
August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

International Journal on Artificial Intelligence Tools

© World Scientific Publishing Company

Improving Hierarchical Short Text Clustering

through Dominant Feature Learning

Leonidas Akritidis

Department of Science and Technology, International Hellenic University

Thessaloniki, Greece
lakritidis@ihu.gr

Miltiadis Alamaniotis

Department of Electrical and Computer Engineering, University of Texas at San Antonio

San Antonio, USA
Miltos.Alamaniotis@utsa.edu

Athanasios Fevgas, Panagiota Tsompanopoulou

Department of Electrical and Computer Engineering, University of Thessaly
Volos, Greece

{fevgas,yota}@e-ce.uth.gr

Panayiotis Bozanis

Department of Science and Technology, International Hellenic University

Thessaloniki, Greece

pbozanis@ihu.gr

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

This paper focuses on the popular problem of short text clustering. Since the short text
documents typically exhibit high degrees of data sparseness and dimensionality, the prob-

lem in question is generally considered more challenging than the traditional clustering

scenarios. Our proposed solution, named VEPH, is based on a novel algorithm that was
published recently with the aim of optimally clustering short text documents. VEPH
includes two stages: During the first stage, the original text vectors are projected on a

lower dimensional space and the documents with projection vectors lying on the same
dimensional space are grouped in the same cluster. The second stage is a refinement

process which attempts to improve the quality of the clusters that were generated dur-

ing the previous stage. The quality of a cluster is determined by its homogeneity and
completeness and these are the two primary design criteria of this stage. Initially VEPH
cleanses the clusters by removing all dissimilar elements, and then, it iteratively merges
the similar clusters in a hierarchical agglomerative manner. The proposed algorithm has
been experimentally evaluated in terms of F1 and NMI, by employing three datasets with

diverse attributes. The results demonstrated its superiority over other state-of-the-art
works of the relevant literature.

Keywords: clustering; short text clustering; machine learning; unsupervised learning.

1

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

2 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

1. Introduction

The problem of short text clustering has emerged during the last decade due to

the explosive growth of applications that base their operation on the generation,

processing and dissemination of short textual information. Representative exam-

ples include microblogs, instant messengers, mail clients, Q&A communities, search

engines, platforms that handle entitled entities (such as news portals and article

aggregators, product comparison services, e-commerce applications, etc.), and so

on. Since the identification of semantically similar entities is of crucial significance

for the majority of these services, it follows that short text clustering constitutes a

particularly hot problem these days.

In general, data clustering is an extensively studied unsupervised learning prob-

lem that requires the recognition of similar entities (also called data points) from a

set of unlabelled data, and the subsequent grouping of them into a set of clusters.

In this context, the two main goals of a clustering algorithm are: i) to group all

similar elements into the same cluster, and ii) to place all dissimilar elements into

different clusters. The first goal is connected to the notion of cluster completeness

and expresses the ability of the algorithm to group as many similar items as pos-

sible inside the same cluster. On the other hand, the second goal reflects cluster

homogeneity, that is, the integration of no, or few dissimilar items within a cluster.

The current state-of-the-art approaches have identified data sparseness and high

dimensionality as two of the most significant problems that discriminate short text

clustering from traditional data clustering. Their existence renders the problem

considerably more challenging than normal clustering,1–4 because both of them have

a negative impact in the performance of the standard data clustering algorithms.

More specifically, short texts exhibit a higher degree of sparseness compared

to the normal text representations. This happens because the probability that two

short documents share many important words is small, or, at least, it is smaller

than the respective probability in the case of normal documents. Other reasons

concern synonymy and polysemy. The first works in the area attempted to limit the

effects of sparseness by augmenting the input document collections with informa-

tion originating from external Web sources.5,6 Nevertheless, the prohibitively high

cost of these methods motivated the research community to abandon this approach

and introduce corpus-based and self-taught methods.3,7 Some recent state-of-the-

art works proposed techniques for substituting specific words by their synonyms,8

algorithms for identifying the latent relationships between pairs,9,10 or combina-

tions of terms,4,11,12 and self-taught neural networks that learn non-biased deep

text representations.13

Regarding the problem of high dimensionality, the standard reduction algorithms

can be also applied in the case of short text clustering. Although they adopt different

strategies, the goal of the vast majority of them is common: to project the input

feature vectors into a lower dimensional space. Hence, SVD, PCA, QR, and eigen

decomposition (and their variants) limit the size of the original term-document

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 3

matrix via factorization. Nevertheless, these approaches have two major drawbacks:

First, they employ matrices to represent the input documents, thus they do not scale

well with the size of the dataset. And second, they require prior knowledge of the

true number of clusters; this requirement renders them infeasible in cases where the

input is either unknown, or changes rapidly.

In this paper we present VEPH, an algorithm for clustering short documents

and entitled entities. VEPH is an extension of VEPHC which was recently intro-

duced with the aim of limiting the sparseness of short texts, while it simultaneously

improves the completeness and homogeneity of the generated clusters.4 Similarly

to its predecessor, VEPH also includes two stages: The first one performs an initial

clustering of all similar items in the dataset. It achieves this goal by initially iden-

tifying the best combination of the features of a short document, according to a

scoring function. Then, it treats this combination as a projection of the original fea-

ture vector onto a lower dimensional space, and groups all the entries with common

projection vectors into the same cluster.

The second stage includes an effective refinement algorithm which improves

the initial clustering of the previous stage. In VEPHC, this was implemented in a

cluster split-merge fashion. In VEPH, the split phase is almost identical. However,

the merging of the proximal cluster takes place in a hierarchical agglomerative

manner. Notice that in this refinement stage, the split phase aims to improve the

homogeneity, whereas the merge phase is designed to enhance the completeness of

the generated clusters.

This work introduces several novel features summarized into the following list:

• In most machine learning tasks, a text dataset is typically vectorized ac-

cording to the well-known tf-idf method. However, when applied to short

texts, the term frequency is almost always equal to 1, therefore, the feature

weights are only affected by the term’s inverse document frequency (IDF).

To address this problem, we propose a different strategy for creating text

vectors that takes into consideration the offset of a word in the short text,

• VEPH is based on a novel dimensionality reduction approach that is not

related to the typical matrix factorization and/or matrix decomposition

methods of the relevant literature. Instead, it forms combinations of fea-

tures and identifies the best (termed as “dominant”) among them. Then,

the dominant feature combinations are treated as projections of the initial

vectors and the documents with common dominant projections are eventu-

ally grouped inside the same cluster,

• The idea of creating combinations of features and finding the dominant

feature combination is made more solid with the introduction of a more

robust scoring function,

• Our method introduces a cluster refinement stage that initially removes all

dissimilar elements from the initial clusters. Then, in contrast to VEPHC, it

iteratively merges all similar (or proximal) clusters in a hierarchical fashion.

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

4 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

The rest of this article is organized as follows: Section 2 briefly presents the most

inspiring works in the research area of short text clustering. A formal description of

the problem along with the necessary background knowledge are provided in Sec-

tion 3. The core elements and the main contributions of the article are subsequently

presented in a detailed manner in Sections 4 and 5. Furthermore, in Section 6 we

report the results of the experimental evaluation of the proposed algorithm, accom-

panied by a thorough interpretation. Finally, the highlights and the conclusions of

this article are summarized in Section 7.

2. Related Work

Text clustering is among the most popular problems in the wide area of unsuper-

vised learning and the current literature includes a wide variety of relevant state-of-

the-art studies. Besides, the broad adoption of short text documents in numerous

applications along with their native sparseness, rendered short text clustering a very

attractive field of research.

One of the first contributions in the area was Spherical k-means,1 a variant

of the well-known k-means algorithm which attempted to address the weakness

of its predecessor in handling the sparseness of short texts. More specifically, the

algorithm introduced a decomposition method for constructing concept vectors from

the cluster centroids, with the aim of achieving effective clustering of normal texts.

