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Abstract

Software defect detection focuses on the automatic identification of flaws in software modules. Given the great
importance of the problem, numerous researchers have introduced a rich collection of deep learning approaches to
confront it. However, the datasets that are used to train the proposed classifiers are in most cases highly imbalanced,
leading to models that cannot learn the minority classes effectively, while being biased towards the majority class. The
state-of-the-art solutions either overlook the issue of data imbalance, or they confront it insufficiently by ignoring the
existence of outliers and the local properties of the classes’ distributions. In this work we introduce CBR, a Clustering-
Based Resampling technique for mitigating the problem of class imbalance in software defect detection tasks. The
proposed method initially employs a quite simple heuristic to determine the maximum distance threshold between
two clusters. Then, it uses this threshold to apply hierarchical clustering with the aim of grouping together similar
samples. CBR considers the singleton clusters as outliers, and discards the ones originating from the majority class.
The algorithm subsequently organizes the clusters into sub-clusters than contain samples from the same class and
determines which sub-clusters should participate in the oversampling process. In this way, CBR produces samples
of improved quality and variance. We evaluated the performance of CBR against 9 baseline and state-of-the-art
techniques by using 27 datasets and a Multilayer Perceptron classifier. The results demonstrate the superiority of
CBR in terms of Balanced Accuracy and Precision scores.
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1. Introduction

Software development is a challenging procedure, usually involving multiple phases. From the initial understand-
ing of the project requirements, until the final product release, significant amounts of time and resources are consumed.
Among these phases, the processes of code debugging and beta testing affect the overall quality in a critical manner,
since they determine user experience, productivity, and efficiency. Hence, the automatic detection of software defects
plays an important role in all these aspects, whereas it also contributes to the limitation of the development costs.

As the size and complexity of modern software grows constantly, many researchers employed machine learning
solutions to automatically detect flaws in software modules. Examples include well-known classifiers like Logistic
Regression [3], Support Vector Machines (SVMs) [10], Tree-based learners [15, 43], fully-connected Neural Networks
[21, 42], Convolutional Neural Networks (CNNs) [25], Long-Short Term Memory (LSTM) units [26, 31], and so forth.

Despite the robustness of the aforementioned models, the vast majority of datasets on which they are trained are
highly imbalanced. Class imbalance occurs when the dataset samples are unevenly distributed to the involved classes.
Large imbalance ratios lead to bad classification performance, because the models are trained with problematic data.
Hence, they tend to be biased towards the majority class and they cannot reliably learn the latent properties of the
minority classes.
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The relevant literature contains numerous solutions for alleviating class imbalance. Two of the most widespread
techniques are oversampling and undersampling. The first one restores balance by generating artificial data samples
belonging to the minority class, whereas the second one removes samples from the majority class. However, most
traditional oversampling approaches synthesize samples between two neighbors without examining neither their type,
nor their absolute distances. Consequently, they tend to generate noisy samples (e.g., outliers between other outliers)
that further degrade classification effectiveness. Moreover, finding the k-nearest neighbors is an expensive process,
especially when the dataset is large and highly dimensional. These weaknesses are common in the Synthetic Mi-
nority Oversampling Technique (SMOTE) [6], several of its numerous variants [11], Adaptive Synthetic Sampling
(ADASYN) [20], and other methods.

On the other hand, the clustering-based oversampling techniques like k-Means SMOTE [9] do not analyze thor-
oughly the structure of the generated clusters, and synthesize samples merely by using SMOTE. Therefore, they adopt
all the aforementioned drawbacks. In addition, they typically employ the original k-Means algorithm that does not
identify the outliers.

Another family of oversampling methods includes deep generative models like Generative Adversarial Networks
(GANs) [16], Variational Autoencoders (VAEs) [23], etc. Although these models have exhibited impressive perfor-
mance in several data generation tasks, they require a lot of data for training, and this is not always possible in software
defect detection tasks. Furthermore, their training is occasionally unstable (due to effects like mode collapse, vanish-
ing gradients, or other phenomena), requires extensive fine-tuning, and it is much more expensive than the classical
data mining approaches.

To overcome the aforementioned problems, in this article we propose a new, effective resampling technique called
Cluster-Based Resampling (CBR). CBR mitigates the problem of class imbalance by constructing clusters of similar
samples and analyzing their internal structure. In contrast to other solutions that employ k-Means, here we apply
Hierarchical Agglomerative Clustering (HAC). Compared to k-Means, HAC does not require previous knowledge
of the number of clusters whereas it can effectively detect outliers. Furthermore, CBR takes into consideration the
possible existence of outliers in the dataset. It considers the clusters that remain singletons after the execution of HAC
as anomalies and treats them according to their class. In this way, it improves both the quality and the diversity of the
underlying dataset.

Additionally, we introduce Minority Centroid Oversampling (MCO), a simple yet effective technique that synthe-
sizes data between a minority sample and the centroid of its respective (sub)cluster. In this wise, it avoids submitting
expensive spatial queries and reduces the risk of creating samples too far away from the original ones. The following
list summarizes the novel elements of CBR that constitute the contributions of our work.

• We introduce a novel resampling technique called Cluster-Based Resampling (CBR) that improves the software
defect detection performance in imbalanced datasets.

• CBR augments the underlying data in the following ways: i) it uses HAC to create clusters of samples with
similar properties, ii) it takes into consideration the possible existence of outliers, and iii) it analyzes the clusters’
structure by forming sub-clusters of samples from the same class.

• The proposed method is the first to intimately perform both undersampling (by pruning the majority class
outliers) and oversampling (by generating minority data instances to bring balance to a cluster).

• CBR does not require expensive spatial queries for locating nearest neighbors, or neighbors within a fixed
radius. For this reason, its performance is particularly fast.

