
Matching Products with Deep NLP Models
Leonidas Akritidis

School of Science and Technology
International Hellenic University

Thermi, Thessaloniki, Greece
Email: lakritidis@ihu.gr

Panayiotis Bozanis
School of Science and Technology
International Hellenic University

Thermi, Thessaloniki, Greece
Email: pbozanis@ihu.gr

Abstract—Following the explosive data growth that is presently
taking place on the Web, the eCommerce industry has evolved
towards enterprises and services that collect product-oriented
data from multiple external sources. Since the majority of these
sources are usually uncontrolled and independent of each other,
they provide their information in a diverse manner, rendering the
identification of products a difficult task. The problem becomes
particularly challenging by considering the native sparseness and
high dimensionality of text, the specific peculiarities of product
data, the large data volume and the dynamic nature of the
involved applications. Despite the uncontested significance of the
problem, there is a lack of works in the relevant literature
that confront it by taking into account all the aforementioned
challenges. In this paper, we summarize these challenges and
provide some useful insights on how they can be effectively
tackled. We also present several components of a preliminary
system that is being developed to accurately and efficiently
identify product entities in diverse data originating from multiple
external sources.

Index Terms—product matching, entity matching, record link-
age, NLP, BERT

I. INTRODUCTION

The problem of precisely recognizing the product identity
from a descriptive excerpt of text is of crucial importance for
numerous eCommerce applications. For example, the large-
scale product comparison platforms require effective and
scalable solutions to allow their users aggregate hundreds
of offers from various merchants. Similarly, on-line auction
houses that accept offers by individual owners must be able
to match an offer with an existing product entity. Even small-
sized applications managed by local retailers require similar
mechanisms to enrich their electronic catalogs with data feeds
coming from different wholesalers.

The significance of the problem has attracted the attention
of a significant number of researchers. Earlier works employed
simple string similarity (or distance) metrics, such as the
cosine and edit distance measures [1]. More recent approaches
compute the similarity between two strings by taking into
consideration their semantics [2]. However, string similarity
measures are not suitable for the problem of product matching
for two reasons: First, a high (low) similarity value between
two products does not necessarily infer that these products
are identical (different) [3], [4]. Frequently, highly similar
titles refer to different products and vice versa. Second,
their computation is expensive, despite some works proposed
strategies for their acceleration [5].

To address the problem of sparseness, several researchers
suggested the utilization of external sources of information like
search engines and social networks [3], [4]. The most serious
drawback of these approaches is that communicating and
retrieving information from such sources is a costly procedure.
In addition, a portion of these sources does not provide
unlimited access, and usage restrictions may hold. In [6] a
system for matching product titles was proposed. However,
this solution depends on the existence of key elements in the
titles, such as product codes and manufacturer names.

In a previous line of research we introduced UPM, a
multi-step method that confronts the problem by adopting a
clustering approach [7], [8]. After identifying important parts
in the title of an offer (e.g., model name, attribute values,
measurement units), UPM generates low dimensional vector
embeddings by constructing all possible word combinations.
Then, the embeddings are appropriately scored and the of-
fers sharing common highly-scored embeddings are placed
together in a product cluster. The output is further improved by
applying post-processing filters, ensuring that offers of differ-
ent categories or of different sources cannot coexist within the
same cluster. Although UPM achieves high matching quality
and it can handle offers of brand new products (i.e., without
any matches), it is not appropriate for dynamic systems.

During the past few years, the introduction of the Trans-
former model yielded huge improvements in natural language
classification [9]. BERT (Bidirectional Encoder Representa-
tions from Transformers) is considered as one of the most
effective, Transformer-based language representation models
[10]. However, the original BERT is not suitable for the
problem of similarity matching that we examine here, due to
its large computational overhead [11].

Several researchers have proposed modifications that con-
front the problem more efficiently. In particular, Sentence-
BERT employs siamese and triplet networks on a pre-trained
BERT model to derive semantically meaningful sentence
embeddings [11]. In [12], eComBERT adopted the logic
of Sentence-BERT for matching product offers. Moreover,
JointBERT combines binary matching and multi-class clas-
sification, forcing the model to predict the entity identifier in
addition to the match/non-match decision [13].