In contrast, the decomposition approach of Jia et al.2 created a weighted term co-

occurrence graph and exploited these weights to identify word communities with

similar semantics.

Moreover, several concept and matrix factorization methods14,15 were intro-

duced in order to extend the aforementioned concept decomposition algorithms.

One of the most successful factorization techniques is the well-established Non-

negative Matrix Factorization16 (NMF). To address the problem of sparseness of

short documents, Yan et al.17 employed NMF in combination with an exploration

strategy of the word correlation data. Moreover, a novel word weighting method for

NMF was proposed by the same group.18 Their approach is based on the normalized

cut problem when it is applied on the term affinity matrix.

Although NMF has been proved effective in multiple clustering tasks, it takes

into consideration only the global Euclidean space to compute new basis vectors,

thus ignoring the local manifold geometry of the underlying data. For this rea-

son, Shang et al.19 proposed a graph-based dual regularization (DNMF) extension,

which exploits the geometric properties of both the data and feature manifolds. Sim-

ilarly, CGF also constitutes an effective dual-graph regularized concept factorization

method for text clustering.20

Another branch of relevant works focused on the identification of individual

topics inside text corpora through the utilization of probabilistic models. Latent

Dirichlet Allocation21 (LDA) is one of the most effective algorithms of this family.

LDA was extensively studied in many topic modelling problems including short text

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 5

clustering.22 In this context, a recent model named GSDMM introduced an iterative

Gibbs Sampling algorithm for the Dirichlet Multinomial Mixture.23 GSDMM does

not require setting the number of clusters in advance, while it achieves good clus-

tering performance in several different tasks. Nevertheless, since it is based on an

iterative sampling algorithm, it is rather inappropriate for handling large datasets

with numerous clusters.

In addition, Yan et al.9 proposed BTM, a method for capturing and modelling

the observed word co-occurrence patterns in a document collection. Unfortunately,

the word-occurrence in BTM is limited to pairs of words (namely, biterms), and

ignores the possible relationships among three or more terms. In contrast, VEPH

implements an extended word-occurrence logic by creating combinations of multiple

words. Consequently, it is able to discover more qualitative information about the

correlations of short texts.

In many unsupervised learning tasks, the concept of self-teaching has led to

powerful algorithms with increased performance. Following this trend, the recent

state-of-the-art self-taught short clustering methods introduced models for learn-

ing features, relationships, constraints, etc. The well-established convolutional neu-

ral networks provided several promising models for learning deep text representa-

tions.13,24,25 Alternative robust solutions can also derive from the usage of autoen-

coders.26,27 Notice that our proposed method includes a refinement stage which can

also be considered as a self-taught procedure.

In the sequel, let us refer to some methods that purely attempt to overcome the

sparseness of short text documents. The vast majority of them artificially enrich the

representations of short texts with extra features (that is, words, terms, phrases,

etc.). The first approaches employed external data sources such as search engines,5

Wikipedia,6 HowNet,28 and WordNet29 with the aim of fetching relevant informa-

tion. Nonetheless, all of them suffered from serious efficiency problems originating

from the underlying communication and post-processing overheads.30

For this reason, a second family of self-taught methods, also known as corpus-

based methods,8 emerged with the aim of achieving the enrichment goal without

utilizing external information sources. For example, Pinto et al.7 proposed a method-

ology which constructed knowledge bases after processing the same input dataset.

Then, an algorithm exploited these bases for inserting co-related terms to a short

document. Another similar corpus-based method was introduced by Zheng et al.3

who suggested a mapping mechanism for projecting the original documents onto a

hidden semantic space.

Finally, there is also a number of systematic overviews of the relevant literature.

In one of them, Rangrej et al.31conducted a comparative study of the most impor-

tant short text clustering algorithms before 2011. A more recent survey on topic

modelling for short text documents was published by Likhitha et al.32

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

6 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

3. Preliminary Elements, Notation, and Dataset Vectorization

This section contains a brief presentation of the basic elements that will provide

the theoretical foundations for the proposed method. It also introduces a new tech-

nique for transforming short text documents into vectors; some works refer to this

transformation as text vectorization.

We begin with the introduction of an input document collection D, consisting of

n records (also called samples). In the particular case that we examine, each sample

di contains a small number of terms and is typically represented by a dense vectora

xi = {xi1, . . . , xili}. In this representation, xij denotes the weight of the jth term of

di, whereas li is the length of di in number of terms. Equivalently, li also represents

the number of elements of xi, hence, it essentially determines its dimensionality.

Regarding the vector coefficients xij , the tf -idf vectorization method is a quite

popular strategy to determine their value:

xij = tfij · IDF(tj) = tfij · log(n/fj), (1)

where tfij denotes the number of the occurrences of the term tj in the document di,

whereas fj is the frequency of tj in the entire document collection. This weighting

method has been proved effective in many text mining and IR applications. However,

the small length of short texts minimizes the probability for a term to occur multiple

times in a document. So for the vast majority of the terms, it holds that tf = 1

and the scores of Eq. 1 are primarily determined by the inverse document frequency

(IDF) of a term.2

Moreover, several experimental studies demonstrated that the position of a term

in a document is occasionally an indication of its informational value. Equivalently,

the important words tend to appear early in the text. Motivated by these obser-

vations and the ineffectiveness of tf -idf in applications involving short texts, we

introduce tp-idf , a technique that incorporates the position of a term and its in-

verse document frequency according to the following equation:

xij = IDF(tj)
∑
∀tj∈di

1

α+ log(pij + 1)
= log

n

fj

∑
∀tj∈di

1

α+ log(pij + 1)
(2)

where pij is the position of the jth term of di in the document di, and α is a

real hyper parameter that falls into the range alpha ∈ [0, 1]. Notice that Eq. 2

takes into consideration the potential multiple occurrences of a term in a document

and assigns weights according to its position(s). By applying the proposed tp-idf

weighting function, the document collection D is eventually transformed into a

vector space X = {x1, . . . ,xn}.

aA short text document can also be represented by a sparse vector xs
i = {xi1, . . . , xi|W |}, where

|W | is the total number of terms in the collection. In a sparse vector, the vast majority of its
components are zero, leading to space ineffective representations. In this paper we exclusively

focus on dense vector representations.

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 7

Table 1. Notation.

Symbol Meaning

D The input dataset, or corpus
d ∈ D A short text document in D

n The number of documents in the corpus

x A vector representation of d
ld, lx The lengths of d and x; it holds that ld = lx
xj The jth element of x
x′ A projection of x on another feature space

x̂′ A unit vector with the same components as x′ (Reference Vector of x)

x∗ The dominant (highest scoring) projection vector of x
x̂∗ A unit vector with the same components as x∗ (Dominant Reference Vector of x)

X A feature space

k The number of the generated clusters
C The cluster universe

c ∈ C A cluster cosisitng of similar short text documents

Example 1. Consider a document d = {t1, t2, t1} with IDF(t1) = 1 and IDF(t2) =

2. According to the proposed tp-idf method (Eq. 2), and by setting α = 1, we have:

x1 = 1 ·
(1

1 + log(1 + 1)
+

1

1 + log(3 + 1)

)
' 0.769 + 0.624 = 1.393, and

x2 = 2 · 1

1 + log(2 + 1)
' 1.354

Consequently, d is represented by the vector x = (1.393, 1.354).

For simplicity reasons, and without loss of generality, we drop the subscript i

for the rest of this presentation. VEPH is based on the projection of the original

text vectors x onto a lower dimensional space X′. The advantages of this approach

will be analyzed in the next section. For the time being, in this article we shall use

the notation x′ to symbolize a projection of x on the space X′. Moreover, x̂′ is the

reference vector (RV) of x, that is, a unit vector having the same elements as the

projection vector x′, and length equal to 1.