• We introduce a simple, yet effective heuristic to determine the maximum distance that two clusters must have
in order to be merged by HAC. With this heuristic, CBR becomes a parameter-free algorithm.

The rest of the paper is organized as follows: Section 2 contains a literature overview of the area of software defect
detection. Sections 3 and 4 describe the details of Cluster-Based Resampling and Minority Centroid Oversampling,
respectively. The results of the experimental evaluation of the proposed techniques are presented and discussed in
Section 5. Finally, the article is concluded with Section 6 that summarizes the findings of this work and highlights
several key elements of our future research.
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2. Related Work

The development of large-scale software projects has rendered the automatic detection of defects particularly
important. Although a variety of techniques have been proposed so far, the problem is primarily confronted in the
literature as a classification task [24]. In this context, numerous research groups have introduced high quality solutions
that utilize state-of-the-art classifiers to improve the detection performance.

More specifically, in [36] the authors proposed a simple neural network composed of two fully-connected hidden
layers. They also emphasized on data preprocessing by applying min-max normalization and log transformation. The
work of Arar et al. introduced a shallow neural network with one hidden layer that was trained with the Artificial Bee
Colony algorithm [2]. The architecture was attested on five datasets and outperformed 5 traditional classifiers.

More recently, Manjula et al. [28] focused on feature optimization and suggested two such techniques combined
with a deep neural network. The first technique was a genetic algorithm, whereas the second one was an Adaptive
Denoising Autoencoder for learning better feature representations. In [22], Jing et al. introduced a dictionary-based
technique that learns multiple structures along with sparse representation coefficients. In addition, the authors adopted
a cost-sensitive learning approach, arguing that the correct classification of defective modules is more important than
the classification of healthy ones. Another cost-sensitive method with siamese neural networks was introduced in
[48]. Finally, [33] presented a brief survey on deep learning tools for software defect detection.

Apart from neural networks, other researchers have experimented with different classifiers. Hence, Perreault et al.
studied the performance of SVMs, Naive Bayes, Logistic Regression and k-Nearest Neighbors (k-NN) on 5 datasets
[35]. In [18], an overview of Logistic Regression in defect detection tasks was conducted. Moreover, [34] examined
four decision making approaches by utilizing 10 datasets, 38 classifiers, and 13 evaluation measures. They concluded
that the best detection performance was obtained by applying boosting at the CART and C4.5 models.

The negative effects of class imbalance in classification performance led to the introduction of multiple techniques
with the aim of mitigating the problem. In [6], Chawla et al. introduced the Synthetic Minority Oversampling
Technique (SMOTE), a simple yet strong strategy for synthesizing artificial samples for the minority classes. Initially,
the k nearest neighbors (say, k = 5) of a minority sample are computed. Subsequently, new data instances are created
at random points over the line that connects the sample with its neighbor.

However, SMOTE generates synthetic samples between two neighbors without examining their type (e.g. outlier,
core point, etc.), or their distance; this means that it may create outliers between other outliers. In addition, SMOTE
performs multiple spatial searches (k-NN queries) that can be expensive, especially in highly dimensional datasets.
These drawbacks are also present in other methods, like ADASYN [20] and Random Oversampling (ROS).

Because of its simplicity and good performance, SMOTE was extensively utilized in numerous applications in-
volving imbalanced data [5, 14]. In addition, a large family of variants was introduced [11]. The most popular among
them include Borderline-SMOTE [19], Safe-Level SMOTE [4], SMOTEBoost [7] and SMOTEBagging [44]. Galar
et al. investigated numerous ensemble-based approaches, including boosting, bagging and hybrid methods [40].

Taking a different approach, several works of the relevant literature utilize clustering algorithms either for over-
sampling or for undersampling purposes. Regarding the former, the method of [9] initially executes k-Means to form
clusters of similar elements. Then, it balances each cluster by utilizing SMOTE. As mentioned earlier, this algo-
rithm does not take into account the existence of outliers, whereas it does not study thoroughly the clusters’ structure.
Clustering has also been applied to undersampling scenarios, where the representative point of each cluster (e.g., the
centroid) is used to reduce the number of majority class samples [27, 47, 46].

Affected by the excellent performance of the recent deep generative models, an increasing number of authors
utilized Generative Adversarial Networks (GANs) [16, 17] and Variational Autoencoders (VAEs) [23] to alleviate
class imbalance. Specifically, the conditional GAN (cGAN) is capable of producing data instances belonging to a
particular class [29]. Safe-Borderline GAB (sbGAN) extended cGAN by characterizing each samples as core, safe,
isolated, or borderline [1]. Xu et al. took into consideration that tabular data may possess both continuous and discrete
values [45]. They proposed ctGAN, a model that captures multiple modes of continuous variables and the imbalanced
nature of the discrete ones.

Finally, the Capsule Network (CapsNet) is a deep learning model with remarkable performance in image classifi-
cation tasks with imbalanced data [38]. This model is not generative and does not strictly fall into the category of the
resampling methods. Although it has been used solely with image data, the recent work of Chen et al. demonstrated
that it can be used effectively with tabular data too [8].
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Figure 1: An imbalanced dataset with 100 samples and 3 classes. The matrix G stores the class distribution of the dataset. Its first row denotes the
majority class. On the right part, a clustering algorithm identifies 12 outliers; the rest 88 samples are grouped within 5 clusters. Inside each light
gray rectangle, the local class distribution matrices L are shown. For example, cluster 5 contains 8 samples from class 0, 1 sample from class 1 and
12 samples from class 2.

