contrast, this
work utilizes GANs to synthesize minority tabular data.

• Despite their proved effectiveness in many data genera-
tion applications, VAEs have been rather overlooked in
class imbalance tasks. Here we study such models and
we show that they can be competitive to GANs.

• We conduct experiments on 4 public imbalanced datasets
that demonstrate the effectiveness of SB-GAN and SB-
VAE against 8 traditional oversampling methods.

The rest of this paper is organized as follows: In Section II
we present a brief overview of the relevant literature in the field
of imbalanced data. Section III refers to preliminary elements
from the theory of GANs and VAEs, whereas Section IV
describes the proposed SB-GAN and SB-VAE models. The
usefulness of both models is assessed in the experimental
evaluation of Section V. Finally, Section VI summarizes the
conclusions of this work and outlines insights for further study.

II. RELATED WORK

The importance of the data imbalance problem has attracted
the attention of researchers and led to the introduction of a
wide variety of relevant methods. These methods are typically
classified into 4 categories: cost sensitive approaches, data pre-
processing, algorithm-based techniques, and hybrid solutions.

The methods of the first category adjust the training process
of a learner to decrease its bias towards the majority class.
For this purpose, a two-dimensional misclassification matrix
is formed with the aim of penalizing more heavily the class
mispredictions of the minority samples. The literature contains
cost sensitive training algorithms for Feed-Forward Neural
Networks (FFNNs) [8], [9], Convolutional Neural Networks
(CNNs) [10], [11], Decision Trees [12], [13], Support Vector
Machines (SVMs) [14], and so on. The most significant
challenge in cost sensitive learning is how to set the weights of
the misclassification matrix. In many cases, the optimal setting
is application-specific and it is performed by human experts.

On the other hand, the data preprocessing techniques at-
tempt to augment the imbalanced data either by undersampling
the majority class, or by oversampling the minority class,
or by executing a hybrid sampling pipeline that performs a
combination of oversampling and undersampling.

The undersampling methods bring balance to a dataset by
reducing the population of the majority class samples. This

is achieved either through simple sample removal, or through
the generation of a small number of representative samples.
In Random Undersampling, a number of samples is randomly
pruned from the majority class until the desired imbalance
ratio is obtained [15]. Alternatively, a clustering algorithm can
be applied at the samples of the majority class with the aim of
replacing the contents of each cluster by a single representative
element. In this spirit, the authors of [16] applied k-Means at
the majority class and replaced the contents of each cluster
either by the centroid points, or by their nearest neighbor.
The method of [17] applied clustering at the entire dataset, to
generate a collection of mixed clusters that contain data points
from both the majority and the minority classes.

The most common risk in undersampling is the information
loss that takes place after the removal of important majority
samples. Significant problems may also arise by the distortion
of the class’s probability distribution [1].

Another way to establish balance in a dataset is to increase
the population of the minority samples with an oversam-
pling technique. Random Oversampling (ROS) is the sim-
plest method [18]. In contrast, Adaptive Synthetic Sampling
(ADASYN) works by examining the nearest neighbors of a
minority sample; the more majority nearest neighbors, the
more synthetic examples are created [19].

The Synthetic Minority Oversampling Technique (SMOTE)
initially identifies the k nearest neighbors of a minority sample
[2]. Then, minority samples are randomly synthesized over
the line that connects the sample with each of its neighbors.
SMOTE is effective because the synthetic minority examples
are relatively close to the existing ones. Therefore, the class
distribution is not affected much. On the other hand, the
synthetic examples are created without considering the major-
ity class, so there is a possibility of synthesizing ambiguous
examples if there is a strong overlap for the classes.

To overcome this problem, a large number of SMOTE
variants have been proposed over the past years. Borderline-
SMOTE categorizes each minority sample as noise, in-danger,
and safe according to the classes of its nearest neighbors [20].
Then, it generates synthetic data by applying SMOTE only
at the samples in-danger, i.e. the ones that have at least half
their nearest neighbors belonging to the same class. The survey
of [3] refers to numerous SMOTE variants with SMOTE-
SVM [21] and kMeans-SMOTE [22] being the most significant
among them. SMOTE has also been used with ensemble learn-
ing models; SMOTEBoost adapts the AdaBoost.M2 algorithm
by applying SMOTE before training a weak learner [23].
Similarly, SMOTEBagging generates samples with SMOTE
at each training round of a bagging classifier [24].