Section 4 will introduce a special function to assign scores Sx′ to each projection

x′ of x. Let x∗ be the dominant projection vector (DPV) of x, namely, the projec-

tion of x which achieved the highest score. Similarly, we also define the dominant

reference vector (DRV) of x as a unit vector with the same components as x∗.

Now the goal of a clustering algorithm is to appropriately group the short text

documents of D into a set C consisting of k clusters. C is also called as the cluster

universe and a member of C is merely a cluster c. Table 1 conveniently summarizes

all the aforementioned notation.

4. Identifying Common Dominant Reference Vectors

Dimensionality reduction is a standard technique for avoiding the severe problems

the arise from the so-called “curse of dimensionality”. Its usefulness is explained

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

8 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

by a wide spectrum of advantages, including the reduced number of features per

sample and the improved space and time complexity of the developed algorithms.

Consequently, its utilization in numerous machine learning tasks is beneficial and

this also applies in the case of short text clustering.

The majority of the dimensionality reduction algorithms achieve their objective

by introducing a mechanism for effectively projecting the original feature vectors

onto a lower dimensional space. In this paper, we adopt this strategy with the aim

of performing an initial clustering of the input samples. The main idea in VEPH is

to project the input feature vectors of all similar documents onto the same space.

Then, intuitively, those samples that fall into the same vector space, will be placed

in the same cluster. According to the terminology of Section 3, the goal is to identify

the samples having the same dominant reference vectors (RDVs) and, subsequently,

group them in the same cluster.

This logic is decomposed into a series of steps. At first, we introduce a general

hyper parameter K. In the sequel, we process each input xi by forming all the

possible projection vectors having 1, 2, . . . ,K components drawn from xi. In other

words, we construct a set of projection vectors by picking combinations of 1, 2, . . . ,K

components from the original vector xi.

Example 2. Consider an input vector x = (x1, x2, x3, x4) and let K be equal

to 3. Then, the following projection vectors will be constructed: (x1), (x2), (x3),

(x4), (x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4), (x3, x4), (x1, x2, x3), (x1, x2, x4),

(x1, x3, x4), and (x2, x3, x4).

Now, from this set of candidate projection vectors, our intention is to identify

x∗i ; that is, the one which most accurately represents the initial feature vector xi.

We call this vector as the Dominant Projection Vector (DPV) and its dimensional

space will determine the cluster that will accommodate the respective document.

The computation of the RDV of a document di will take place by assigning scores

to all candidate projection vectors, and then, by selecting the one which achieved

the highest score among the others.

Thus, we introduce the following scoring function to assign a score to the jth

projection vector of an input sample xi:

Sx′
ij

=
1

lx′
ij

log fx′
ij

∑
∀xij∈x′

ij

xKij . (3)

In this equation, fx′
ij

is the number of the occurrences of x′ij ; namely, how many

times it has been constructed for all input vectors. As stated earlier, lx′
ij

is the

length of xij .

After all DPVs have been computed, the extraction of the respective DRVs is

very easy. Recall that the DRV of di is a unit vector that lies in the same feature

space as the DPV. In other words, it consists of the same components and its length

is equal to 1. The procedure ends by grouping all the elements that share a common

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 9

DPV into the same cluster. This is the first stage of VEPH and leads to an initial

formation of clusters.

Eq. 3 has been developed to improve the homogeneity and completeness of the

produced clusters. The following discussion justifies this claim.

At first, it is obvious that long DPVs/DRVs lead to homogeneous clusters, be-

cause, in this case, the documents of the corresponding cluster will have more fea-

tures (words) in common. Consequently, the summation term of Eq. 3 will assign

higher scores to the longer projection vectors. In contrast, the native sparseness of

short texts limits the probability that two documents have many words in common.

This means that long DPVs/DRVs lead to clusters that tend to be incomplete.

Thus, to limit this effect, we place the length of the projection vector in the denom-

inator of Eq. 3. The number of the occurrences fx′
ij

of the projection vector has

also been incorporated to enhance the completeness of the clusters: highly frequent

DPVs are shared by numerous documents.

Consequently, long (short) Dominant Projection Vectors lead to clusters that

tend to be homogeneous (inhomogeneous), but less (more) complete. Therefore,

the projection vector that will be dominant must have the ideal length, so that it

improves the clustering quality in terms of both homogeneity and completeness.

For the same reasons, the value of the hyper parameter K is also important.

Recall that K controls the maximum number of features that will be present in the

projection vectors; therefore, it directly affects their maximum lengths. Similarly to

our previous discussion, large values of K will in general lead to homogeneous but

incomplete clusters, and vice versa. A common setting for this hyper parameter is

an integer value between 2 and 6; greater values have a negative impact in both

clustering quality and execution time.

Now, if we combine the tp-idf vectorization method (Eq. 2) with the scores of

Eq. 3, we obtain the final equation for assigning scores to the projection vectors:

Sx′
ij

=
1

lx′
ij

log fx′
ij

∑
∀xij∈x′

ij

(
log

n

fj

∑
∀tj∈di

1

α+ log(pij + 1)

)K

. (4)

Example 3. Consider the documents of Table 2 and their respective vector repre-

sentations (shown in the second column). Recall that according to our established

notation, xij denotes the weight of the jth term of the ith document. For a setting

K = 2, the sets of all possible vector projections are recorded in the third column.

Now, let us assume that each projection vector is assigned a score based on Eq. 3,

and that the dominant projection vectors of the forth column are computed.

Table 3 shows the Dominant Reference Vectors (DRVs) for each document, as

they derive from the associated Dominant Projection Vectors. As mentioned earlier,

the dimensionality of DRVs determines the cluster that will accommodate each

document. Hence, the cluster of each document is reported in the last column of

Table 3.

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

10 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

Table 2. An example of documents, their vector representations and their projection vectors.

Document x x′ DPV x∗

d1 = {t1, t2, t3} x1 = (x11, x12, x13)
(x11), (x12), (x13)

(x11, x12), (x11, x13),(x12, x13)
x11t̂1 + x12t̂2

d2 = {t1, t2, t4} x2 = (x21, x22, x24)
(x21), (x22), (x23)

(x21, x22), (x21, x23),(x22, x23)
x21t̂1 + x22t̂2

d3 = {t1, t2} x3 = (x31, x32) (x31), (x32), (x31, x32) x31t̂1 + x32t̂2
d4 = {t3, t4} x4 = (x41, x42) (x41), (x42), (x41, x42) x41t̂3 + x42t̂4

d5 = {t3, t4, t5} x5 = (x51, x52, x53)
(x51), (x52), (x53)

(x51, x52), (x51, x53),(x52, x53)
x51t̂3 + x52t̂4

Table 3. Dominant Reference Vectors and clustering.

Document DPV x∗ DRV x̂∗ Cluster

d1 = {t1, t2, t3} x11t̂1 + x12t̂2 t̂1 + t̂2 c1
d2 = {t1, t2, t4} x21t̂1 + x22t̂2 t̂1 + t̂2 c1
d3 = {t1, t2} x31t̂1 + x32t̂2 t̂1 + t̂2 c1
d4 = {t3, t4} x41t̂3 + x42t̂4 t̂3 + t̂4 c2
d5 = {t3, t4, t5} x41t̂3 + x42t̂4 t̂3 + t̂4 c2

5. Cluster Refinement

After the clustering of the previous stage is completed, the refinement process fol-

lows. This procedure consists of two successive steps, namely: i) a split phase, where

the most dissimilar elements are removed from their respective clusters; and ii) a

merge phase that unifies entire clusters comprising similar elements. In the following

subsections we present each of these phases, and we emphasize on the points that

discriminate them from the respective phases of VEPHC.4

5.1. Split Phase

The goal of this phase is to improve the homogeneity of the clusters that were

formed after the computation of the DPVs and the subsequent grouping of the

input documents according to their common DRVs.

