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Abstract—Nowadays, huge amounts of text are being generated
on the Web by a vast number of applications. Examples of such
applications include instant messengers, social networks, e-mail
clients, news portals, blog communities, commercial platforms,
and so forth. The requirement for effectively identifying docu-
ments of similar content in these services rendered text clustering
one of the most emerging problems of the machine learning
discipline. Nevertheless, the high dimensionality and the natural
sparseness of text introduce significant challenges that threat the
feasibility of even the most successful algorithms. Consequently,
the role of dimensionality reduction techniques becomes crucial
for this particular problem. Motivated by these challenges, in this
article we investigate the impact of dimensionality reduction on
the performance of text clustering algorithms. More specifically,
we experimentally analyze its effects in the effectiveness and
running times of eight clustering algorithms by employing six
high-dimensional text datasets. The results indicate that, in most
cases, dimensionality reduction may significantly improve the
algorithm execution times, by sacrificing only small amounts of
clustering quality.

Index Terms—clustering, text clustering, dimensionality reduc-
tion, data reduction, unsupervised learning

I. INTRODUCTION

Text clustering refers to the unsupervised problem of identi-
fying and grouping together semantically similar documents in
previously unexplored text collections. The explosive growth
of numerous online applications that generate and manage
huge volumes of text rendered the problem of text clustering
particularly important. Examples of such applications include
microblogs, shopping platforms, news portals, e-mail clients,
digital libraries, and so on.

Motivated by the significance of the problem for both the
scientific community and the industry, numerous researchers
introduced several state-of-the-art solutions with the aim of
confronting it. Nevertheless, text is generally characterized by
high degrees of diversity. Therefore, two or more documents
may express similar or identical meanings, despite the fact
that they consist of completely different words. Text diversity
is usually an undesired property, because it has several severe
side-effects. First, it blurs the semantic similarities between
two documents, making it hard to identify their thematic
affinity. And second, it renders the data both sparse and
highly dimensional, leading to a significant degradation of the
performance of the relevant algorithms [1], [2].

In brief, high dimensionality and sparseness lead to very
long vector representations that have the vast majority of
their elements equal to zero. The algorithms that operate
on such data –like text clustering algorithms– require large
amounts of memory to accommodate and process all the
vector components, whereas the execution times get drastically
increased. This situation, where the high dimensionality of the
input data may render an algorithm even infeasible, is broadly
known as the “curse of dimensionality”.

The dimensionality reduction techniques have been devel-
oped with the aim of confronting the issues caused by the
curse of dimensionality. By exploiting the statistical properties
of the data (such as the variance of the input variables), or
by applying matrix decompositions, these methods essentially
transform the original data by projecting it onto spaces of
lower dimensionality. Consequently, they decrease the memory
requirements, allowing the machine learning algorithms to
work more efficiently. The two most popular dimensionality
reduction algorithms are Singular Value Decomposition (SVD)
[3] and Principal Component Analysis (PCA) [4]. Notice that
other feature engineering techniques (like feature selection
methods) also lead to a reduction of the input space size.
However, these techniques attempt to generate a representa-
tive subset of the input variables without transforming them,
contrary to the dimensionality reduction algorithms.

In this paper, we conduct a study with the aim of evaluating
the impact of dimensionality reduction techniques in text clus-
tering applications. More specifically, we perform clustering
by executing 8 major algorithms on 6 well-established text
datasets. Simultaneously, we apply dimensionality reduction
several times on these datasets, and we record the clustering
performance and the running times of the algorithms for
each dimensional space. With this strategy, we are able to
compare the algorithm accelerations against the changes of
their performance for multiple input space sizes.

The rest of the paper is organized as follows: Section II
contains a brief reference to the most important clustering and
dimensionality reduction algorithms of the relevant literature.
Next, Section III describes the experimental setup (datasets,
algorithms, etc.), and discusses the results of our study. Finally,
Section IV summarizes the findings of this work and highlights
its conclusions.