The excellent generation capabilities of GANs attracted
many researchers to suggest GAN-based techniques for mit-
igating class imbalance. Representative models include the
Conditional GAN (cGAN) [25], Auxiliary Classifier GAN
(ACGAN) [26], Info-GAN [27], Deep Convolutional GAN
(DCGAN) [28], and numerous others. A systematic survey
of the most important GAN models for imbalanced datasets
in computer vision tasks has been published in [5].

Update

model

Random noise sample

Generator 𝐺

Real instance from 𝐗Synthetic instance from 𝐺

Discriminator 𝐷

Binary Classification (Real/Fake)

Update

model

Real
instance 𝐱

encoder

𝑒𝜃 𝑥

decoder

𝑑𝜑 𝑧

Synthetic
instance 𝐱

𝜇𝑥

𝜎𝑥

latent
distribution

latent
vector 𝑧

𝑧~𝒩 𝜇𝑥, 𝜎𝑥

Fig. 1. Architecture and training of a Generative Adversarial Network (left) and Variational Autoencoder (right).

III. GENERATIVE MODELS

This section presents briefly the building blocks and the
fundamental elements from the theory of GANs and VAEs.

A. Conditional Generative Adversarial Networks (cGANs)

GANs are among the leading architectures in the area of
generative modeling, since they have been proved effective in
synthetic data generation [4]. Inside a GAN, two Neural Net-
works compete each other with the aim of learning the target
distribution and generating artificial data: a Discriminator D
and a Generator G (left part of Fig. 1).

The Discriminator D is a binary classifier trained to dis-
tinguish whether its input data samples are real or not. For
this reason, D trained with both real and fake examples. The
real examples are drawn from the original training set X,
whereas the fake ones are synthesized by the Generator G. The
employed loss function must penalize all misclassifications,
namely, the cases where real data is identified as fake, or
fake data identified as real. At each iteration, D updates its
parameters using backpropagation, thus improving its ability
to identify fake data instances.

On the other hand, the Generator G learns to synthesize
artificial data instances by using the output of D. Its goal is to
deceive the discriminator D, so that its output is classified as
real. The training process of G takes place simultaneously with
that of D and involves the following phases: Initially, a random
noise sample is used it to produce the output of G. The output
of G is fed to D and the discriminator loss is computed. In the
sequel, the error is backpropagated to compute the necessary
gradients and update only the weights of G.

Formally, D and G play the following zero-sum game:

min
G

max
D

V (D,G) = Ex∼px(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z)))] (1)

In many cases, the objective is not to simply generate artificial
data, but to synthesize data instances belonging to a particular
class. Conditional GANs (CGANs) address this requirement
by receiving as inputs both the samples and their respective

classes y [25]. This applies to both Discriminator and Gener-
ator, so the aforementioned zero-sum game becomes:

min
G

max
D

V (D,G) = Ex∼px(x|)[log(D(x|y))]+

Ez∼pz(z)[log(1−D(G(z|y)))] (2)

During CGAN training, the one-hot-encoded vectors y are fed
to both the Discriminator and the Generator, after they have
been concatenated with the input feature vectors (either fake,
or real ones) [25].

B. Conditional Variational Autoencoders (cVAEs)

Autoencoders are neural networks that implement the En-
coder E-Decoder D architecture (right part of Fig. 1). They
are a form of an unsupervised learning model, trained to
reproduce its input x as accurately as possible. For this
purpose, E encodes x producing a low-dimensional latent
representation z = e(x), whereas D decodes z outputting
a vector x̂ = d(z) = d(e(x)). If x̂ is the output of the
network, then the Autoencoder minimizes the reconstruction
error L(x, x̂) that quantifies the distance between x and x̂.

The Autoencoder has been proved successful in dimension-
ality reduction tasks, but it cannot be used for data generation.
The reason is that the Encoder cannot regularize the latent
space Z appropriately. It is difficult to predict the distribution
of values in that space, therefore, taking random samples from
it and feeding them to the decoder will most likely produce
meaningless instances. Finding a latent value z ∈ Z for which
the decoder will produce meaningful data is almost impossible.