The huge success of the Transformer-based models in hard
NLP tasks renders them an attractive approach in the product
matching domain. In addition, the dynamic nature of the

eCommerce systems and the large volume of the involved data
pose significant challenges that require special treatment. In
this paper, we describe these challenges, we provide the nec-
essary background knowledge and we propose a partitioning
architecture for improving the efficiency of this task.

II. CHALLENGES

During this study, we encountered multiple factors that
render the problem of product identification particularly chal-
lenging. We summarize them in the following list:

• Text Sparseness: Consisting of only a few terms, a
product title is considered as a form of short text. As
such, it exhibits a significant degree of sparseness that
blurs the semantic similarity with other titles. It derives
from various factors, such as the absence of important
words from the titles, the usage of different words to
describe the same entity, the inclusion of irrelevant terms,
the large vocabulary sizes and so on.

• Latent similarity: A product title is not simply another
form of short text. Unlike natural language text, highly
similar titles may refer to different products, and, vice
versa, diverse titles may represent the same product
[3], [4]. Hence, the over-simplistic usage of similarity
measures or similarity-based algorithms may lead to
inaccurate results and poor matching quality.

• High dimensionality and representation: The traditional
Bag-Of-Words (BOW) text representations generate pro-
hibitively long vectors that may easily overwhelm a
classifier, even at moderate scales. The aforementioned
BERT-based models, like Sentence-BERT, address this
issue by representing a text sequence with fix-sized low-
dimensional vectors. However, several issues still remain:

– Text cleaning is of crucial importance. How do we
treat the irrelevant words in an offer (e.g., “free
shipping”, “discount of x%”, etc.)?

– Title enrichment is another point of research. Should
we inject specific “words of interest“ (like categories,
technical specifications, etc.) in a product title? Are
there any important words that are missing from an
offer title? How can we handle the abbreviations?

• Large data volumes: The warehouse of a typical medium-
sized enterprise stores tens, or hundreds of thousands of
products. On the other hand, large-scale auction houses
and product comparison platforms are 1-3 orders of
magnitude larger. Each individual product is a candidate
class for an incoming offer. Training and using classifiers
directly in datasets of such scales is clearly infeasible with
commodity hardware. A robust solution must be scalable
and include sophisticated mechanisms to efficiently sus-
tain these tremendous workloads.

• High data velocity: New offers may arrive in rates
that exceed one million per day. Updating the offer
database within reasonable times is a challenging task.
This includes insertions of new products, deletions of the
obsolete ones, and linkage with the product entities that
pre-exist in the system’s database.

III. BACKGROUND

We consider the universe of all products P that consists
of product entities p ∈ P with three properties: a title tp,
a category cp and a set of attributes Ap. Therefore, p can
be expressed as a triplet of the form (tp, cp, Ap). The title
tp is always known and it is unique for every p in the
collection. The category cp is also always available, but it
depends on the adopted taxonomy C. The set of attributes
Ap may include technical specifications (accompanied by their
respective measurement units), dimensions, materials, colors,
and so on. It may be unknown, or partially known; but even if
it is fully known, data quality problems frequently arise, such
as completeness, reliability, consistency and integrity [14].

We call a system that maintains a database with P products
as a Product Management System (PMS). As mentioned ear-
lier, examples of PMSs include on-line auction houses, product
comparison platforms, retailers, and so on. Apart from its
underlying product database, a PMS receives product offers
O, originating from external data sources; e.g., independent
users, merchants, APIs, third parties, and so on.

Similarly to the records of P , an offer o ∈ O is always
described by a title to, whereas it may also possess a category
co and a set of attributes Ao. Notice that, since o originates
from an external uncontrolled source, co and Ao may be blank
or unreliable. In addition, co may be incompatible to the
taxonomy C that is adopted by the PMS. It is also common
that some of the attributes of o are embedded into its title to.