II. RELATED WORK

The problems of clustering and dimensionality reduction
are considered as the most representative topics in the unsu-
pervised learning research field. Therefore, a large number of
researchers are still working on the development of enhanced
algorithms. According to their adopted logic, the current state-
of-the-art solutions can be categorized into several classes.

Specifically, the space partitioning methods attempt to
solve the problem by separating the space into distinct, non-
overlapping subspaces. All the data points that fall into the
same subspace are considered proximal and they are subse-
quently grouped together into the same cluster. k-means is
the most popular space partitioning method, and numerous
variants have been introduced to improve it.

Among others, Spherical k-means founded a decomposition
method for constructing concept vectors from the cluster
centroids to perform text clustering [5]. In addition, [6] con-
structed a co-occurrence graph to identify groups of similar
words. From the perspective of execution times, MiniBatch
k-Means partitions the input data into subsets (called mini-
batches) with the aim of decreasing the clustering duration
without sacrificing the quality of the generated clusters [7].

Another category of clustering algorithms includes the hi-
erarchical methods, with agglomerative clustering being the
most popular one. In this scheme, the data elements are
initially placed into an equal number of singleton clusters.
Then, the two most similar clusters are progressively merged
until a single cluster is generated, or no more similar clus-
ters exist. Variants of agglomerative clustering may derive
by adopting different cluster linkage methods; e.g., Ward,
complete, average, etc [8], [9]. Another hierarchical algorithm
is BIRCH, a memory efficient algorithm for large-scale text
clustering [10], [11]. This method constructs a feature tree that
allows the input data to be compressed (with losses) to a set
of clustering feature nodes.

The spectral analysis methods are based on the interesting
approach of extracting and examining the spectrum of a graph
that reflects the affinity of the input samples. The original
Spectral clustering algorithm initially constructs the similarity
and the Laplacian matrix of the affinity graph. In the sequel,
it performs eigen-decomposition of the Laplacian, and applies
k-means to cluster the generated eigenvectors [12]. Its solid
theoretical background and its high performance rendered
Spectral clustering one of the most popular and well-studied
methods in the area [13].

In case the clusters are not convex shaped, then the density-
based methods offer an attractive alternative. In this context,
DBSCAN considers that the clusters are high-density areas
delimited by low-density areas [14], [15]. Therefore, the
identified clusters may possess any shape, for example, ring,
circle, sigmoid, etc. OPTICS is quite similar to DBSCAN, but
it also constructs a graph that determines the reachability of a
data point from other points [16]. Notice that, in text clustering
applications, the clusters are usually convex-shaped. In such
cases, the density-based methods are frequently outperformed

TABLE I
TEXT CLUSTERING DATASETS

Dataset Samples Dimensions Clusters
Tweet 2472 5076 89
PriceRunner TVs 3564 2720 1280
TitleSet 11109 8079 152
SnippetSet 11109 18436 152
20 Newsgroups 20000 9887 20
Wines 11258 7173 88

by other techniques [17], [18]. Moreover, the numerous nearest
neighbor queries that are required, render them considerably
more expensive than other competitive approaches.

Regarding the dimensionality reduction algorithms, the two
baseline methods are Singular Value Decomposition (SVD)
[3] and Principal Component Analysis (PCA) [4]. Apart from
those, Random Projection is a computationally efficient al-
gorithm that projects the original high-dimensional data onto
a lower-dimensional space by using a random matrix whose
columns have unit lengths. This method has been proved
quite successful in both image and text mining tasks [19]. In
addition, the traditional SVD has been utilized effectively in
sentiment classification applications to perform dimensionality
reduction [20]. Finally, the method of [21] considered the
label and structural information of text, by adopting a semi-
supervised approach for feature weighting and extraction.