VAE is an Autoencoder whose encoded distribution is
regularized during training to ensure that the latent space has
suitable properties for generating useful instances [6]. In this
context, the input x of a VAE is not encoded as a simple
latent vector z, but as a probability distribution pθ(x|z) over
the latent space Z. Then, useful data instances are generated by
D by feeding it with samples drawn randomly from pθ(x|z).

In practice, the encoded distribution is pθ(x|z) chosen to
be normal with a mean value µx = 0 and a standard deviation
σx = 1. The loss function is a linear combination of the recon-

struction loss and the Kulback-Leibler divergence between the
returned distribution qϕ(z|x) and a standard Gaussian, namely:

LVAE = −KL(qϕ(z|x)||pθ(z)) + Eqϕ(z|x)[log pθ(x|z)] (3)

Similarly to CGANs, Conditional VAEs introduce the one-
hot-encoded class vector y to the training process to enable
the generation of class-specific data instances [29]. Since y
is generated from the distribution pθ(y|x, z) and z is drawn
from the prior pθ(z|x), the loss function of a CVAE is:

LCVAE = −KL(qϕ(z|x,y)||pθ(z|x))+Eqϕ(z|x,y)[log pθ(y|x, z)]

IV. SAFE-BORDERLINE SAMPLE SELECTION

The enormous success of the recent generative models
primarily comes from their ability to learn the probability
distribution of the data on which they are trained. On the other
hand, the outliers are observations that lie in an abnormal
distance from the other samples of a population. In other
words, the outliers usually do not comply with the probability
distribution of their population.

Apparently, including outliers in the generator training
process reduces its ability to effectively learn the underlying
distribution. In this paper we propose a method for providing
a generative model with the appropriate data that will enable
it learn better distributions of the minority class.

Let X be the matrix that contains all training vectors. Now
we define X(i) and X(a) as the matrices that contain the
training examples belonging to the minority and majority class,
respectively.

The Safe-Borderline (SB) technique specifies a hyper-sphere
S of radius r around each minority sample x

(i)
j ∈ X(i). Then,

x
(i)
j is tagged according to the classes of the elements that lie

inside its surrounding hyper-sphere S, as follows:
• Outlier: If all samples inside S belong to a different class

than x
(i)
j .

• Isolated: If S is empty.
• Borderline: If S contains mixed samples from all classes.
• Safe, or Core: If all the samples inside S belong to the

same class as x
(i)
j .

From these five groups the appropriate samples will be
selected for training SB-GAN and SB-VAE. The entire process
is shown in Algorithm 1.

The algorithm is logically divided in 3 stages. The first stage
constructs the matrix that contains the minority training exam-
ples X(i) (steps 1–3). The second stage begins by initializing
4 matrices: X(i)

out, X
(i)
iso, X(i)

b , and X
(i)
sf that will accommodate

the outliers, the isolated samples, the borderline samples, and
the safe points respectively (steps 5–8).

In the sequel, for each sample belonging to the minority
class xj ∈ X(i), the range query FetchPointsInRadius is
executed to retrieve all the neighbors the lie into distances
smaller than r from xj (step 10). If no neighbors exist, then
xj is immediately marked as isolated; X(i)

iso is updated and the
process continues to the next sample (steps 11–13). Otherwise,
the classes of the nearest neighbors are subsequently examined

Algorithm 1 My algorithm
Input: Training set X, radius r, α
Output: Safe-Borderline set XSB

1: X(i) ← [] // minority class examples
2: for each training example xj ∈ X do
3: if yj == y(i) then X(i) ← X(i).append(x)

4:
5: X

(i)
iso ← [] // isolated samples

6: X
(i)
out ← [] // outliers

7: X
(i)
sf ← [] // safe samples

8: X
(i)
b ← [] // borderline samples

9: for each minority sample xj ∈ X(i) do
10: Xj,nn ← FetchPointsInRadius(X,xj , r)
11: if |Xj,nn| == 0 then
12: X

(i)
iso ← X

(i)
iso.append(xj)

13: break
14: outlier ← True
15: safe← True
16: for each sample xk ∈ Xj,nn inside radius of xj do
17: if yk == yj then
18: outlier ← False
19: else
20: safe← False
21: if outlier == True then X

(i)
out ← X

(i)
out.append(xj)

22: else if safe == True then X
(i)
sf ← X

(i)
sf .append(xj)

23: else X
(i)
b ← X

(i)
b .append(xj)

24:
25: XSB ← X

(i)
sf

26: if |XSB | < α|X(i)| then XSB ← XSB .extend(X
(i)
b)

27: if |XSB | < α|X(i)| then XSB ← XSB .extend(X
(i)
iso)

28: return XSB

and according to the aforementioned rules, xj is classified as
an outlier, borderline sample, or safe sample. The stage ends
by updating the corresponding matrices (steps 21–23).