3. Cluster-Based Resampling

Let (X,Y)→ {(xi, yi)}Ni=1 be an imbalanced dataset with N samples, where xi and yi represent the input vector and
the target variable of the i-th sample respectively. Cluster-Based Resampling (CBR) confronts the imbalance problem
first by clustering the dataset elements, and then by balancing each cluster individually through a novel, unsupervised
mechanism that analyzes the clusters’ structure. Its output is an augmented dataset (X′,Y ′) that may not necessarily
be perfectly balanced.

In software defect detection tasks, the classes Y usually receive binary values that indicate defective/non-defective
software modules. However, here we consider a more generic approach that allows the classes to receive any value
from a set of |Y | discrete values, enabling CBR to be applied at any multi-class problem.

The basic steps of CBR are presented in the pseudocode of Algorithm 1. Initially, the algorithm constructs a |Y |×2
global class distribution matrix G. Each row of G consists of two elements; a class label y, and the number of samples
|Yy ⊂ Y | belonging to class y. G is subsequently sorted with respect to the values of its second column, so that the
majority class is placed at the first row, the second most multitudinous class is placed in the second row, and so forth
(steps 1–3). A representative example is described in Figure 1.

In the next phase, a clustering algorithm is applied to the samples of the dataset and assigns cluster labels to them.
It is desirable that this algorithm possesses the following properties:

• Uniqueness: A data instance xi must be placed into precisely one cluster.

• Outlier detection: Outliers are samples that do not comply with the probability distribution of their own class.
Such cases are typically considered as noise that negatively affect the defect detection performance.

• Independence from hyper-parameters: Most clustering methods require tuning several hyper-parameters. How-
ever, setting their values in advance can be challenging, since the underlying dataset may be completely un-
known. For example, k-Means requires prior knowledge of the number of clusters to be created.

In this work, we selected Hierarchical Agglomerative Clustering (HAC) because it fulfils the first two requirements
by definition. The hierarchical clustering methods work in an either top-to-bottom (called divisive), or in a bottom-to-
top (called agglomerative) fashion. HAC belongs to the second category. Initially, it places each sample into its own
singleton cluster. Then, it progressively merges the two closest clusters, provided that their distance does not exceed
a threshold td. The process stops when all clusters are separated by distances greater than td, so no cluster merging is
possible any more.

HAC can be combined with several strategies for computing the distance d(c1, c2) between two clusters c1, c2.
For example, single linkage sets d(c1, c2) equal to the distance between the closest pairs of elements from c1 and c2,
respectively. The opposite approach is adopted by complete, or maximum linkage. In CBR we employed Ward, a
variance-minimizing approach that sets d(c1, c2) equal to the sum of squared differences within all clusters.
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Algorithm 1 Cluster-Based Resampler
Input The imbalanced dataset (X,Y)
Output The augmented dataset (X′,Y ′)

1: G ←
[
[y, |Yy|]

]
, y ∈ Y . Global class distribution: |Y | × 2 matrix that stores the number of samples per class

2: G ← sort G in decreasing |Yy| order
3: MajorityClass← G[0, 0] . The first item of sorted G reveals the majority class
4: C ← Agglomerative (X,Y, td = d̃/3) . Perform clustering on the dataset (X,Y) and obtain the cluster set C
5: (X′,Y ′)← [ ] . The augmented dataset to be returned
6: IncClasses← 0 . Number of classes to oversample
7: for each cluster c ∈ C do . Analyze the obtained clusters one by one
8:

(
X(c),Y (c)

)
← contents of c . The samples that have been placed in cluster c

9:
(
X(c)

inc,Y
(c)
inc

)
← [ ] . The samples that will be included for oversampling: initially empty

10: L←
[
[y, |Y (c)

y |]
]
, y ∈ Y (c) . In-cluster class distribution: similar to G (line 1), but in a per-cluster fashion

11: MaxClusterSamples← max L[:, 1] . Maximum number of samples from any class
12: if L[MajorityClass, 1] == 1 & sum(L[:, 1]) == 1 then
13: continue . c is excluded because it contains just a majority class outlier
14: for each class y ∈ Y do . Begin class-wise cluster analysis
15:

(
X(c)

y ,Y (c)
y

)
← contents of c belonging to y . Sub-cluster u(c)

y stores the samples of c that also belong to y
16: if y == MajorityClass then . If y represents the majority class
17: if L[y, 1] == MaxClusterSamples then . and it is also the majority class in c
18: IncClasses← IncClasses + 1
19:

(
X(c)

inc,Y
(c)
inc

)
.extend

(
X(c)

y ,Y (c)
y

)
. it will be included in the oversampling process (as majority class)

20: else
21:

(
X′,Y ′

)
.extend

(
X(c)

y ,Y (c)
y

)
. otherwise, it is copied to the augmented dataset

22: else . otherwise, if y represents a minority class
23: if L[y, 1] > 1 then . and c has more than 1 samples from class y
24: IncClasses← IncClasses + 1
25:

(
X(c)

inc,Y
(c)
inc

)
.extend

(
X(c)

y ,Y (c)
y

)
. it will be included in the oversampling process (as minority class)

26: else
27:

(
X′,Y ′

)
.extend

(
X(c)

y ,Y (c)
y

)
. otherwise, it is copied to the augmented dataset

28: if IncClasses > 1 then . If we have more than 1 classes for oversampling, then
29:

(
X(c)

os ,Y
(c)
os

)
← oversample

((
X(c)

inc,Y
(c)
inc

))
. perform oversampling

30:
(
X′,Y ′

)
.extend

(
X(c)

os ,Y
(c)
os

)
. append the balanced data to the augmented dataset

31: else . If we have only 1 class for oversampling, then
32:

(
X′,Y ′

)
.extend

(
X(c)

inc,Y
(c)
inc

)
. oversampling is not possible. Copy the data to the augmented dataset

return (X′,Y ′) . Return the augmented dataset

To specify the value of td and thus satisfy the third requirement, we propose the following simple heuristic: At
first, we compute the pairwise distances between all samples and identify their median value. Then, we fix the distance
threshold by dividing the median by 3; that is, td = d̃/3. Selecting the median instead of the mean distance limits the
impact of outliers, which usually appear far away from the other samples (step 4).