III. CLUSTERING AND DIMENSIONALITY REDUCTION

This section presents the experimental study of the effects of
dimensionality reduction on text clustering. The presentation is
organized in 5 subsections that describe: i) the utilized datasets
(III-A), ii) the clustering algorithms that participated in the
study (III-B), iii) the performance evaluation measures (III-C),
and iv) the results of the evaluation in terms of clustering
effectiveness (III-D) and execution times (III-E).

All the experiments were conducted on a system equipped
with 32GB of RAM and an Intel CoreI7 7700 processor
running at 3.6GHz.

A. Datasets

Table I contains the basic attributes of the datasets that were
utilized in this work. More specifically, the number of samples
(i.e., documents), dimensions, and clusters are presented in
columns 2, 3 and 4, respectively.

The first dataset is a collection of 2472 Tweets that were
considered highly relevant to 89 queries of the TREC mi-
croblog tracks of 2011 and 20121. After the application of
several text cleaning and preprocessing filters (see the next
subsection), about 5 thousand distinct words were included
in the corpus. The second dataset draws its origin from
PriceRunner, a popular online product comparison platform. It
includes 3564 product titles that correspond to 1280 different
TV models [17], [18], and it is publicly available on Kaggle2.

1http://trec.nist.gov/data/microblog.html
2https://www.kaggle.com/datasets/lakritidis/product-clustering-matching-

classification



TABLE II
CLUSTERING ALGORITHMS AND HYPER-PARAMETER SETTING

Clustering Algorithm Hyper-parameters
k-means Number of clusters: Actual. Max iterations: 200. Centroid initialization: k-means++.
MiniBatch k-means Number of clusters: Actual. Max iterations: 200. Centroid initialization: k-means++. Batch size: 1024.
BIRCH Number of clusters: Actual. Cluster radius threshold: 0.5. Max number of clusters in a node: 50.
Agglomerative Clustering Number of clusters: Actual. Linkage: Complete. Distance measure: Euclidean.
Agglomerative (Ward) Number of clusters: Actual. Linkage: Ward. Distance measure: Euclidean.
Spectral Clustering Number of clusters: Actual. Affinity: RBF. γ: 1.0.
DBSCAN ε: 0.5. Nearest Neighbors: 5. Distance measure: Euclidean.
OPTICS ε: 0.5. Nearest Neighbors: 5. Distance measure: Euclidean.

Furthermore, TitleSet and SnippetSet comprise 11109 news
headlines from 152 stories that were published on Google
News. They have been used in numerous articles of the
relevant literature for evaluating text clustering algorithms
[22], [23]. The former includes only the news titles, whereas
the latter includes excerpts of the main articles.

The largest dataset that we used is the well-known 20
Newsgroups, a traditional benchmark for text machine learning
algorithms and NLP techniques. It includes 20 thousand news
stories that can be categorized in 20 classes. The input vector
space consists of approximately 10 thousand distinct words.
Finally, the sixth dataset utilized in this study is Wines3, a
collection of 11258 descriptions for 88 wine varieties produced
by 995 different wineries.

B. Clustering Algorithms
In this study, we examined the performance of eight clus-

tering algorithms on the six aforementioned datasets. The
algorithms were selected with the aim of representing the four
most popular approaches to clustering; namely:
• Space partitioning methods: This category includes the

popular k-means algorithm and another faster variant of
it, MiniBatch k-means [7].

• Hierarchical methods: Here, we implemented three tech-
niques: i) the traditional Agglomerative clustering with
complete linkage, ii) an effective variant of Agglomera-
tive clustering that applies the Ward method for record
linkage, and iii) BIRCH, a memory efficient, online-
learning algorithm for large-scale clustering [10].

• Spectrum analysis methods: The well-established Spectral
clustering method was selected to represent this family.
Initially, this approach employs a Gaussian (RBF) kernel
function to construct the Laplacian matrix. Then, it per-
forms eigen-decomposition of this matrix and it executes
k-means to cluster the generated eigenvectors.