Eventually, stage 3 constructs the final training set XSB that
will be fed to the generative model (steps 25–27). All safe
points of X

(i)
sf are immediately appended to XSB . However,

the minority class may consist of only a few scattered samples,
so XSB may be considerably smaller than the original training
set. To avoid discarding too many valuable samples, we use
a parameter α ∈ [0, 1] (here we set α = 0.7) to include
additional borderline, or isolated instances to XSB .

We close this section with some remarks on the function
FetchPointsInRadius. Finding all the neighboring points within
a hyper-sphere of radius r is an expensive operation, due to
the involved quadratic time complexity. The process can be
accelerated by using an auxiliary spatial data structure like
a KDTree, or a Ball Tree, however, if the data is highly
dimensional, a brute force approach may be more efficient.
Notice that this is a drawback of all methods using nearest
neighbor approaches, including SMOTE and its variants.

TABLE I
BENCHMARK DATASETS

Name Samples Dimensions IR
Rice Type 18185 10 1:1.2
Smoke Detection 62630 14 1:2.5
Credit Card Default 30000 25 1:3.5
Surgical 14635 24 1:3.0

V. EXPERIMENTS

This section demonstrates the usefulness of SB-GAN and
SB-VAE in the task of minority class oversampling in im-
balanced datasets. Their effectiveness is compared against a
collection of other well-established oversampling techniques
and their performance is highlighted and discussed.

All the experiments that we present here have been carried
out on a typical Windows 10 workstation with an Intel Core
I7 12700K CPU, 32 GB RAM and an NVIDIA RTX 3060
GPU with 12 GB of video RAM.

A. Datasets

The experiments have been conducted by employing four
publicly accessible datasets: Rice Type Classification1, Smoke
Detection2, Credit Card Default3 and Surgical Dataset4. All
have include 2 classes and were selected because they possess
three desired properties: i) they are imbalanced, ii) they
contain an explicit class column that makes them suitable
for classification, and iii) they include only numerical features
that simplifies their processing. Their attributes are shown in
Table I; the fourth column denotes the imbalance ratio.

The first dataset contains 18185 examples of two rice classes
and it is the most balanced one (imbalance ratio 1:1.2). Smoke
Detection is the largest dataset, comprising 62630 cases of
activation (or not) of a photoelectric smoke detector. The 14
attributes of each vector represent a reading from a different
sensor. The third dataset is the most imbalanced one (imbal-
ance ratio 1:3.5) and contains 30000 cases of customer default
payments in Taiwan. Finally, the Surgical dataset concerns the
outcome of 14635 surgical operations according to 24 features.

B. SB-GAN/SB-VAE Architectures & Adversary Oversamplers

This section describes several architectural details of SB-
GAN and SB-VAE. The Discriminator of SB-GAN comprised
two dense (fully connected) layers with 64 and 32 neurons
respectively. Each dense layer was followed by a Dropout layer
(factor equal to 0.5) to prevent the model from overfitting.
Leaky ReLU was the selected function for neuron activation.
On the other hand, the Generator included two residual layers
and one dense layer. The residual blocks comprised 64 and 32
neurons respectively, followed by a batch normalization layer.

Regarding SB-VAE, the Encoder included two dense layers
with 64 and 32 neurons respectively; each layer was followed

1https://bit.ly/46YFYg4
2https://bit.ly/3Opi5a1
3bit.ly/3rDwfLY
4https://bit.ly/473zEUH

by a batch normalization layer. The architecture of the Decoder
was identical, but mirrored. The dimensionality of the latent
vectors µ and σ and the sampling vector z was set equal to 8.