There are two prerequisites for this procedure: The first one requires a solid

definition of the similarity between an input text vector x and a cluster c. Various

methods have been proposed for this purpose such as simple and complete record

linkage, Ward, computation of the Euclidean distance between x and the centroid

of c, etc. Here, we adopt the same strategy as in VEPHC. Namely, we define the

similarity between an input vector x and a cluster c as the cosine similarity between

x and the clustroid uc. Recall that the clustroid of c is defined as the item (vector)

with the greatest similarity with the rest of the elements of c.

The second requirement is the introduction of a second hyper-parameter, which

we name split threshold Ts. Notice that Ts is a parameter that substantially affects

the homogeneity of the clusters, because it determines which (dissimilar) elements

must be evicted from the clusters. Moreover, Ts is a similarity threshold and, as

such, it may receive any real value in the range (0, 1).

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 11

Algorithm 1: The split phase of the refinement stage of VEPH

1 for each cluster c ∈ C do

2 uc ← compute the clustroid of c by using Algorithm 3;

3 end

4 for each cluster c ∈ C do

5 for each document vector x ∈ c do

6 simx,uc
← cos(x,uc);

7 if simx,uc < Ts then

8 c← c− {x};
9 create cluster cnew ← ∅;

10 cnew ← cnew ∪ {x};
11 ucnew

← x;

12 C ← C ∪ {cnew};
13 end

14 end

15 uc ← (re)compute the clustroid of c by using Algorithm 3;

16 end

After both of these requirements have been satisfied, the split phase iterates

through all clusters of C. For each cluster c ∈ C, it removes all the elements whose

similarity with uc is smaller than Ts. In VEPHC, the split/transfer algorithm imme-

diately searches for other, more similar clusters that may accommodate the evicted

elements. However, here we propose a different approach. More specifically, for each

evicted element, a new cluster is created and the evicted element is inserted into

this new cluster. It is clarified that all the new clusters which are created during

this phase are accommodating only one item, that is, they are singleton clusters.

Algorithm 1 contains the most important steps of the split process. Initially, the

clustroids of all clusters of C are computed (lines 1–3), by using Algorithm 3 that

is presented in the sequel. The second loop in lines 4–16 iterates again through all

clusters of C, and for each cluster c, it calculates the cosine similarity of all of its

items x with the clustroid uc (line 6). If the similarity between x and uc is smaller

than the value of the split threshold Ts, then the following operations take place:

(1) The dissimilar element x is removed from its cluster c (line 8);

(2) A new cluster cnew is created (line 9);

(3) x is inserted to cnew (lines 10–11), and becomes its new clustroid;

(4) cnew becomes a member of the universe C (line 12); and

(5) The clustroid of c is recomputed (line 15).

Consequently, at the end of the split phase, the universe C is enriched with new

singleton clusters, whereas the old ones will now be more homogeneous, due to the

eviction of their most dissimilar elements.

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

12 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

Algorithm 2: The merge phase of the refinement stage of VEPH

1 msc mat[∗]← NULL, sim mat[∗]← −1;

2 for each cluster c ∈ C do

3 msc mat[c]← compute the most similar cluster (MSC);

4 sim mat[c]← similarity with MSC;

5 end

6 while TRUE do

7 cand1 ←NULL, cand2 ←NULL;

8 for each cluster c ∈ C do

9 simmax ← 0;

10 if sim mat[c] > simmax then

11 simmax ← sim mat[c];

12 cand1 ← c;

13 cand2 ← msc mat[c];

14 end

15 end

16 if simmax > Tm then

17 cand1 ← cand1 ∪ cand2;

18 ucand1
← (re)compute the clustroid of cand1;

19 C ← C − {cand2};
20 msc mat[cand1]← (re)compute most similar cluster (MSC);

21 sim mat[cand1]← similarity with MSC;

22 msc mat[cand2]← NULL;

23 sim mat[cand2]← −1;

24 else

25 break;

26 end

27 end

5.2. Merge Phase

In contrast to the previous phase, the cluster merge phase aims at the enhancement

of the completeness of the clusters of C, including the recently created ones.

The merge phase is executed directly upon the completion of the split phase. The

merging operation takes place in an iterative hierarchical fashion, and, particularly,

its agglomerative version. The entire process is controlled by a merge threshold

Tm ∈ (0, 1) that determines the termination of the iterations. This procedure is

described in details by Algorithm 2.

At first, two column |C|×1 matrices are required: the first one, msc mat, stores

pointers to the most similar clusters of each cluster c ∈ C, whereas the second one,

sim mat, stores these maximum similarity values. In accordance to other works,

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 13

the similarity between two clusters can be represented quite effectively by the co-

sine similarity between their clustroid elements. Consequently, the ith element of

sim mat contains the cosine similarity between the clustroid of ci and the clustroid

of its most similar cluster.

After the initialization of the two aforementioned matrices (lines 1–5), the iter-

ative cluster merging begins (lines 6–27). In steps 8–15 the algorithm detects the

pair of the most similar clusters in the universe C. Let cand1 and cand2 be these

two clusters. If their similarity exceeds the value of the merge threshold Tm, then

the following operations are performed (lines 16–24):

(1) cand1 is merged with cand2, the result is stored in cand1 and its clustroid is

recomputed (lines 17–18);

(2) cand2 is removed from C (line 19); and

(3) The two auxiliary matrices msc mat and sim mat are updated accordingly

(lines 20–23).

On the other hand, in case the similarity between cand1 and cand2 does not

exceed the value of the merge threshold Tm, then we conclude that no other clus-

ter merging may occur. This triggers the process termination condition, and the

execution flow exits the loop.

As mentioned earlier, the goal of the refinement stage of VEPH is the improve-

ment of the quality of clustering that was achieved by the initial vector projection

stage. Therefore, the split phase is a cleansing process that enhances homogeneity,

because it evicts the most dissimilar items from the clusters. On the other hand,

the merge phase is a procedure designed to improve completeness, since it brings

together the most similar elements. Notice that the effectiveness of both phases is

affected by the values of the two aforementioned similarity thresholds Ts and Tm.

5.3. Complexity Analysis

In this subsection we present a time complexity analysis for the worst-case scenario

of the refinement stage of VEPH.

Algorithm 1 represents the split phase of VEPH and comprises two loops: The

first one computes the clustroids of the clusters of C using Algorithm 3 and its

worst-case complexity is O(|C|n2c), where nc denotes the maximum number of

items included in a cluster. The second loop removes the most dissimilar ele-

ments from all clusters and its worst-case complexity is O(|C|nc). Therefore, the

total time complexity of the worst-case scenario of Algorithm 1 is computed as

O(|C|n2c + |C|nc) = O(|C|n2c). Apparently, the dominant part in the split phase is

the (re)computation of the clustroid elements.

Regarding Algorithm 2, the time complexity in the worst-case scenario is upper

bounded by O(|C|n2c + |C|2). More specifically, the initialization of the two matrices

msc mat and sim mat has a cost of O(|C|) (line 1) plus O(|C|2) (lines 2–5). In

addition, the hierarchical merging process has a worst-case cost of O(|C|(|C|+n2c)).

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

14 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

Algorithm 3: Clustroid computation for a cluster c

1 simmax ← 0;

2 for each element x ∈ c do

3 sim← 0;

4 for each element x′ ∈ c do

5 sim← sim+ cos(x,x′);

6 end

7 if sim > simmax then

8 simmax ← sim;

9 uc ← x;

10 end

11 end

12 return uc;

6. Experimental Evaluation

In this section, we analyze the results of the experimental evaluation of the pro-

posed method. The presentation is divided into four subsections that describe the

employed datasets, the utilized evaluation measures, the adversary clustering algo-

rithms, and the effectiveness measurements themselves, respectively. There is also a

special subsection that contains a detailed study on the sensitivity of VEPH against

fluctuations of the values of its hyper parameters.