• Density-based methods: These algorithms are useful
when the clusters are not convex shaped. DBSCAN [14]
and OPTICS [16] have been examined from this category.

Table II enlists the eight algorithms that have been examined
in this study. The second column reports the tuning of their
respective hyper-parameters. Notice that these values were not
the absolute optimal, but they have been set with the aim of
delivering decent performance across all datasets.

3https://github.com/broepke/TextClustering

C. Performance Evaluation Measures

Three performance evaluation metrics were used to measure
the effectiveness of the 8 aforementioned algorithms; specifi-
cally:
• Adjusted Mutual Information (AMI): The plain Mutual

Information (MI) determines the similarity between two
clusterings U and V as follows:

MI(U, V ) =

|V |∑
i=1

|U |∑
j=1

|Ui ∩ Vj |
N

log
N |Ui ∩ Vj |
|Ui||Vj |

A weakness of MI is that it increases when the number
of clusters is large, regardless of whether there is actually
more information shared. AMI confronts this problem as
indicated by the following formula:

AMI(U, V ) =
MI(U, V )− E[MI(U, V )]

(H(U) +H(V ))/2− E[MI(U, V )]

• Adjusted Random Index (ARI): The Random Index (RI)
is defined as the ratio between the correctly grouped
pairs divided by the total number of pairs, ignoring
permutations:

RI(U, V ) =
|Common pairs between U and V |

|Pairs in U and V |
ARI corrects RI for chance, by ensuring that its value
will be equal to 0 if U and V are formed randomly, and
equal to 1 if they are identical:

ARI(U, V ) =
RI(U, V )− E[RI(U, V )]

maxRI(U, V )− E[RI(U, V )]

where E[RI(U, V )] denotes the Expected Random Index
between U and V .

• V-measure, or Normalized Mutual Information (NMI):
It combines the metrics of cluster completeness C and
homogeneity G into a single formula:

NMI(U, V ) = V =
2CG

1 + C +G

The completeness C of a cluster U is defined as the
ability of an algorithm to place all the members of a class
into same cluster. On the other hand, the homogeneity
G of a cluster U indicates the purity of U ; namely,
the ability of algorithm to avoid placing elements from
different classes into the same cluster.
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Fig. 1. Adjusted Mutual Info (left column), Adjusted Random Index (central column), and V -measure (right column) of the 8 clustering methods of Table
II against input spaces of variable dimensionality (logarithmic scaling). The 3 diagrams at the top concern the Tweet dataset, whereas the 3 diagrams at the
bottom concern PriceRunner TVs. The rightmost markers represent the original input spaces with all features included, i.e., without dimensionality reduction.

D. Results on Clustering Effectiveness

This subsection presents the results of our study on the
impact of dimensionality reduction on text clustering perfor-
mance. At first, we briefly describe the text preprocessing
filters that were applied, and then we refer to the procedure
for converting the raw text into numerical vectors.

Initially, a case folding filter was applied at the raw input
text with the aim of transforming all the uppercase characters
to lowercase. Then, a simple regular expression was formed
to remove the punctuation symbols (dots, commas, etc.).
After the documents were split to their component words, the
popular tf-idf vectorization method was invoked to generate
a collection of L2-normalized input vectors. Notice that tf-
idf produces very long, high-dimensional and sparse vectors.
The third column of Table I reports the size of the input
dimensional space for each dataset.

The experiments were conducted by projecting the original
input spaces onto other vector spaces of lower dimensionality.
More specifically, for each dataset, we formed multiple target
spaces that were one, two, three, etc. orders of magnitude
smaller than the original ones. In all cases, the space reductions
were carried out by employing the Truncated Singular Value

Decomposition (TSVD) algorithm, a variant of PCA that can
operate in the presence of sparse matrices.