Eight oversampling techniques and models have been used
for comparison: Random Oversampling (ROS) [18], Synthetic
Minority Oversampling Technique (SMOTE) [2], Borderline
SMOTE (BRD-SMOTE) [20], SVM-SMOTE [21], k-Means
SMOTE (KMN-SMOTE) [22], Adaptive Synthetic Sampling
(ADASYN) [19], a Generative Adversarial Network (GAN)
[4], and a Variational Autoencoder (VAE) [6]. The architec-
tures of Generator/Discriminator and Encoder/Decoder of the
last two generative models were identical to those of SB-GAN
and SB-VAE, respectively.

C. Classifiers: Tuning, Training, Evaluation

The effectiveness of SB-GAN and SB-VAE has been mea-
sured in the context of how much they improve the per-
formance of various classification models. In particular, the
following 4 classifiers have been utilized:

• Feed-Forward Neural Network (FFNN): We implemented
a typical fully-connected feed-forward neural network
with two hidden layers including 16 and 4 neurons, re-
spectively. Rectified Linear Unit (ReLU) was selected as
the activation function for the hidden layers. The network
was trained with the Adam optimizer that minimized the
binary cross-entropy loss function.

• Support Vector Machines (SVM): The Radial Basis Func-
tion (RBF) with L2 regularization was utilized for fitting.
We set the regularization parameter equal to C = 1.0.

• Random Forest (RF): A forest with 50 weak estimators
was used. The estimators were standard Decision Trees
with no restrictions to their maximum depth and leaf size.

• Logistic Regression (LR): The Limited-memory BFGS
algorithm with L2 regularization was employed for learn-
ing the parameters of the logistic function.

The only feature processing technique that we applied was
a simple transformation of their values via standardization.
The models were evaluated by using the popular 5-fold cross
validation method that dictated a 80%/20% split ratio for the
training and test set. During each fold, and before each model
was trained, the training set was firstly standardized and then
oversampled. Thus, at each cross validation stage, a pipeline
of the form (Standardize, Oversample, Train) was serially
executed. Then, the values of the desired evaluation measures
were recorded by averaging the 5 values returned by each fold.

Regarding the evaluation metrics, Accuracy is not suitable
when dealing with imbalanced datasets, because it erroneously
receives high values that hide the inability of a classifier to
predict the minority class. A dummy classifier that always
predicts 0 would achieve Accuracy = 0.95 on a binary dataset
with 100 test samples, of which 95 belong to class 0 and 5 to
class 1. Clearly, Accuracy cannot capture the inability of this
dummy classifier to predict class 1.

In this work we adopt two popular evaluation measures, F1
and AUC (Area Under the Receiver Operating Curve). Both of
them are based on the True/False Positive/Negative values that

Logistic Regression NeuralNet Random Forest SVM
Classifier

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

_m
ea

n

0.99 0.99
0.95 0.980.99 0.99

0.94 0.970.99 0.99
0.95 0.96

1.00 1.00
0.95 0.960.99 0.99

0.95 0.971.00 0.99
0.94 0.970.99 0.99

0.94 0.970.99 0.99
0.94 0.970.99 1.00

0.93
0.980.99 1.00

0.95
0.98

ROS SMOTE BRD-SMOTE SVM-SMOTE KMN-SMOTE ADASYN VAE SB-VAE GAN SB-GAN

Logistic Regression NeuralNet Random Forest SVM
Classifier

0.0

0.2

0.4

0.6

0.8

1.0

F1
_m

ea
n

0.92
0.88

0.73

0.930.92
0.89

0.72

0.94
0.86 0.83

0.70

0.880.88
0.84

0.75

0.890.92
0.89

0.73

0.94
0.86 0.83

0.57

0.87
0.92 0.89

0.73

0.930.92 0.89

0.72

0.930.92 0.89

0.70

0.930.92 0.90

0.77

0.93

Fig. 2. Performance comparison for different classifiers and oversampling techniques for the Rice Type Classification dataset.