6.1. Datasets

We begin with the 3 datasets that were employed to evaluate the usefulness of the

proposed method. At first, News Aggregatorb (NA) is a well-established dataset

that contains about 423 thousand article titles. Although it is not quite large (it

occupies approximately 100 MB in uncompressed form), several adversary clustering

methods (such as the Agglomerative clustering algorithm and DBSCAN) failed to

complete their task within a reasonable time. For this reason, we randomly selected

50,138 news records grouped into 823 stories (namely, clusters) for our tests.

The second dataset is called TitleSet (TSET) and has been used in several

state-of-the-art works in the literature.2,17 It was extracted from a collection of

news titles, from a snapshot of Google News on November 27th, 2013. It consists of

11,108 article titles grouped in 152 news stories.

The third dataset was manually constructed by crawling 9 product categories

from PriceRunner (PRRc), an online service for comparing product offers. We em-

phasize that in this case we are not interested in grouping these products into one of

bhttps://www.kaggle.com/uciml/news-aggregator-dataset
chttps://www.kaggle.com/lakritidis/product-classification-and-categorization

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 15

Table 4. Experimental datasets.

Dataset Abbreviation n |C| lmax lave
News Aggregator NA 50138 823 15 7.05

TitleSet TSET 11108 152 14 6.10

PriceRunner PRR 35311 13233 41 8.23

these nine categories.33 Instead, the goal is to construct clusters of identical prod-

ucts, similarly to the operation of an entity matching algorithm. In this way, the

platform facilitates product comparison. The dataset contains 35311 titles that cor-

respond to 13233 distinct products, and has been utilized by multiple works in the

relevant literature.4,11,12

Table 4 summarizes the characteristics of the three datasets. In the last two

columns we report the maximum (lmax) and the average (lave) lengths (in numbers

of words) of the input short texts, respectively.

6.2. Evaluation Measures

There is a multitudinous family of measures for the evaluation of the performance

of the clustering algorithms. In this article, VEPH and its adversary methods are

evaluated by employing the two most popular among them: the F1 score and Nor-

malized Mutual Information (NMI).

The first one is a well-known metric that combines Precision and Recall and has

been utilized in many applications beyond clustering (e.g. evaluation of IR systems).

It is defined as follows:

F1 =
2PR

P +R
, (5)

where P and R represent the Precision and the Recall of the algorithm. To cal-

culate them, a procedure that iterates through all ground truth clusters CGT was

performed. For each element x within a ground truth cluster c ∈ CGT , we recorded

one pairwise match record (x,xr) with each of the rest of the elements xr of c. At

the end of the iteration, a database including a set of such pairwise match records

was created. In the sequel, we repeated this process for the cluster universe C that

was produced by each attested method. Eventually, we compared the ground truth

pairwise matches against the ones of each method, and we measured the number of

the True/False Positive/Negative records.

Regarding the second evaluation measure, NMI is essentially a method for es-

timating the amount of mutual information shared between the cluster assignments

in C and CGT :

NMI(CGT , C) =
2I(CGT ;C)

H(CGT) +H(C)
, (6)

where H(CGT) and H(C) denote the entropies of the ground truth and clustered

sets, respectively. Additionally, I(CGT ;C) = H(C) − H(C|CGT) represents the

amount of mutual information shared between the ground truth and clustered sets

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

16 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

Table 5. The attested clustering algorithms accompanied by the experi-
mental setup of their hyper parameters.

Algorithm Setup

VEPH K = 2, K = 6

VEPHC K = 2, K = 6

GSDMM-1 α = β = 0.1, k = 3|C|/2
GSDMM-2 α = 0.001, β = 0.01, k = 3|C|/2
Spherical k-Means k = |C|, I = 10

vk-Means k = |C|, I = 10

k-Means k = |C|, I = 10
Hierarchical (Agglomerative, HAC) –

Leader Clustering –

DBSCAN minPts = 2

CGT and C. A value of NMI that is close to 0 reveals no, or little mutual information

between two compared sets; in contrast, a value of 1 indicates that the two sets are

perfectly correlated.

6.3. Clustering Algorithms and Setup

The performance of VEPH was compared against 4 short text and 4 generic data

clustering algorithms in terms of both clustering quality and execution time. Table 5

enlists these 8 methods, accompanied by the experimental setup of their respective

hyper parameters. Notice that the values displayed in the second column consis-

tently led the associated algorithms to perform optimally in terms of clustering

quality (F1 scores). The following list briefly describes the 8 adversary algorithms:

• VEPHC4 is the predecessor algorithm of VEPH, with a simple tf -idf input vec-

torization method and a different refinement stage (as described in Section 5).

• GSDMM23 is a collapsed Gibbs Sampling algorithm for the Dirichlet Multino-

mial Mixture model. Here we report performance measurements by setting the

hyper parameters i) as it was proposed in the original paper (GSDMM-1), and

ii) by adopting the values utilized in a public implementationd (GSDMM-2).

• Spherical k-Means1,2 is an adaptation of the traditional k-Means algorithm

for text datasets. In the context of this experimental evaluation, all k-Means

variants were executed by setting the initial number of clusters equal to the

actual number of clusters (k = |C|, a rather unrealistic scenario in real-world

unsupervised tasks), and the maximum number of iterations equal to 10.

• vk-Means constitutes our own variant of k-Means for text datasets. In vk-Means

the centroid vectors and the Euclidean distances of the original algorithm have

been replaced by the clustroid elements and the cosine similarities, respectively.

• k-Means is a traditional space partitioning algorithm that iteratively groups

the involved data points, based on their Euclidean distance from the (moving)

centroids of the clusters.

dhttps://github.com/rwalk/gsdmm

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 17

• Hierarchical Clustering is one of the oldest and most successful (albeit slow)

clustering techniques. It has two equivalent versions, the divisive, and the ag-

glomerative one. In this work we implemented the latter version (HAC), that

requires the existence of a similarity threshold to determine whether two clus-

ters are similar enough to be merged. We executed the agglomerative (and the

next two) methods 10 times with different values of this threshold (in the range

[0, 1]) and in the following results, we report the performance of the best run.

• Leader Clustering34 is a method based on a special point in the cluster, called

the Leader element. This method is also subject to the aforementioned similarity

threshold, with the aim of quantifying the relationship of a data point with the

Leaders of the clusters.

• DBSCAN35 is a well-established density-based clustering algorithm. The

minPts hyper parameter that determines the minimum number of elements

per cluster was set equal to 2. This method is also subject to the aforemen-

tioned similarity threshold.

All algorithms were implemented in C++ and compiled by gcc 7.5.0 with O3

optimization. Public versions of the code were integrated within the SHTECLib

librarye. The code was executed on a machine equipped with an Intel CoreI7-7700

and 32GB of RAM, running Linux Mint 19.03.

6.4. Hyper Parameters Study

As mentioned earlier, VEPH includes four hyper parameters. The first one is α, a

real value in the range [0, 1] that regulates the contribution of the position of each

word in the vector coefficients of the input documents. Typical settings for α that

consistently led to a satisfactory performance of VEPH are 0.3 ≤ α ≤ 0.5. In the

experiments that follow we set α = 0.3.

The next hyper parameter to examine is K, of which the (integer) value deter-

mines the maximum length of the projection vectors during the first stage of VEPH.

Figure 1 illustrates the performance fluctuations in terms of Precision, Recall, F1

score and NMI, as K is modified from 2 to 6. Notice that in order to accurately

study the actual effects of K, we only report the performance of the first stage of

VEPH, that is, without applying the refinement stage of Section 5. Consequently,

the three diagrams of Fig. 1 represent the effectiveness of the first stage of VEPH

when it is applied in an isolated manner on each of the three test datasets.