Next, CBR examines each cluster c j ∈ C and refines the data to be fed to the oversampling mechanism (steps
7–32). Initially, c j is organized logically into |Y | sub-clusters, where |Y | denotes the total number of classes. A sub-
cluster u( j)

y of c j contains the samples
(
X(c j)

y ,Y (c j)
y

)
that belong simultaneously to the cluster c j and the class y (step 15).

An auxiliary matrix L, similar to G, stores the class distribution within c j. The light gray rectangles of Fig. 1 depict 5
examples of how the L matrix is formed. Notice that each row of L essentially represents a sub-cluster.

When HAC terminates, several samples may remain isolated into their singleton clusters. Located too far away
from the other data instances, we consider them as outliers. CBR treats the outliers in the following manner: Firstly,
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the ones belonging to the majority class are discarded from the dataset (step 12). Hence, in this case, CBR performs
undersampling of the majority class. Regarding the minority class outliers, we preserve them in the dataset to avoid
reducing the population of the minority classes (step 32), but we exclude them from oversampling.

After handling the outliers, CBR attempts to balance each cluster c j by equalizing the number of samples within
each sub-cluster of c j. For this reason, it maintains a temporary dataset

(
X(c j)

inc ,Y
(c j)
inc

)
and fills it with samples that

will be used later for data generation through oversampling. Interestingly, a sub-cluster u( j)
y of c j may or may not

participate in the oversampling process. Participation in the oversampling process means that the samples
(
X(c j)

y ,Y (c j)
y

)
of u( j)

y are copied to
(
X(c j)

inc ,Y
(c j)
inc

)
(steps 19 and 25), which will be eventually fed to the oversampling mechanism (step

29).
The sub-clusters with one or zero samples are excluded from the cluster balancing process. The idea is that if a

sub-cluster u( j)
y has no samples at all, then c j is considered pure and should not be distorted by generating samples

from class y. On the other hand, if u( j)
y has just one sample, then there are no adequate samples (e.g., neighbors) to

proceed to oversampling.
Moreover, CBR does not produce samples belonging to the majority class. Therefore, the sub-clusters that contain

majority samples participate in the oversampling process only to provide the number of samples to be created from
other classes. Notice that this is not always the case: the sub-cluster that accommodates the majority class samples
does not participate in the oversampling process, unless it is also the dominant class in c j (step 17). Otherwise, it is
excluded and its contents are copied directly to the output dataset (X′,Y ′) (step 21). Similarly, the contents

(
X(c)

y ,Y (c)
y

)
of any sub-cluster u( j)

y that does not participate in the oversampling process are immediately copied to the output
dataset (X′,Y ′) (step 27).

Finally, notice that it may not be possible to apply oversampling to a cluster. Oversampling takes place only when
the temporary dataset

(
X(c)

inc,Y
(c)
inc

)
first, is not empty, and second, it contains 2 or more classes. The latter requirement

is checked by using an auxiliary counter variable, called IncClasses (steps 28–32). It is this variable that prevents the
outliers from being oversampled.

4. Minority Centroid Oversampling

Step 29 of Algorithm 1 refers to the oversampling mechanism that balances a cluster. Next, we present the
architectural details of this mechanism.

As mentioned earlier, SMOTE is based on finding the k nearest neighbors of a sample to generate artificial data
instances. Firstly, such range queries are expensive, especially when the sample vectors are of high dimensionality.
Secondly, the artificial samples are randomly generated over the line that connects neighbouring points, regardless of
their original distance. This may lead to datasets of limited variance and degraded quality. On the other hand, the
majority of the clustering-based approaches employ k-Means for grouping the input data (e.g. k-Means SMOTE [41]).
However, k-Means requires prior knowledge of the number of clusters to create, being also incapable of identifying
outliers. Additionally, its performance is significantly affected by the initialization of the centroid positions.

Regarding the deep generative models, GANs [16, 29] are hard to train, suffer from the effects of mode collapse,
and are quite unstable unless their hyper-parameters are tuned carefully [45]. The Variational Autoencoders try to
learn the probability distribution of the input data by assuming the existence of a standard Gaussian distribution [23].
However, this is not the case with the tabular data that we are dealing with here [45].

To overcome these problems, we introduce the Minority Centroid Oversampling (MCO) approach for generating
artificial data instances within imbalanced clusters. Its operation is presented in Algorithm 2.

Initially, the cluster c to be balanced is examined: its class distribution matrix L and the number of samples from
the local majority class are computed (steps 2–3). L stores the number of samples of c that belong to each involved
class, having dimensions |Y (c)| × 2. In the sequel, the sub-clusters of c are analyzed in the iterative process between
steps 4 and 19. Recall that a sub-cluster u(c)

y contains samples that simultaneously belong to cluster c and class y.
Now, if u(c)

y contains more than one samples and fewer than the maximum number of samples, MCO computes: i) the
number of samples to be generated (step 7), and ii) its centroid point µ (step 8).