Logistic Regression NeuralNet Random Forest SVM
Classifier

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

_m
ea

n

0.97

0.78

0.98

0.86

0.97

0.78

0.98

0.86

0.96

0.75

0.98

0.84

0.97

0.75

0.98

0.85

0.97

0.79

0.98

0.87

0.97

0.76

0.98

0.84

0.97

0.78

0.98

0.84

0.97

0.80

0.98

0.84

0.97

0.79

0.98

0.85

0.98

0.85

0.99

0.89

ROS SMOTE BRD-SMOTE SVM-SMOTE KMN-SMOTE ADASYN VAE SB-VAE GAN SB-GAN

Logistic Regression NeuralNet Random Forest SVM
Classifier

0.0

0.2

0.4

0.6

0.8

1.0

F1
_m

ea
n

0.94

0.77

0.99

0.78

0.94

0.78

0.99

0.78

0.92

0.78

0.99

0.78

0.92

0.78

0.99

0.78

0.95

0.78

0.99

0.82

0.92

0.78

0.99

0.79

0.92

0.78

0.99

0.79

0.95

0.78

0.99

0.79

0.91

0.78

0.99

0.79

0.93

0.79

0.99

0.83

Fig. 3. Performance comparison for different classifiers and oversampling techniques for the Smoke Detection dataset.

respectively represent the number of the correct and incorrect
predictions of a model on the positive and negative classes.
These values enable the introduction of additional measures:

Precision = TP/(TP + FP)

Recall = Sensitivity = TPR = TP/(TP + FN)

Specificity = TNR = TN/(TN + FP)

F1 = 2 · Precision · Recall/(Precision + Recall)

The Receiver Operating Curve (ROC) plots TPR vs. FPR

at different classification thresholds. Area Under the Curve
(AUC) is a measure of the surface of the region below the
entire ROC curve.

D. Results & Discussion

This section presents the results of the performance evalua-
tion of SB-GAN and SB-VAE. Figures 2, 3, 4, and 5 depict the
values of AUC (upper diagram) and F1 (lower diagram) for
the Rice Type Classification, Smoke Detection, Credit Card
Default, and Surgical datasets, respectively.

Logistic Regression NeuralNet Random Forest SVM
Classifier

0.0

0.2

0.4

0.6

0.8

1.0
AU

C
_m

ea
n

0.72
0.77 0.76 0.76

0.72
0.76 0.75 0.76

0.72
0.76 0.75 0.760.72

0.77 0.76 0.76
0.69

0.75 0.75 0.730.72
0.76 0.75 0.76

0.71
0.77 0.76

0.720.72
0.78 0.77

0.73
0.68

0.77 0.76 0.74
0.70

0.78 0.78 0.76

ROS SMOTE BRD-SMOTE SVM-SMOTE KMN-SMOTE ADASYN VAE SB-VAE GAN SB-GAN

Logistic Regression NeuralNet Random Forest SVM
Classifier

0.0

0.2

0.4

0.6

0.8

1.0

F1
_m

ea
n

0.48
0.52 0.50

0.53
0.47

0.52 0.51 0.53
0.45

0.49 0.50 0.500.48
0.52 0.51 0.53

0.49 0.49 0.49 0.490.46
0.50 0.50 0.52

0.48 0.46 0.47 0.450.48 0.49 0.49 0.46
0.39

0.48 0.47 0.46
0.42

0.49 0.48 0.47

Fig. 4. Performance comparison for different classifiers and oversampling techniques for the Credit Card Default dataset.

Logistic Regression NeuralNet Random Forest SVM
Classifier

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

_m
ea

n

0.68

0.38 0.37

0.53

0.67

0.45 0.44

0.53

0.65

0.46 0.43

0.52

0.68

0.45 0.47
0.54

0.72

0.43 0.43

0.55

0.66

0.41 0.43

0.53

0.64

0.44
0.39

0.49

0.64

0.50

0.39

0.50

0.65

0.42
0.38

0.58

0.68

0.43
0.39

0.60

ROS SMOTE BRD-SMOTE SVM-SMOTE KMN-SMOTE ADASYN VAE SB-VAE GAN SB-GAN

Logistic Regression NeuralNet Random Forest SVM
Classifier

0.0

0.2

0.4

0.6

0.8

1.0

F1
_m

ea
n

0.47

0.19

0.11

0.38

0.47

0.30
0.24

0.37

0.48

0.32

0.23

0.38

0.47

0.29 0.29

0.39

0.48

0.21 0.21

0.37

0.48

0.24 0.25

0.38
0.45

0.19
0.12

0.28

0.45

0.23

0.12

0.28

0.37

0.19
0.13

0.35
0.39

0.20
0.14

0.35

Fig. 5. Performance comparison for different classifiers and oversampling techniques for the Surgical dataset.