The values of AMI, ARI, and V-measure of the eight
clustering methods on the six datasets of Table I are illustrated
in Figures 1, 2 and 3. In all 18 diagrams, the horizontal axes
are plotted in logarithmic scale to conveniently illustrate the
vector space sizes that differ by multiple orders of magnitude.
Moreover, the rightmost markers represent the performance of
the algorithms in the original input spaces, that is, without
the application of dimensionality reduction. In all 3 figures
the left, center, and right diagrams depict the values of AMI,
ARI, and V-Measure, respectively.

The top diagrams of Figure 1 depict three comparative
charts on the Tweet dataset. In the original input space with
the 5076 dimensions, the most effective method in terms
of AMI was BIRCH, with a score of 0.735. Ward and k-
means followed, with values that were equal to 0.724 and
0.704, respectively. The top left diagram also illustrates that
these three methods were affected by slight margins of 1–
9% when the number of dimensions was decreased by one
order of magnitude, i.e., 507. On the other hand, Spectral
clustering and MiniBatch k-means were outperformed by the
three aforementioned algorithms in both feature spaces.
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Fig. 2. Adjusted Mutual Info (left column), Adjusted Random Index (central column) and V -measure (right column) of the 8 clustering methods of Table II
against input spaces of variable dimensionality (logarithmic scaling). The 3 diagrams at the top concern the TitleSet dataset, and the 3 diagrams at the bottom
concern 20 Newsgroups. The rightmost markers represent the original input spaces with all features included, i.e., without dimensionality reduction.

Another interesting observation is that the density based
methods, namely, DBSCAN and OPTICS, were benefited by
dimensionality reduction, since their AMI increased when the
size of the feature space was decreased by one order of
magnitude. However, their performance was still very weak,
and not comparable to the effectiveness of the other methods.
All diagrams reveal that this observation does not hold for this
case only and can be extended into the general conclusion
that the density based methods do not perform well in text
clustering applications. For this reason, and due to space
restrictions, we shall not comment further on them.

For more aggressive reductions, that is, by two orders
of magnitude, the AMIs of most methods degraded further.
Therefore, k-means and Ward dropped by roughly 4% and 5%
to 0.68 and 0.69, respectively. Interestingly, the performance
of BIRCH, which was the most effective method of the
two previous cases, dropped to absolute 0 here. A careful
inspection of all 18 diagrams leads to a second conclusion:
BIRCH does not tolerate an excessive dimensionality reduction
of the feature space by more than one orders of magnitude. For
a reduction by 3 orders of magnitude, only 5 features are left
in the dataset, Therefore, the accuracy of all methods drops
below acceptable levels.

Regarding the other two evaluation measures, the top right
diagram of Figure 1 that illustrates the V-Measure values
is very similar to the diagram of AMI. Regarding ARI, the
ranking of the algorithms was different. Agglomerative was the
most successful technique, as it achieved ARI = 0.477 and
outperformed the other methods by a significant margin. It was
followed by the 3 aforementioned methods, namely, BIRCH,
k-means, and Ward. In the reduced feature space with the 507
dimensions, the accuracy of Ward was increased, making Ward
the best performing approach.

The three bottom diagrams of Figure 1 illustrate the clus-
tering effectiveness of the algorithms on the PriceRunner TVs
dataset. The performance of the three hierarchical methods
was also among the best. In the original feature space (2720
features), the value of AMI for BIRCH and Spectral clustering
was 0.435. Ward and Agglomerative clustering were the other
two methods with AMIs greater than 0.4. In this dataset, even
the smallest reduction in number of features led to significant
degradation of the accuracy of almost all algorithms. Contrary
to the Tweets dataset, Ward and Agglomerative were among
the most affected methods, and they were outperformed by
the space partitioning approaches –k-means and MiniBatch
k-means– in terms of both AMI and ARI.
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Fig. 3. Adjusted Mutual Info (left column), Adjusted Random Index (central column) and V -measure (right column) of the 8 clustering methods of Table
II against input spaces of variable dimensionality (logarithmic scaling). The 3 diagrams at the top concern the SnippetSet dataset, and the 3 diagrams at the
bottom concern Wines. The rightmost markers represent the original input spaces with all features included, i.e., without dimensionality reduction.