The loop of steps 11–19 generates an artificial data instance in a random point on the line that connects a random
sample x(c)

p of the current sub-cluster with its respective centroid µ. Compared to SMOTE-based methods, notice how
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Algorithm 2 Minority Centroid Oversampling
Input The imbalanced dataset (X(c),Y (c))
Output The augmented dataset (X′(c),Y ′(c))

1:
(
X′(c),Y ′(c)

)
← [ ] . The dataset to be returned is initially empty

2: L←
[
[y, |Y (c)

y |]
]
, y ∈ Y (c) . In-cluster class distribution: |Y (c)| × 2 matrix with the number of samples per class

3: MaxSamples← max L[:, 1] . Maximum number of samples from any class
4: for y ∈ Y do . For each involved class
5: if 1 < L[y, 1] < MaxSamples then . Can we create samples from y? y must not be the majority class in c
6:

(
X(c)

y ,Y (c)
y

)
← contents of c belonging to y . Sub-cluster u(c)

y stores the samples of c that also belong to y
7: SamplesToCreate← MaxSamples − L[y, 1] . How many samples to create
8: µ← centroid (X(c)

y ) . Centroid of the samples of sub-cluster u(c)
y

9: GenSamples← 0 . Number of artificial samples
10: p← 0 . Sample selector: the sample x(c)

p ∈ X(c)
y that will be used for oversampling

11: while GenSamples < MaxSamples do . The sample generation begins
12: s← random(0, 1)
13: x′ ← x(c)

p + s · (x(c)
p − µ) . Generate a new artificial sample between x(c)

p and µ
14: X(c)

y .append(x′) . Append the artificial sample and its class to the augmented dataset
15: Y (c)

y .append(y) . Append the class to output
16: GenSamples← GenSamples + 1 . Increase the number of artificial samples
17: p← p + 1 . Select the next sample x(c)

p+1 ∈ X(c)
y for oversampling

18: if p > L[y, 1] then . If all the samples of u(c)
y have been used for oversampling, restart

19: p← 0
return

(
X′(c),Y ′(c)

)
. Return the augmented dataset

this approach generates more reliable samples: the samples are not generated between any random point and any
random neigbor, but between a random point and the centroid µ of its respective sub-cluster.

When an artificial point is created, the next sample x(c)
p+1 of the sub-cluster is subsequently selected and another

artificial point is created between x(c)
p+1 and µ. The process is repeated, until the desired number of samples has been

created. Notice how the assistant variable p controls the entire process by circularly selecting all the samples in the
sub-cluster. Figure 2 illustrates two representative examples, where MCO balances or ignores a cluster.

0, 5 1, 10 2, 5 0, 1 1, 17 2, 0

Class 1Class 0 Class 2

Figure 2: Two examples of MCO. In the left cluster, Class 1 is the majority class and it is not affected. For the 5 samples of Class 0, their centroid
point is firstly computed. Then, 5 artificial samples are randomly created on the lines that connect each sample with their respective centroid.
Similarly, 5 artificial samples are created for Class 2. In the right cluster, Class 1 is again the majority class. There is only 1 sample from Class 0
(insufficient for oversampling) and 0 samples from Class 2. The cluster is considered pure, so it is left intact.
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Table 1: The characteristics of the utilized datasets.

Dataset Origin n m IR
1 Camel-1.2 PROMISE 608 20 392:216
2 Camel-1.4 PROMISE 872 20 727:145
3 Camel-1.6 PROMISE 965 20 777:188
4 CM1 NASA MDP 498 21 449:49
5 IVY-1.1 PROMISE 111 20 48:63
6 IVY-2.0 PROMISE 352 20 312:40
7 jEdit-4.0 PROMISE 306 20 231:75
8 jEdit-4.1 PROMISE 312 20 233:79
9 jEdit-4.2 PROMISE 367 20 319:48

10 KC1 NASA MDP 2109 21 1783:326
11 KC2 NASA MDP 522 21 415:107
12 KC3 NASA MDP 458 39 415:43
13 log4j-1.0 PROMISE 135 20 101:34
14 log4j-1.1 PROMISE 109 20 72:37
15 log4j-1.2 PROMISE 205 20 16:189
16 Lucene-2.2 PROMISE 247 20 103:144
17 Lucene-2.4 PROMISE 340 20 137:203
18 PC1 NASA MDP 1109 21 1032:77
19 PC3 NASA MDP 1563 37 1403:160
20 PC4 NASA MDP 1458 37 1280:178
21 POI-1.5 PROMISE 237 20 96:141
22 POI-2.0 PROMISE 314 20 277:37
23 Velocity-1.4 PROMISE 196 20 49:147
24 Velocity-1.6 PROMISE 229 20 151:78
25 Xerces-1.2 PROMISE 440 20 369:71
26 Xerces-1.3 PROMISE 453 20 384:69
27 Xerces-1.4 PROMISE 588 20 151:437

5. Experiments

In this section we present the results of the experimental evaluation of CBR. All tests have been conducted on a
commodity workstation with a CoreI7 12700K CPU (without CPU parallelization), 32GB of RAM and an NVIDIA
RTX 3070 GPU. The interested reader may reproduce all the results that we present here by inspecting the implemen-
tation of CBR and the source code of all tests1.

5.1. Datasets
Most studies on software defect detection employ two well-established collections of benchmark datasets for

evaluation purposes. The first one was created by the NASA metrics data program (NASA MDP), whereas the second
one is provided by the PROMISE Software Engineering Repository [39]. Both collections consist of imbalanced
binary datasets that contain defective and healthy software modules. Their columns represent metric values that
attempt to objectively characterize code features in terms of software quality.

Table 1 shows the 27 datasets that were used in this work. The last 3 columns denote the number of samples, the
number of features and the imbalance ratio of each dataset, respectively.

5.2. Competitive Approaches
To assess the usefulness of our proposed method, we utilized 10 state-of-the-art oversampling approaches for

comparison. More specifically, we considered:

1https://github.com/lakritidis/DeepCoreML
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• 6 traditional oversampling techniques: Random Oversampling (ROS) [30], Synthetic Minority Oversampling
Technique (SMOTE) [6], Borderline SMOTE [19], SVM SMOTE [32], k-Means SMOTE [9], and Adaptive
Synthetic Sampling (ADASYN) [20].