Regarding the first two datasets (NA and TSET), the form of the curves is quite

similar. Namely, in both cases, VEPH achieves its best performance for the smallest

possible value of K (i.e., K = 2) in terms of both F1 and NMI. As the value of K

gradually increases, these two measures are beginning to fall. Eventually, for K = 6,

F1 becomes almost zero in both datasets. On the other hand, the degradation of

NMI is much smoother. Hence, for K = 2, the values of NMI for NA and TSET

ehttps://github.com/lakritidis/SHTECLib

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

18 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

April 6, 2022 23:38 WSPC/INSTRUCTION FILE ijait2022

18 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

2 3 4 5 6

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

K

P
e
rf
o
rm

a
n
c
e

Precision Recall F1 NMI

2 3 4 5 6

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

K

2 3 4 5 6

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

K

Fig. 1. Graphical representation of the clustering performance of VEPH vs. the hyper parameter
K. The three figures concern the i) News Aggregator (left), ii) TitleSet (center), and iii) Pricerunner

(right) datasets.

are 0.806 and 0.790 respectively, whereas for K = 6, these values become 0.769 and

0.719 respectively.

The situation is reversed in the case of PRR, where the worst and best perfor-

mances are observed for K = 2 and K = 6 respectively. More specifically, for K = 2

the F1 score is almost zero, and rises to approximately 0.34 for K = 6. Similar

improvements are also valid for NMI, Precision, and Recall.

Now, let us focus on the refinement stage of VEPH and the two similarity thresh-

olds Ts (split) and Tm (merge threshold). Recall that a document will leave a cluster

if its similarity with the clustroid is smaller than Ts. Also, two clusters having a

similarity value that is greater than Tm will finally be merged to form a single

cluster. Figure 2 depicts three heat maps (one for each dataset) of the F1 score of

VEPH, when both Ts and Tm are modified in the range [0.1, 0.9].

Similarly to the case of K, the observations on the first two datasets are similar.

VEPH achieves its best performance for small values of Ts (about 0.1–0.2) and

large values of Tm (roughly 0.7–0.8). On the other hand, in PRR the clustering

effectiveness is maximized for moderate values of Ts (namely, ' 0.5–0.6) and small

values of Tm (' 0.1). This means that it is difficult for a product title to leave

its initial cluster; if it does, its integration with another existing clustering has a

moderate probability.

In general, product clustering is a significantly more challenging problem than

the simple short text clustering.11,12 The reason is that very similar product titles

often refer to different products, and vice versa. This explains the considerable

differences between the optimal hyper parameter values in PRR, and the other two

datasets. In product clustering, the projection vectors must have more components

(i.e., K must have a greater value) to ensure that only highly similar documents

are inserted into the same cluster. For this reason, the product titles should not be

able to leave a cluster as easily as in the case of standard short text documents.

This explains why the optimal Tm was significantly smaller in the case of PRR.

Fig. 1. Graphical representation of the clustering performance of VEPH vs. the hyper parameter

K. The three figures concern the i) News Aggregator (left), ii) TitleSet (center), and iii) Pricerunner
(right) datasets.

are 0.806 and 0.790 respectively, whereas for K = 6, these values become 0.769 and

0.719 respectively.

The situation is reversed in the case of PRR, where the worst and best perfor-

mances are observed for K = 2 and K = 6 respectively. More specifically, for K = 2

the F1 score is almost zero, and rises to approximately 0.34 for K = 6. Similar

improvements are also valid for NMI, Precision, and Recall.

Now, let us focus on the refinement stage of VEPH and the two similarity thresh-

olds Ts (split) and Tm (merge threshold). Recall that a document will leave a cluster

if its similarity with the clustroid is smaller than Ts. Also, two clusters having a

similarity value that is greater than Tm will finally be merged to form a single

cluster. Figure 2 depicts three heat maps (one for each dataset) of the F1 score of

VEPH, when both Ts and Tm are modified in the range [0.1, 0.9].

Similarly to the case of K, the observations on the first two datasets are similar.

VEPH achieves its best performance for small values of Ts (about 0.1–0.2) and

large values of Tm (roughly 0.7–0.8). On the other hand, in PRR the clustering

effectiveness is maximized for moderate values of Ts (namely, ' 0.5–0.6) and small

values of Tm (' 0.1). This means that it is difficult for a product title to leave

its initial cluster; if it does, its integration with another existing clustering has a

moderate probability.

In general, product clustering is a significantly more challenging problem than

the simple short text clustering.11,12 The reason is that very similar product titles

often refer to different products, and vice versa. This explains the considerable

differences between the optimal hyper parameter values in PRR, and the other two

datasets. In product clustering, the projection vectors must have more components

(i.e., K must have a greater value) to ensure that only highly similar documents

are inserted into the same cluster. For this reason, the product titles should not be

able to leave a cluster as easily as in the case of standard short text documents.

This explains why the optimal Tm was significantly smaller in the case of PRR.

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 19

April 6, 2022 23:38 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 19

0.5

0.5

Ts

T
m

0.1 0.2 0.3 0.4

0.5

0.5

Ts

0.2 0.4 0.6

0.5

0.5

Ts

0.1 0.2 0.3 0.4

Fig. 2. Heat map of the F1 scores of VEPH against variations of the two similarity thresholds
Ts and Tm. The three figures concern the i) News Aggregator (left), ii) TitleSet (center), and iii)

Pricerunner (right) datasets.

6.5. Performance Evaluation

We proceed with the presentation of the performance evaluation of VEPH. We ex-

amined both the effectiveness (i.e., clustering quality) and the efficiency (running

times) of the proposed method. Table 6 contains measurements on the three afore-

mentioned datasets, compared with the adversary clustering methods that were

described above. These measurements concern the achieved F1 and NMI scores

and the execution times of all the involved algorithms.

VEPH achieved the best clustering performance among all examined methods

in two of the three test datasets, namely, NA and PRR. In both cases, the strongest

opponent was its predecessor algorithm. More specifically, in terms of F1 scores,

VEPH outperformed VEPHC by small to moderate margins of 1.2% (in NA) and

5.2% (in PRR). Regarding NMI, both methods were equally effective. According

to our previous study on hyper parameters, the optimal performance of VEPH in

NA was obtained with a setup of K = 2, Ts = 0.2, and Tm = 0.3. Regarding PRR,

these values were K = 6, Ts = 0.5, and Tm = 0.9.

Surprisingly, the second strongest method in both datasets was Agglomerative

clustering (HAC), achieving F1 scores equal to 0.454 in NA, and 0.314 in PRR. In

other words, VEPH outperformed HAC by about 5% and 29% respectively. Notice

that the differences in the values of NMI were slightly smaller.

Regarding GSDMM, the second configuration scored F1 = 0.424 and NMI =

0.82 on the NA dataset. These values are smaller by 13% and 4% than the respec-

tive ones of VEPH. On the other hand, GSDMM with a setting of α = β = 0.1 (i.e.

GSDMM-1) was rather ineffective, scoring F1 = 0.171 and NMI = 0.75. Never-

theless, both configurations of GSDMM had a disappointing behavior on the PRR

dataset and failed to produce a decent clustering of the input records. Indicatively,

the measured F1 scores were close to zero, whereas the NMI of GSDMM-1 was

the worst among all the examined methods.

Fig. 2. Heat map of the F1 scores of VEPH against variations of the two similarity thresholds

Ts and Tm. The three figures concern the i) News Aggregator (left), ii) TitleSet (center), and iii)

Pricerunner (right) datasets.