Regarding the Rice Type Classification dataset (Fig. 2),
LR, FFNN, and SVM achieved very high values for AUC,
regardless of the applied oversampling technique. This is was
anticipated to some extent, since this dataset has a rather small
imbalance ratio (1:1.2). On the other hand, in terms of F1,
there were some significant discrepancies. The best results
were obtained by using SMOTE and k-Means SMOTE in
combination with SVM (F1 ≃ 0.94); all generative models
also had a satisfactory performance (F1 ≃ 0.94). The best F1
measurements of the FFNN and RF classifiers were achieved

by oversampling the minority class with SB-GAN.
In contrast to the Rice Type Classification dataset, RF was

the best classifier in the Smoke Detection Dataset. All over-
sampling methods achieved almost equal AUC and F1 values
(between 0.98 and 0.99), and SB-GAN again outperformed
the other methods by a slight margin. FFNN and SVM were
now the weakest classifiers, but they both maximized their
effectiveness with SB-GAN (in terms of both AUC and F1).

FFNN was the winning classifier in the Credit Card Default
dataset (Fig. 4). Similarly to the two previous datasets, FFNN

maximized its achieved AUC in combination with SB-GAN
(AUC ≃ 0.78). The same applies to SVM and RF.

The only case where SB-GAN was not the best method,
was observed in the Surgical dataset. The best classifier was
LR and maximized its AUC and F1 with k-Means SMOTE.

A more general observation of these results produces the
following conclusions:

• In each of the 4 examined datasets, we had a different
classification model as a winner. However, in 3 out of
4 cases, the winners maximized their performance in
combination with SB-GAN.

• In almost all cases, SB-GAN outperformed the typical
GAN model by 1% to about 8%. Similarly, SB-VAE
defeated VAE by margins ranging between 1% and 6.5%.

• Regardless of the applied oversampling technique, the
performance of all classifiers drops as the imbalance ratio
of a dataset increases.

• Although slightly worse than SB-GAN, the older over-
sampling techniques are still very effective.

These conclusions verify the significance of the imbalance
problem and highlight the usefulness of the proposed models.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented SB-GAN and SB-VAE, two
conditional generative models for oversampling in imbalanced
datasets. Both models adopt an approach that filters out the
input training examples, effectively removing outliers and
other noisy samples. By feeding filtered data to SB-GAN and
SB-VAE, the models can better approximate the distribution
of the minority class and output more meaningful samples.
The experimental evaluation of SB-GAN and SB-VAE on four
public imbalanced datasets yielded promising results, since in
most cases, they outperformed the baseline generative models.

Future work includes a deeper experimentation with the
training process of SB-GAN. Instead of feeding the Generator
with random noise, we shall study the potential of feeding it
with samples that respect the class imbalance ratio of the input
data. In this way we anticipate to create robust Generators that
can better compete with the model’s Discriminator.

REFERENCES

[1] H. Kaur, H. S. Pannu, and A. K. Malhi, “A systematic review on
imbalanced data challenges in machine learning: Applications and
solutions,” ACM Computing Surveys, vol. 52, no. 4, pp. 1–36, 2019.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[3] A. Fernández, S. Garcia, F. Herrera, and N. V. Chawla, “SMOTE for
learning from imbalanced data: progress and challenges, marking the 15-
year anniversary,” Journal of AI Research, vol. 61, pp. 863–905, 2018.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,”
Advances in Neural Information Processing Systems, vol. 27, 2014.

[5] V. Sampath, I. Maurtua, J. J. Aguilar Martin, and A. Gutierrez, “A
survey on Generative Adversarial Networks for imbalance problems in
computer vision tasks,” Journal of Big Data, vol. 8, pp. 1–59, 2021.

[6] D. P. Kingma and M. Welling, “Auto-encoding Variational Bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[7] D. P. Kingma, M. Welling et al., “An introduction to Variational
Autoencoders,” Foundations and Trends in Machine Learning, vol. 12,
no. 4, pp. 307–392, 2019.

[8] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural networks with
methods addressing the class imbalance problem,” IEEE Transactions on
Knowledge and Data Engineering, vol. 18, no. 1, pp. 63–77, 2005.

[9] C. L. Castro and A. P. Braga, “Novel cost-sensitive approach to
improve the multilayer perceptron performance on imbalanced data,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 24,
no. 6, pp. 888–899, 2013.