• 3 state-of-the-art GANs: Conditional GAN (cGAN) [29], Safe-Borderline GAN (sbGAN) [1], and ctGAN [45].
In all cases, we used the implementations of their respective inventors. The architectures of the Discriminators
and the Generators were the same for all three models. In particular, the Discriminators included two fully
connected layers with 256 neurons each. Their activation functions were LeakyReLU and the logistic sigmoid,
respectively. Between them, a Dropout layer was placed with weight drop probability equal to 0.5.

The Generators comprised: i) two residual blocks, each one having a fully connected layer of output dimen-
sionality equal to 256, ReLU activation, and an 1D batch normalization layer, and ii) another fully connected
layer with tanh activation. All models were trained in batches of 32 samples for 300 epochs.

• The TabCaps classification model as it was described in [8]. TabCaps is a type of Capsule Networks, espe-
cially designed to operate on tabular data. It has achieved remarkable performance in several classification
tasks. Although it is not a generative method, we decided to include it in our experiments for comparison rea-
sons. We utilized the same architecture and set its hyper-parameters with values equal to those reported in the
experimental section of [8].

• No resampling. This test was included to examine whether oversampling is actually beneficial in improving
classification effectiveness.

5.3. Classification: Model Training, Testing and Validation
The experimental procedure was organized as follows: Initially, we considered a 3-step sequential pipeline of the

form [Resampler, Standardizer, Classifier]. The three components were:

• Resampler. This step performed data augmentation for mitigating class imbalance. During each experiment,
we replaced Resampler with either the proposed CBR method, or one of the oversampling approaches of the
previous subsection.

• Standardizer. A typical standard scaler that performed feature normalization via the transformation x′i =

(xi − µi)/σi, where µi was the mean value of the i-th feature and σi its standard deviation.

• Classifier. The classification model that we used for defect detection. Without any loss of generality, here we
employed a typical feed-forward fully connected neural network, also known as Multilayer Perceptron (MLP).
The network comprised two hidden layers with 128 neurons each and ReLU activation.

Notice that TabCaps is a classification model and not an oversampling technique. Therefore, in this case the
experiments were conducted by setting Resampler=None and Classifier=TabCaps.

The examined methods were evaluated by using two measures: The first one is Balanced Accuracy, a metric that is
considered ideal, especially when the underlying data is imbalanced. It is defined as the arithmetic mean of sensitivity
and specificity:

b = (Sensitivity + Specificity)/2. (1)

In the context of software defect detection, sensitivity and specificity measure the ability of a predictor to correctly
classify a module as having or not having a defect. They are defined as follows:

Sensitivity = Recall = T P/(T P + FN), (2)

Specificity = T N/(T N + FP). (3)

The second measure employed is Precision. It is the ratio of the correctly identified defective modules, divided by the
number of all modules that were classified as defective:

Precision = T P/(T P + FP). (4)

The aforementioned pipeline was evaluated in terms of Balanced Accuracy and Precision by using 5-fold cross
validation in all datasets. In compliance to the established methodology, we report the average values from all 5 folds.
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Table 2: Balanced Accuracy measurements. CBR is the proposed Cluster-Based Resampling method. Boldface underlined values represent the
best performance, while boldface ones indicate the second best performance.

Dataset None ROS SMOTE Border
SMOTE

SVM
SMOTE

k-Means
SMOTE

ADA
SYN CBR cGAN sbGAN ctGAN Tab*

Caps
Camel-1.2 0.594 0.606 0.572 0.582 0.583 0.582 0.586 0.608 0.583 0.594 0.582 0.606
Camel-1.4 0.606 0.586 0.600 0.596 0.596 0.604 0.594 0.682 0.598 0.593 0.640 0.516
Camel-1.6 0.585 0.592 0.579 0.585 0.599 0.589 0.593 0.611 0.567 0.584 0.607 0.527
CM1 0.581 0.560 0.558 0.533 0.546 0.522 0.564 0.637 0.557 0.587 0.640 0.494
IVY-1.1 0.627 0.653 0.617 0.601 0.638 0.603 0.622 0.645 0.609 0.632 0.633 0.661
IVY-2.0 0.606 0.621 0.615 0.598 0.632 0.582 0.604 0.683 0.615 0.621 0.616 0.510
jEdit-4.0 0.686 0.659 0.677 0.688 0.673 0.664 0.666 0.702 0.673 0.664 0.696 0.736
jEdit-4.1 0.761 0.736 0.719 0.725 0.729 0.751 0.727 0.758 0.732 0.734 0.760 0.674
jEdit-4.2 0.669 0.654 0.645 0.648 0.676 0.668 0.645 0.704 0.645 0.648 0.665 0.613
KC1 0.608 0.617 0.589 0.621 0.617 0.601 0.615 0.629 0.594 0.601 0.620 0.588
KC2 0.667 0.649 0.675 0.646 0.660 0.642 0.642 0.688 0.681 0.656 0.673 0.634
KC3 0.641 0.667 0.667 0.688 0.645 0.610 0.654 0.688 0.662 0.645 0.658 0.530
log4j-1.0 0.660 0.671 0.688 0.679 0.690 0.667 0.638 0.685 0.669 0.684 0.659 0.671
log4j-1.1 0.660 0.667 0.681 0.675 0.680 0.686 0.663 0.674 0.681 0.680 0.698 0.679
log4j-1.2 0.617 0.632 0.621 0.627 0.629 0.624 0.621 0.620 0.584 0.617 0.605 0.500
Lucene-2.2 0.576 0.590 0.597 0.593 0.602 0.584 0.596 0.588 0.609 0.610 0.579 0.617
Lucene-2.4 0.671 0.672 0.640 0.655 0.658 0.670 0.641 0.674 0.663 0.645 0.647 0.669
PC1 0.639 0.624 0.593 0.627 0.658 0.649 0.587 0.677 0.536 0.554 0.578 0.603
PC3 0.645 0.662 0.655 0.643 0.647 0.673 0.647 0.653 0.651 0.646 0.674 0.577
PC4 0.770 0.785 0.776 0.759 0.790 0.780 0.772 0.765 0.779 0.749 0.785 0.741
POI-1.5 0.709 0.696 0.693 0.709 0.717 0.689 0.705 0.727 0.716 0.691 0.686 0.708
POI-2.0 0.592 0.603 0.562 0.583 0.585 0.607 0.603 0.610 0.589 0.589 0.640 0.701
Velocity-1.4 0.760 0.754 0.751 0.758 0.765 0.748 0.748 0.774 0.767 0.787 0.767 0.714
Velocity-1.6 0.696 0.663 0.676 0.686 0.666 0.659 0.669 0.717 0.683 0.680 0.698 0.575
Xerces-1.2 0.634 0.715 0.684 0.698 0.696 0.706 0.697 0.634 0.626 0.587 0.648 0.544
Xerces-1.3 0.653 0.686 0.684 0.695 0.667 0.657 0.679 0.775 0.675 0.689 0.690 0.714
Xerces-1.4 0.860 0.856 0.856 0.853 0.861 0.857 0.855 0.856 0.852 0.846 0.868 0.860