6.5. Performance Evaluation

We proceed with the presentation of the performance evaluation of VEPH. We ex-

amined both the effectiveness (i.e., clustering quality) and the efficiency (running

times) of the proposed method. Table 6 contains measurements on the three afore-

mentioned datasets, compared with the adversary clustering methods that were

described above. These measurements concern the achieved F1 and NMI scores

and the execution times of all the involved algorithms.

VEPH achieved the best clustering performance among all examined methods

in two of the three test datasets, namely, NA and PRR. In both cases, the strongest

opponent was its predecessor algorithm. More specifically, in terms of F1 scores,

VEPH outperformed VEPHC by small to moderate margins of 1.2% (in NA) and

5.2% (in PRR). Regarding NMI, both methods were equally effective. According

to our previous study on hyper parameters, the optimal performance of VEPH in

NA was obtained with a setup of K = 2, Ts = 0.2, and Tm = 0.3. Regarding PRR,

these values were K = 6, Ts = 0.5, and Tm = 0.9.

Surprisingly, the second strongest method in both datasets was Agglomerative

clustering (HAC), achieving F1 scores equal to 0.454 in NA, and 0.314 in PRR. In

other words, VEPH outperformed HAC by about 5% and 29% respectively. Notice

that the differences in the values of NMI were slightly smaller.

Regarding GSDMM, the second configuration scored F1 = 0.424 and NMI =

0.82 on the NA dataset. These values are smaller by 13% and 4% than the respec-

tive ones of VEPH. On the other hand, GSDMM with a setting of α = β = 0.1 (i.e.

GSDMM-1) was rather ineffective, scoring F1 = 0.171 and NMI = 0.75. Never-

theless, both configurations of GSDMM had a disappointing behavior on the PRR

dataset and failed to produce a decent clustering of the input records. Indicatively,

the measured F1 scores were close to zero, whereas the NMI of GSDMM-1 was

the worst among all the examined methods.

However, GSDMM was the highest performing method on the TitleSet dataset.

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

20 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

Table 6. Performance evaluation of the clustering methods of Table 5 on the datasets of Table 4.

Algorithm
News Aggregator TitleSet Pricerunner

F1 NMI Time F1 NMI Time F1 NMI Time

VEPH 0.477 0.853 9.4 0.685 0.865 1.2 0.405 0.946 326.0

VEPHC 0.471 0.851 10.2 0.574 0.830 1.0 0.385 0.946 305.1
GSDMM-1 0.171 0.753 390.4 0.719 0.872 13.3 0.002 0.404 3246.2

GSDMM-2 0.424 0.820 453.9 0.495 0.829 14.0 0.008 0.631 3317.3

Sph. k-Means 0.335 0.757 119.6 0.603 0.832 4.0 0.226 0.903 426.1
vk-Means 0.154 0.614 104.7 0.375 0.721 1.8 0.220 0.900 484.4

k-Means 0.028 0.697 104.3 0.072 0.634 3.9 0.048 0.399 494.2
Agglomerative 0.454 0.835 2492.8 0.597 0.836 76.2 0.314 0.935 166.7

Leader 0.284 0.778 17.1 0.400 0.745 0.2 0.306 0.934 17.2

DBSCAN 0.256 0.790 130.5 0.294 0.603 5.8 0.055 0.425 58.4

Its F1 and NMI scores were 0.719 and 0.872, respectively. VEPH was in the sec-

ond place this time, but it was competitive enough, since it was outperformed by a

margin no greater than 5%. In addition, in this dataset we measured the greatest

difference between the performances of VEPH and VEPHC. More specifically, the

former outperformed the latter by 19% and 4% in terms of F1 and NMI, respec-

tively. VEPHC was also outperformed by HAC and Spherical k-Means by 4% and

5% respectively.

To summarize, VEPH yielded satisfactory clustering quality in all cases. It out-

performed all its adversary algorithms on two of the three datasets (NA and PRR),

whereas on the third one, it was marginally outperformed by GSDMM only. On the

other hand, GSDMM had the worst performance among the 9 attested methods on

the PRR dataset (near zero F1 score in both configurations) and it was also worse

than HAC on the News Aggregator dataset. Regarding the other algorithms that

were included in the experiments, HAC, Spherical k-Means and Leader Clustering

performed decently on all datasets, however, they were all outperformed by VEPH.

Finally, we study VEPH from the efficiency perspective. Before we discuss the

respective columns of Table 6, it is required that we clarify some points. At first,

the presented durations concern the basic C++ implementations of SHTECLib.

Therefore, we compare software solutions that were developed by using the same

programming language. Second, we have performed some optimizations in all cases

(e.g. string comparisons, temporary auxiliary matrices for HAC, DBSCAN and k-

Means, etc.), but we did not implement several exhaustive optimizations that have

been proposed in the relevant literature.

The third point is that the running times of almost all algorithms are significantly

affected by the values of their hyper parameters. For instance, the value of the

hyper parameter K has a great impact on the execution time of VEPH, because

the larger it is, the more projection vectors are generated. In addition, the values

of the thresholds Ts and Tm affect the duration of the refinement stage, since they

essentially determine the number of elements that leave the clusters and the number

of clusters to be merged.

After these comments, we observe that in the cases of NA and TSET (where we

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 21

set K = 2), VEPH and VEPHC were either the fastest methods (e.g. NA), or the

second fastest (TSET). In particular, VEPH completed its tasks in about 9.4 and

1.2 seconds, respectively. On the other hand, on PRR (where K was set equal to 6),

VEPH consumed about 5.5 minutes and was outperformed by Leader Clustering

(17′′), DBSCAN (58′′), HAC (166.7′′) and VEPHC (305′′). This verifies the great

impact of K in the overall running time of VEPH.

Leader clustering was the fastest method in two out of the three tests (it was

outperformed by VEPH on the News Aggregator dataset). In contrast, Agglomer-

ative clustering (on the NA & TSET datasets) and GSDMM (on PRR) were the

slowest ones.

7. Conclusions

In this paper we introduced VEPH, an unsupervised algorithm for clustering short

text documents. Initially, we verified the weaknesses of the traditional tf -idf text

vectorization technique when it is applied on short documents. We proposed a novel

text vectorization method that drops the tf term and replaces it by the position of

a word in a document.

The first stage of VEPH projects the initial text vectors onto a lower dimen-

sional space. It does so by initially setting an integer hyper parameter K. Then, for

each input vector x, it forms and scores all the 1, 2, . . .K-dimensional projection

vectors of x. The projection vector x∗ that was assigned the highest score (called

Dominant Projection Vector, DPV) is subsequently utilized to construct the Dom-

inant Reference Vector (DRV) from it. In short, the DRV is a unit vector with the

same components as the DPV. Finally, all documents having common DPVs are

grouped within the same cluster.

In the sequel, a second split/merge refinement stage is performed. During this

stage, the most dissimilar elements are evicted from their respective clusters to form

new, singleton clusters. In the second phase of the refinement stage, the old and

the singleton clusters are merged together by adopting a hierarchical logic that is

similar to the Agglomerative clustering algorithm.

VEPH was extensively attested against 8 state-of-the-art clustering methods by

employing three standard, real-world datasets. The experimental evaluation derived

the following conclusions:

• VEPH performed satisfactorily on the three attested datasets. In particular,

it outperformed all the examined clustering algorithms with the exception of

GSDMM on the second dataset.

• In comparison to GSDMM, VEPH had 2 wins and one loss. Nevertheless, the

experiments have shown that VEPH produced qualitative clusterings on all the

examined datasets. In contrast, GSDMM exhibited a surprisingly bad behav-

ior on the Pricerunner dataset, achieving F1 scores that were close to zero.

Furthermore, VEPH was much faster in all tests.

• Agglomerative clustering also produced a satisfactory clustering for all cases.

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

22 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

However, it was less effective and less efficient than VEPH. Regarding the other

adversary methods, the two most notable were Spherical k-Means and Leader

Clustering that achieved decent performance in all cases. The latter was the

fastest method in two of the three tests.