[10] S. Soleymanpour, H. Sadr, and M. Nazari Soleimandarabi, “CSCNN:
cost-sensitive Convolutional Neural Network for encrypted traffic clas-
sification,” Neural Processing Letters, vol. 53, no. 5, pp. 3497–3523,
2021.

[11] H. Zhang, L. Jiang, and C. Li, “CS-ResNet: Cost-sensitive Residual
Convolutional Neural Network for PCB cosmetic defect detection,”
Expert Systems with Applications, vol. 185, p. 115673, 2021.

[12] B. Krawczyk, M. Woźniak, and G. Schaefer, “Cost-sensitive decision
tree ensembles for effective imbalanced classification,” Applied Soft
Computing, vol. 14, pp. 554–562, 2014.

[13] A. C. Bahnsen, D. Aouada, and B. Ottersten, “Example-dependent cost-
sensitive decision trees,” Expert Systems with Applications, vol. 42,
no. 19, pp. 6609–6619, 2015.

[14] R. Obiedat, R. Qaddoura, A.-Z. Ala’M, L. Al-Qaisi, O. Harfoushi,
M. Alrefai, and H. Faris, “Sentiment analysis of customers’ reviews
using a hybrid evolutionary SVM-based approach in an imbalanced data
distribution,” IEEE Access, vol. 10, pp. 22 260–22 273, 2022.

[15] T. Hasanin and T. Khoshgoftaar, “The effects of random undersampling
with simulated class imbalance for big data,” in Proceedings of the 2018
IEEE International Conference on Information Reuse and Integration,
2018, pp. 70–79.

[16] W.-C. Lin, C.-F. Tsai, Y.-H. Hu, and J.-S. Jhang, “Clustering-based
undersampling in class-imbalanced data,” Information Sciences, vol.
409, pp. 17–26, 2017.

[17] S.-J. Yen and Y.-S. Lee, “Cluster-based under-sampling approaches
for imbalanced data distributions,” Expert Systems with Applications,
vol. 36, no. 3, pp. 5718–5727, 2009.

[18] A. Moreo, A. Esuli, and F. Sebastiani, “Distributional random over-
sampling for imbalanced text classification,” in Proceedings of the 39th
ACM SIGIR International Conference on Research and Development in
Information Retrieval, 2016, pp. 805–808.

[19] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive Synthetic
Sampling approach for imbalanced learning,” in Proceedings of the 2008
IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence), 2008, pp. 1322–1328.

[20] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: A new over-
sampling method in imbalanced data sets learning,” in Proceedings of
2005 International Conference on Intelligent Computing (Advances in
Intelligent Computing), 2005, pp. 878–887.

[21] H. M. Nguyen, E. W. Cooper, and K. Kamei, “Borderline over-sampling
for imbalanced data classification,” International Journal of Knowledge
Engineering and Soft Data Paradigms, vol. 3, no. 1, pp. 4–21, 2011.

[22] G. Douzas, F. Bacao, and F. Last, “Improving imbalanced learn-
ing through a heuristic oversampling method based on k-Means and
SMOTE,” Information Sciences, vol. 465, pp. 1–20, 2018.

[23] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “SMOTE-
Boost: Improving prediction of the minority class in boosting,” in
Proceedings of the 7th European Conference on Principles and Practice
of Knowledge Discovery in Databases, 2003, pp. 107–119.

[24] S. Wang and X. Yao, “Diversity analysis on imbalanced data sets by
using ensemble models,” in Proceedings of the 2009 IEEE Symposium
on Computational Intelligence and Data Mining, 2009, pp. 324–331.

[25] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,”
arXiv preprint arXiv:1411.1784, 2014.

[26] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier gans,” in Proceedings of the 34th International
Conference on Machine Learning, 2017, pp. 2642–2651.

[27] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “InfoGAN: Interpretable representation learning by infor-
mation maximizing Generative Adversarial Nets,” Advances in Neural
Information Processing Systems, vol. 29, 2016.

[28] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with Deep Convolutional Generative Adversarial Networks,”
arXiv preprint arXiv:1511.06434, 2015.

[29] K. Sohn, H. Lee, and X. Yan, “Learning structured output represen-
tation using deep conditional generative models,” Advances in Neural
Information Processing Systems, vol. 28, 2015.