5.4. Balanced Accuracy Results

Table 2 presents the Balanced Accuracy measurements of our MLP classifier, when it is combined with the ex-
amined methods in all 27 datasets. The second column reports the Balanced Accuracy of the MLP classifier without
applying any data augmentation technique (that is, when Resampler=None in the pipeline). Furthermore, the box
plot of Figure 3 illustrates a performance comparison of the involved techniques.

When no data augmentation was applied, the measured values were, in some cases, unexpectedly high. For
example, in Xerces-1.4 the Balanced Accuracy was equal to 0.86, even though the imbalance ratio of this dataset is
about 1:3. This is an indication of the classification effectiveness of neural networks in the presence of imbalanced
datasets. Therefore, by selecting MLP as test classifier, it becomes more difficult for a data augmentation method to
exhibit its usefulness.

CBR outperformed all the 11 adversary methods in 13 out of 27 datasets, that is, in approximately half of our
experimental universe. Moreover, it achieved the second best performance in 3 other cases. The box plot of Figure 3
reveals that the median Balanced Accuracy value of CBR (orange line) was higher even than the median Balanced
Accuracy value of the upper quartile (top border of the boxes) of all its adversary methods.

The strongest opponent was ctGAN, a model that is considered in the current literature as one of the most effective
in tabular data generation. ctGAN was the best method in 4 out of 27 datasets. It was also ranked second in 6 other
cases. These results are indicative of the high effectiveness of CBR, since it outperformed the state-of-the-art ctGAN
in terms of Balanced Accuracy by a large margin.

On the other hand, ctGAN was the slowest among all the examined methods. Even with GPU acceleration, it
was many times slower than CBR and the 6 traditional oversampling techniques. Also notice that ctGAN generates
additional columns because of the way it encodes the continuous variables. This increase in input data dimensionality
is not infinitesimal and renders the model slower than cGAN and sbGAN too. Detailed measurements of the time
efficiency of the examined methods are presented in Subsection 5.7.
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Figure 3: Box plot of the Balanced Accuracy achieved by the examined data augmentation techniques.

TabCaps exhibited mixed performance. On one hand, it achieved top performance in four datasets and the second
highest Balanced Accuracy in other two. On the other, it was particularly ineffective in multiple datasets, e.g., Camel-
1.4, CM1, log4j-1.2 and others. In total, TabCaps scored the lowest Balanced Accuracy than all the other methods in
12 cases. This highlights its sensitivity on the input dataset and perhaps, the tuning of its hyper-parameters.

Interestingly, the only competitive method that performs clustering, k-Means SMOTE never achieved the best
performance; it just occupied the second place in 3 cases. This is another indication that simple clustering alone
cannot yield top results. However, when cluster structure analysis is performed, accompanied by outlier handling and
several heuristics, then clustering may indeed be rendered robust.

Regarding the other methods, Random Oversampling was the best method in 2 datasets and the second best in
4 other cases. SVM-SMOTE exhibited a similar effectiveness, as it also occupied the first and second position in 2
and 4 tests respectively. As for Generative Adversarial Nets, sbGAN achieved the highest performance in one case,
whereas the Conditional GAN was ranked second only in one dataset.

ADASYN and SMOTE were among the weakest methods in this experiment. The former was never among the best
two performing methods, whereas the latter was ranked second only in the log4j-1.0 dataset. Moreover, both of them
had beneficiary effects on classification performance only in 11 out of 27 datasets (i.e., their Balanced Accuracy was
higher than that of the “None” case). This verifies the findings of other researchers who concluded that oversampling
is not always beneficiary for classification performance, especially when an imbalance-resistant classifier (such as our
MLP) is utilized.

5.5. Precision Results

We proceed with the presentation of the Precision measurements. Table 3 contains the performances of our
examined methods on the 27 benchmark datasets, whereas Figure 4 offers a comparative illustration.

Similarly to the previous experiments, CBR achieved the highest performance compared to all the traditional
oversampling techniques, the three generative models, and TabCaps. More specifically, its Precision was the highest
in 9 out of 27 datasets, and the second best in 5 other cases. In general, our proposed method exhibited good behaviour
in all experiments. This is graphically demonstrated by the box plots of Figure 4.