References

1. I. S. Dhillon and D. S. Modha, Concept decompositions for large sparse text data
using clustering, Machine Learning 42(1-2) (2001) 143–175.

2. C. Jia, M. B. Carson, X. Wang and J. Yu, Concept decompositions for short text
clustering by identifying word communities, Pattern Recognition 76 (2018) 691–703.

3. C. T. Zheng, C. Liu and H. San Wong, Corpus-based topic diffusion for short text
clustering, Neurocomputing 275 (2018) 2444–2458.

4. L. Akritidis, M. Alamaniotis, A. Fevgas and P. Bozanis, Confronting sparseness and
high dimensionality in short text clustering via feature vector projections, in Proceed-
ings of the 32nd IEEE International Conference on Tools with Artificial Intelligence
(IEEE, 2020), pp. 813–820.

5. M. Sahami and T. D. Heilman, A Web-based kernel function for measuring the sim-
ilarity of short text snippets, in Proceedings of the 15th International Conference on
World Wide Web (ACM, 2006), pp. 377–386.

6. S. Banerjee, K. Ramanathan and A. Gupta, Clustering short texts using Wikipedia, in
Proceedings of the 30th ACM Conference on Research and Development in Information
Retrieval (ACM, 2007), pp. 787–788.

7. D. Pinto, P. Rosso and H. Jiménez-Salazar, A self-enriching methodology for clustering
narrow domain short texts, The Computer Journal 54(7) (2011) 1148–1165.

8. G. Rizos, K. Hemker and B. Schuller, Augment to prevent: short-text data augmen-
tation in deep learning for hate-speech classification, in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management (ACM, 2019),
pp. 991–1000.

9. X. Yan, J. Guo, Y. Lan and X. Cheng, A biterm topic model for short texts, in
Proceedings of the 22nd International Conference on World Wide Web (ACM, 2013),
pp. 1445–1456.

10. S. Seifzadeh, A. K. Farahat, M. S. Kamel and F. Karray, Short-text clustering using
statistical semantics, in Proceedings of the 24th International Conference on World
Wide Web (ACM, 2015), pp. 805–810.

11. L. Akritidis and P. Bozanis, Effective unsupervised matching of product titles with
k-combinations and permutations, in Proceedings of the 14th IEEE International Con-
ference on Innovations in Intelligent Systems and Applications (IEEE, 2018), pp. 1–10.

12. L. Akritidis, A. Fevgas, P. Bozanis and C. Makris, A self-verifying clustering approach
to unsupervised matching of product titles, Artificial Intelligence Review 53 (2020)
4777–4820.

13. J. Xu, B. Xu, P. Wang, S. Zheng, G. Tian and J. Zhao, Self-taught Convolutional
Neural Networks for short text clustering, Neural Networks 88 (2017) 22–31.

14. W. Xu and Y. Gong, Document clustering by concept factorization, in Proceedings
of the 27th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Association for Computing Machinery, 2004), pp. 202–209.

15. M. Chen, Q. Wang and X. Li, Adaptive projected matrix factorization method for
data clustering, Neurocomputing 306 (2018) 182–188.

16. D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix
factorization, Nature 401(6755) (1999) 788–791.

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

Improving Hierarchical Short Text Clustering through Dominant Feature Learning 23

17. X. Yan, J. Guo, S. Liu, X. Cheng and Y. Wang, Learning topics in short texts by
Non-Negative Matrix Factorization on term correlation matrix, in Proceedings of the
2013 SIAM International Conference on Data Mining (SIAM, 2013), pp. 749–757.

18. X. Yan, J. Guo, S. Liu, X.-q. Cheng and Y. Wang, Clustering short text using ncut-
weighted non-negative matrix factorization, in Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge Management (ACM, 2012), pp.
2259–2262.

19. F. Shang, L. Jiao and F. Wang, Graph dual regularization non-negative matrix fac-
torization for co-clustering, Pattern Recognition 45(6) (2012) 2237–2250.

20. J. Ye and Z. Jin, Dual-graph regularized concept factorization for clustering, Neuro-
computing 138 (2014) 120–130.

21. D. M. Blei, A. Y. Ng and M. I. Jordan, Latent dirichlet allocation, Journal of Machine
Learning Research 3 (2003) 993–1022.

22. J. Kumar, J. Shao, S. Uddin and W. Ali, An online semantic-enhanced Dirichlet model
for short text stream clustering, in Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics (Association for Computational Linguistics,
July 2020), pp. 766–776.

23. J. Yin and J. Wang, A Dirichlet multinomial mixture model-based approach for short
text clustering, in Proceedings of the 20th ACM Conference on Knowledge Discovery
and Data Mining (ACM, 2014), pp. 233–242.

24. J. Xu, P. Wang, G. Tian, B. Xu, J. Zhao, F. Wang and H. Hao, Short text clustering via
Convolutional Neural Networks, in Proceedings of the 1st Workshop on Vector Space
Modeling for Natural Language Processing (Association for Computational Linguistics,
2015), pp. 62–69.

25. L. Bazzani, A. Bergamo, D. Anguelov and L. Torresani, Self-taught object localiza-
tion with Deep Networks, in Proceedings of the 2016 IEEE Winter Conference on
Applications of Computer Vision (IEEE, 2016), pp. 1–9.

26. C. Wei, S. Luo, X. Ma, H. Ren, J. Zhang and L. Pan, Locally embedding autoencoders:
a semi-supervised manifold learning approach of document representation, PloS one
11(1) (2016) p. e0146672.

27. A. Hadifar, L. Sterckx, T. Demeester and C. Develder, A self-training approach for
short text clustering, in Proceedings of the 4th Workshop on Representation Learning
for NLP (RepL4NLP-2019) (Association for Computational Linguistics, 2019), pp.
194–199.

28. L. Wang, Y. Jia and W. Han, Instant message clustering based on extended Vec-
tor Space Model, in Proceedings of the 2nd International Symposium on Intelligence
Computation and Applications (Springer, Berlin, Heidelberg, 2007), pp. 435–443.

29. X. Hu, N. Sun, C. Zhang and T.-S. Chua, Exploiting internal and external semantics
for the clustering of short texts using world knowledge, in Proceedings of the 18th
ACM International Conference on Information and Knowledge Management (ACM,
2009), pp. 919–928.

30. D. Milne, O. Medelyan and I. H. Witten, Mining domain-specific thesauri from
Wikipedia: A case study, in Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence (IEEE/ACM, 2006), pp. 442–448.

31. A. Rangrej, S. Kulkarni and A. V. Tendulkar, Comparative study of clustering tech-
niques for short text documents, in Proceedings of the 20th International Conference
Companion on World Wide Web (ACM, 2011), pp. 111–112.

32. S. Likhitha, B. Harish and H. K. Kumar, A detailed survey on topic modeling for doc-
ument and short text data, International Journal of Computer Applications 178(39)
(2019) 1–9.

August 16, 2022 20:19 WSPC/INSTRUCTION FILE ijait2022

24 L. Akritidis, M. Alamaniotis, A. Fevgas, P. Tsompanopoulou, P. Bozanis

33. L. Akritidis, A. Fevgas and P. Bozanis, Effective products categorization with im-
portance scores and morphological analysis of the titles, in Proceedings of the 30th
IEEE International Conference on Tools with Artificial Intelligence (IEEE, 2018), pp.
213–220.

34. H. Spath, Cluster analysis algorithms for data reduction and classification of objects
(Ellis Horwood Chichester, 1980).

35. M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., A density-based algorithm for discov-
ering clusters in large spatial databases with noise, in Proceedings of the 2nd Inter-
national Confernece on Knowledge Discovery and Data Mining (AAAI Press, 1996),
pp. 226–231.