The automatic product matching mechanism of a PMS must
effectively perform the following operations:

1) Analyze the incoming offers and, for each offer o ∈ O,
identify the product p ∈ P that it represents. Then,
create a match between o and the corresponding product
p, and potentially update the availability, price, and
attributes of p.

2) In several cases, o may refer to a product that is not
present in P . This usually occurs when o concerns a
new release, or when it promotes very old unsupported
products. In such cases, a new record p′ must be inserted
to P , and a match between o and p′ must be generated.

3) Optional: Strictly speaking, categorization is not a re-
quirement of the product matching problem. Nonethe-
less, in this work we consider it extremely important for
two reasons: i) it facilitates category-based navigation
and enhances search robustness in a PMS, and ii) it
improves both matching quality and execution speed as
described in Subsection IV-A.

4) Optional: Several real-world PMS applications require
that the products of P that match no incoming offers to
be deleted, deactivated, or marked as unavailable.

IV. SYSTEM OVERVIEW

This section describes the architecture of our multi-stage
approach for processing the incoming set of offers O. An
indicative block diagram is illustrated in Figure 1. To perform
the four aforementioned operations, an offer o ∈ O passes
through the three following stages:

Unmatched

book offers
Clustering

Existing Products

New Products

Product Universe 𝑃

offer o

𝐿 ≥ 𝑇𝑐𝑝

𝐿 < 𝑇𝑐𝑝

Classification
(model MCPUs)

Classification
(model Mbooks)

Classification
(model Mwatches)

Categorization
(model G)

𝑐𝑝: CPUs

𝑐𝑝: books

𝑐𝑝: watches

Category Taxonomy 𝐶

offer o +

CPUs

offer o +

books

offer o +

watches

Fig. 1. The execution flow of the product matching procedure

• Categorization: Given that a PMS operates a pre-existing
product taxonomy C, a deep learning model G assigns a
category c ∈ C to o.

• Classification: This stage matches o with a single product
p ∈ P . It is based on a model set M that includes
|C| classifiers, one per category. The classification is
performed by a picking a model Mc ∈ M that has been
trained with the products belonging to the category c of o.
Apart from the matching product p, Mc also outputs an
uncertainty value L that is indicative of the classification
trustworthiness.

• Clustering of the unmatched offers: In case L is smaller
than a category-specific threshold Tc, we assume that o
matches none of the products p ∈ P . Now this stage
creates |C| pools of such unmatched offers, also one per
category c ∈ C. Then, it applies a clustering algorithm
to create new clusters and place the similar offers there.
The cluster labels are subsequently utilized to create new
products and append them to P .

More details on these stages are described in Subsections
IV-A, IV-B, and IV-C.

A. Product Categorization
Determining the category c of an incoming offer o is of

particular importance for numerous reasons. First, a catego-
rized set of product entities P improves user experience and
allows extended search capabilities. In the context of product
matching, we leverage categorization to limit the pool of
candidate matches to a subset Pc ∈ P = {p | cp = c} that
includes only the products belonging to same category c as
the offer o. This approach has several beneficial implications
that are described in details in the next subsection.

The categorization process begins by applying a number of
preprocessing filters to the offer titles. The filters perform case
folding (i.e., conversion of all characters to lower case) and
punctuation removal. Several symbols, like dots and dashes,
are significant for recognizing the identify of a product. Hence,
dots are left intact in the offer titles, whereas the dashes are
replaced by space characters. An additional cleaning filter is
also applied for noise (irrelevant words) removal. In this Work-
In-Progress paper we utilize a simple dictionary-based strat-
egy. However, the Denoising Autoencoders offer an attractive
alternative that will be examined during our future work.

Regarding short-text representation, the literature includes a
broad variety of state-of-the-art techniques. However, as men-
tioned earlier, the well-established approaches that generate

word embeddings are not suitable in our case, because it is
the entire sequence that must be vectorized and not just a
single word. The methods that simply average the embeddings
of the included words to derive the short text embedding do
not perform well, especially when the embeddings have been
constructed by bidirectional Transformers [11].