The 6 diagrams of Figure 2 depict the clustering per-
formance of the algorithms in the TitleSet (top) and 20
Newsgroups (bottom) datasets. For TitleSet, the shapes of
the curves are very similar to those that were observed in
the Tweets dataset. According to all 3 evaluation measures,
the hierarchical methods BIRCH and Ward were again the
most accurate on the original feature space. Regarding the
Agglomerative approach, the values of AMI and V-measure
were considerably lower, rendering this method less accurate
than k-means and Spectral clustering.

Interestingly, for most methods, the reduction of the dimen-
sional space by one or two orders of magnitude resulted in
no, or very slight degradations of AMI and V-measure. As
mentioned earlier, BIRCH is the most significant exception,
since its accuracy is quickly nullified as the number of features
decreases. Similarly to the Tweets dataset, the ARI measure
provides a diverse impression. Thus, it seems that MiniBatch
and Spectral clustering work better with fewer features.

Moreover, in the 20 Newsgroups dataset, Spectral clustering
outperformed all its adversaries in all three measurements
and all dimensional spaces, apart from the smallest one (i.e.,
reduction by three orders of magnitude). Remarkably, the
method’s accuracy in this test was not affected by dimension-

ality reduction. Overall, apart from the second dataset, it was
revealed that Spectral clustering is robust to reductions of the
feature space by one or two orders of magnitude.

The performance of the hierarchical methods was rather
problematic on this test. Furthermore, Ward and Agglomer-
ative achieved far better results on the smallest input spaces
which included just 9 features. For example, on the original
feature space, the ARI of Ward was 0.254, whereas on the
smallest space it was boosted to 0.594 which is the highest
among the other algorithms. These results indicate that the im-
pact of dimensionality reduction cannot be always predicted,
since there are datasets where a portion of the algorithms
perform better on reduced dimensional spaces.

We continued the experiments by examining the perfor-
mance of the 8 clustering algorithms on the last two datasets,
namely, SnippetSet and Wines. The results are respectively
depicted in the top and bottom diagrams of Figure 3. For
SnippetSet, the ranking of the algorithms was very similar to
the one of TitleSet. In addition, the larger corpus (compared
to TitleSet where only the titles were available) benefited the
accuracy of all algorithms for all three measures. Therefore,
the hierarchical methods (i.e., BIRCH, Ward, Agglomerative)
and Spectral clustering were particularly effective in all spaces.
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Fig. 4. Execution times of the 8 clustering methods of Table II against input spaces of variable dimensionality (logarithmic scaling). The rightmost markers
represent the original input spaces with all features included, i.e., without dimensionality reduction.

With only a few exceptions (with BIRCH being the most
obvious), the dimensionality reduction by two orders of mag-
nitude led to small losses in performance. This was valid for
the space partitioning techniques too. For a reduction by one
order of magnitude, we recorded an interesting diversity in
the behavior of k-Means vs. Minibatch k-Means: although the
AMI of the former was decreased (from 0.783 in the original
space, to 0.689 in the reduced space), the AMI of the latter
was increased (from 0.616 in the original space, to 0.717 in the
reduced space). Nevertheless, the conclusions that we derived
from the four previous datasets were verified again in this test.

In the Wines dataset, the situation was reversed and the
space partitioning methods were the most powerful. In con-
trast, the hierarchical methods, were clearly ineffective, since
their performance was poor in this dataset. Interestingly, the
aforementioned diversity in the behavior of k-Means and
MiniBatch k-Means was also reversed. More specifically, for
a reduction by one order of magnitude, the AMI of the former
was increased (from 0.289 in the original space, to 0.316 in
the reduced one), whereas the AMI of the latter was decreased
(from 0.337 in the original space, to 0.298 in the reduced one).