For this reason, a set of BERT modifications have been
proposed in the literature with the aim of generating high
quality sentence embeddings. Sentence-BERT generates low-
dimensional embeddings of the input text sequences by fine-
tuning BERT with siamese and triplet networks [11]. In this
article, we draw inspiration from Sentence-BERT: we fine-
tune the standard BERT model (110 million parameters) by
using the output state of a BERT model trained for the masked
language modelling (MLM) task.

Regarding the classifier G, we employ a deep learning model
that is fed with the constructed short text embeddings. G
includes a Birectional Long-Short Term Memory (BiLSTM)
layer with 768 units utilizing the Rectified Linear Unit (ReLU)
for activation. A Dropout layer with a rate equal to 0.2 is
attached to the output of the BiLSTM units with the aim of
avoiding overfitting. The output of G is given by the softmax
function of a fully connected layer. The model is trained
with Adam that optimizes the categorical cross-entropy loss
function in 50 epochs with and batches of 128 examples.

B. Product Matching

After the determination of the category c of an offer o,
another mechanism attempts to identify a product p that best
matches o. The process utilizes a set M of |C| classifiers.
Each classifier Mc ∈ M has been trained on the subset of
the products that belong to the respective category c. Product
matching is then performed by using the model Mc to classify
o into one of the products of Pc ⊆ P .

This strategy avoids querying the entire database P , leading
to two beneficial outcomes: i) it limits the possibility of false
matches, since it searches only among products of the same
category as the offer o, and ii) the entire matching task is
much faster because it is deployed on a subset of the original
data. In the illustrated example, o is categorized as a “book”.
Hence, we can safely discard all “CPUs” and “Watches” and
work with the “books” category only.
Mc may be any classifier; in this Work-In-Progress article

we employ another BiLSTM architecture, similar to the one
that was used in the categorization process. Hence, the model
comprises a BiLSTM layer, followed by a Dropout layer to

prevent overfitting. This configuration is attached to a fully
connected layer, and the entire model is trained in batches
of 32 and in 50 epochs. The categorical cross-entropy loss
function is minimized by utilizing the Adam optimizer.

By properly selecting the activation function of the output
layer of Mc (e.g. softmax, logistic, etc.), the generated output
can be interpreted as a probability. We denote this probability
with L and we set a threshold Tc for each category c ∈ C.
This threshold determines the matching strength between o
and p, or else, whether the classification (match) of o in p
is reliable or not. We adopt the multiple threshold approach
because our experiments have revealed that for different prod-
uct categories, the classifier Mc must output probabilities of
different magnitude in order to safely match o with a product.

Now, if L ≥ Tc, the output of Mc is sufficiently large, so
it is considered reliable. We create a match between o and p
and we optionally perform several actions with p, like update
its price, availability, stock, etc. On the other hand, if L < Tc,
then the output of Mc is weak and probably represents an
incorrect match. In this case, the output of the classifier is
ignored and the methodology of the next subsection is applied.

C. Creating New Products

The offers that have been unsuccessfully classified into one
of the existing products of P are grouped according to their
category in a set of |C| buckets B. The grouping is done in
such a manner, that each bucket b ∈ B stores unmatched offers
belonging to the same category (see Figure 1).

Since these offers match no product entities, we consider
that they represent new releases that have not been encountered
before. Thus, P must be expanded to include them. To achieve
this goal, we apply a text clustering algorithm to each bucket
b, with the aim of grouping together the offers that represent
identical products. Given that the vector embeddings of the
offer title have already been created during the categorization
phase, a simple algorithm like k-Means or Agglomerative clus-
tering can be applied directly by using these representations.
Alternatively, UPM from [7], [8] is also applicable.

After the clustering phase is completed, a new product for
each generated cluster is appended to P . The titles of the new
products derive by utilizing either the cluster label, or the title
of the representative (i.e., center, or clustroid) element.