For more aggressive reductions (namely, by two or more
orders of magnitude), the rates at which the performance
degraded were rather mixed. As expected, BIRCH was hugely

affected; in the other hand, k-Means and Spectral clustering
were particularly stable. Regarding the winner of this test,
MiniBatch k-Means there was a moderate drop on its accuracy.
For example, its AMI decreased from 0.337 in the original
space to 0.299 in the reduced one. On the other hand, its ARI
was almost vanquished from 0.218 in the original space to
0.086 in the reduced one.

E. Results on Clustering Duration

Finally, we also conducted a study on the running times
of all algorithms in all datasets and all dimensional spaces.
The results are illustrated in the six diagrams of Figure 4.
Each diagram represents a dataset. Both the vertical and the
horizontal axes are plotted in logarithmic scale to conveniently
illustrate the large fluctuations of the durations on the various
dimensional spaces.

The conclusion that derives from the inspection of these
diagrams complies with the anticipated behavior: dimension-
ality reduction has a positive impact on the running times of
clustering algorithms. However, the execution acceleration is
occasionally sublinear to the size of the input vector space.
In other words, a dimensionality reduction by one, two, etc.
orders of magnitude is not always translated to a speed-up by
one, two, etc. orders of magnitude. In some cases, the gains



are infinitesimal; for example, Spectral clustering on TitleSet.
However, the aforementioned conclusion remains quite solid.

In all datasets, and in the original vector spaces the slowest
algorithm was always OPTICS. Once again, its increased
execution times combined with its ineffectiveness renders this
algorithm inappropriate. On the other hand, the other density-
based method, DBSCAN was substantially faster.

As expected, the space partitioning k-Means and MiniBatch
k-Means were the fastest methods, with the latter outperform-
ing the former. These two methods were among the most
benefited ones, since the acceleration rate was approximately
linear to the size of the input vector space. Indicatively, in
the original space of the 20 Newsgroups dataset with the
9887 features, k-Means and MiniBatch k-Means consumed
roughly 6.6 and 5.1 seconds respectively to complete their
task. This time dropped by about 10 times (0.7 and 0.5
seconds, respectively) for a dimensionality reduction by 10X.

The hierarchical methods were slower than the space parti-
tioning ones; Ward and Agglomerative clustering had almost
equal running times and they were both slightly slower than
BIRCH. Their speed-up was almost linear to the reduction in
the size of the input space. In contrast, Spectral clustering was
not particularly benefited from dimensionality reduction.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an experimental study on the
impact of dimensionality reduction in text text clustering
applications. By employing 6 well-established datasets, we
created input vector spaces of various dimensionalities, and
we measured the performance and running times of 8 domi-
nant clustering algorithms. Throughout this investigation, we
derived several useful conclusions that we summarize in the
following list:

1) Regardless of the input vector space size, the density
based methods (i.e. DBSCAN and OPTICS) did not
perform well on text clustering tasks.

2) BIRCH does not tolerate excessive dimensionality re-
ductions, that is, by more than one orders of magnitude.

3) In contrast, Spectral clustering is robust to reductions of
the feature space by one or two orders of magnitude.

4) The impact of dimensionality reduction is sometimes
unpredictable, since there are datasets where some al-
gorithms perform better on reduced dimensional spaces.

5) Dimensionality reduction benefits the running times of
all text clustering algorithms. In most cases, the smaller
the dimensionality, the faster the clustering procedure is.

Our future plans for this work include the examination of
the impact of several word and sentence embedding techniques
in the effectiveness of the NLP clustering applications. More
specifically, we intend to evaluate the performance of the
recent state-of-the-art text clustering algorithms by employing
both pre-trained and variable-size word embeddings.
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