V. PRELIMINARY CONCLUSIONS AND FUTURE WORK

In this Work-In-Progress paper we introduced a deep learn-
ing approach to the problem of product matching in e-
Commerce systems. The proposed method can effectively
match an incoming offer to a product entity, whereas it is
also capable of handling offers of new products that do not
match any of the existing entries. On its first stage, the vector
representation of an offer title is obtained by fine-tuning BERT
with the output of another BERT model trained with the
masked language modeling. Then, the offer embeddings are
fed into a classifier that identifies the category of the offer.

On the second stage, the system employs a set of classifiers
and selects the one that has been trained on the products

belonging to the same category as the offer. In case the output
probability is adequately large, then a match between the input
offer and the predicted product class is formed. Otherwise,
new products are created by applying a clustering algorithm
that is also category-agnostic. This category-based approach
is designed to improve both matching quality and efficiency.

Our current work is mainly oriented towards the proper
selection of the categorization and classification models and
the design of their architecture. Additional research is also
conducted towards the identification of category-based aspects
that will further improve the effectiveness of our method.

ACKNOWLEDGMENT

This research is co-financed by Greece and the European
Union (European Social Fund-SF) through the Operational
Programme “Human Resources Development, Education and
Lifelong Learning 2014-2020” in the context of the project
“Support for International Actions of the International Hellenic
University” (MIS 5154651).

REFERENCES

[1] W. H. Gomaa, A. A. Fahmy et al., “A survey of text similarity
approaches,” International Journal of Computer Applications, vol. 68,
no. 13, pp. 13–18, 2013.

[2] W. Hua, Z. Wang, H. Wang, K. Zheng, and X. Zhou, “Short text
understanding through lexical-semantic analysis,” in Proceedings of the
31st IEEE Int’l Conference on Data Engineering, 2015, pp. 495–506.

[3] V. Gopalakrishnan, S. P. Iyengar, A. Madaan, R. Rastogi, and S. Sen-
gamedu, “Matching product titles using web-based enrichment,” in
Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, 2012, pp. 605–614.

[4] N. Londhe, V. Gopalakrishnan, A. Zhang, H. Q. Ngo, and R. Srihari,
“Matching titles with cross title web-search enrichment and community
detection,” Proceedings of the VLDB Endowment, vol. 7, no. 12, pp.
1167–1178, 2014.

[5] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang, “Efficient similarity
joins for near-duplicate detection,” ACM Transactions on Database
Systems, vol. 36, no. 3, pp. 1–41, 2011.

[6] H. Köpcke, A. Thor, S. Thomas, and E. Rahm, “Tailoring entity
resolution for matching product offers,” in Proceedings of the 15th Int’l
Conference on Extending Database Technology, 2012, pp. 545–550.

[7] L. Akritidis and P. Bozanis, “Effective unsupervised matching of product
titles with k-combinations and permutations,” in Proceedings of the 14th
IEEE International Conference on Innovations in Intelligent Systems and
Applications, 2018, pp. 1–10.

[8] L. Akritidis, A. Fevgas, P. Bozanis, and C. Makris, “A self-verifying
clustering approach to unsupervised matching of product titles,” Artifi-
cial Intelligence Review, vol. 53, no. 7, pp. 4777–4820, 2020.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[11] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks,” arXiv preprint 1908.10084, 2019.

[12] J. Tracz, P. I. Wójcik, K. Jasinska-Kobus, R. Belluzzo, R. Mroczkowski,
and I. Gawlik, “BERT-based similarity learning for product matching,”
in Proceedings of Workshop on Natural Language Processing in E-
Commerce, 2020, pp. 66–75.

[13] R. Peeters and C. Bizer, “Dual-objective fine-tuning of bert for entity
matching,” Proceedings of the VLDB Endowment, vol. 14, pp. 1913–
1921, 2021.

[14] L. Akritidis, A. Fevgas, and P. Bozanis, “Effective products categoriza-
tion with importance scores and morphological analysis of the titles,” in
Proceedings of the 30th International Conference on Tools with Artificial
Intelligence, 2018, pp. 213–220.