The two strongest opponents of CBR in terms of Precision were cGAN and SVM SMOTE. Both methods achieved
decent performance in all experiments, albeit lower than that of CBR. In particular, the former outperformed all the
other approaches in 5 datasets, whereas it was ranked second in 3 other cases. The latter scored the highest Precision
in two datasets and the second highest in three tests.
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Table 3: Precision measurements. CBR is the proposed Cluster-Based Resampling method. Boldface underlined values represent the best perfor-
mance, while boldface ones indicate the second best performance.

Dataset None ROS SMOTE Border
SMOTE

SVM
SMOTE

k-Means
SMOTE

ADA
SYN CBR cGAN sbGAN ctGAN Tab*

Caps
Camel-1.2 0.630 0.640 0.609 0.618 0.619 0.619 0.623 0.640 0.623 0.633 0.618 0.594
Camel-1.4 0.792 0.776 0.779 0.777 0.779 0.785 0.776 0.821 0.788 0.785 0.799 0.285
Camel-1.6 0.746 0.746 0.738 0.742 0.748 0.745 0.747 0.752 0.735 0.744 0.752 0.555
CM1 0.860 0.843 0.843 0.835 0.843 0.830 0.847 0.881 0.838 0.867 0.871 0.311
IVY-1.1 0.636 0.667 0.626 0.612 0.646 0.612 0.633 0.655 0.617 0.641 0.642 0.877
IVY-2.0 0.858 0.855 0.851 0.846 0.859 0.838 0.847 0.869 0.856 0.850 0.841 0.198
jEdit-4.0 0.791 0.766 0.776 0.785 0.763 0.767 0.767 0.781 0.776 0.773 0.774 0.788
jEdit-4.1 0.829 0.804 0.789 0.794 0.797 0.816 0.799 0.814 0.804 0.811 0.811 0.686
jEdit-4.2 0.859 0.859 0.854 0.861 0.867 0.857 0.853 0.865 0.850 0.853 0.843 0.566
KC1 0.800 0.797 0.783 0.797 0.796 0.788 0.794 0.801 0.807 0.807 0.804 0.700
KC2 0.791 0.770 0.785 0.765 0.776 0.765 0.764 0.794 0.805 0.785 0.788 0.000
KC3 0.887 0.889 0.889 0.892 0.882 0.871 0.884 0.894 0.892 0.890 0.890 0.144
log4j-1.0 0.771 0.773 0.777 0.779 0.789 0.776 0.750 0.787 0.778 0.783 0.758 0.667
log4j-1.1 0.696 0.702 0.710 0.712 0.715 0.727 0.700 0.705 0.713 0.718 0.721 0.717
log4j-1.2 0.900 0.903 0.897 0.899 0.902 0.897 0.897 0.900 0.888 0.900 0.880 0.924
Lucene-2.2 0.593 0.608 0.614 0.610 0.621 0.607 0.616 0.606 0.628 0.627 0.595 0.794
Lucene-2.4 0.693 0.693 0.661 0.677 0.678 0.688 0.661 0.696 0.685 0.666 0.669 0.798
PC1 0.913 0.904 0.899 0.906 0.912 0.909 0.898 0.916 0.881 0.886 0.894 0.233
PC3 0.875 0.874 0.872 0.867 0.868 0.876 0.867 0.868 0.878 0.875 0.877 0.293
PC4 0.908 0.907 0.909 0.902 0.911 0.909 0.905 0.901 0.912 0.901 0.904 0.400
POI-1.5 0.723 0.713 0.705 0.721 0.729 0.702 0.718 0.740 0.729 0.715 0.700 0.644
POI-2.0 0.855 0.837 0.818 0.834 0.847 0.837 0.837 0.842 0.836 0.839 0.851 0.600
Velocity-1.4 0.848 0.846 0.820 0.828 0.835 0.827 0.821 0.853 0.838 0.862 0.819 0.893
Velocity-1.6 0.734 0.700 0.713 0.724 0.702 0.698 0.708 0.743 0.727 0.724 0.733 0.496
Xerces-1.2 0.813 0.837 0.821 0.827 0.831 0.832 0.829 0.799 0.808 0.785 0.812 0.167
Xerces-1.3 0.831 0.837 0.837 0.839 0.827 0.825 0.832 0.876 0.842 0.848 0.834 0.971
Xerces-1.4 0.892 0.889 0.889 0.887 0.889 0.890 0.882 0.888 0.887 0.884 0.894 0.929

In contrast, ctGAN, the second best model in terms of Balanced Accuracy, did not yield top results in this experi-
ment. Hence, it was the best method in only one dataset (Camel-1.6) and the second best in 6 other cases. Among the
other methods, ctGAN was on average ranked 6th in terms of achieved Precision values. Regarding our third attested
generative model, sbGAN dominated over all its adversary approaches in one dataset (KC1) and it was ranked second
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Figure 4: Box plot of the Precision values achieved by the examined data augmentation techniques.
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Table 4: Mean rankings (lower is better) of the examined methods in terms of Balanced Accuracy (column 2) and Precision (column 3).

Method Mean Rank
(Balanced Accuracy)

Mean Rank
(Precision)

CBR 3.185185 (1) 3.777778 (1)
ctGAN 5.000000 (2) 6.407407 (6)
SVM SMOTE 5.277778 (3) 5.666667 (2)
ROS 5.685185 (4) 6.203704 (5)
Border SMOTE 7.055556 (5) 7.333333 (7)
k-Means SMOTE 7.185185 (6) 7.333333 (7)
cGAN 7.222222 (7) 5.833333 (3)
SMOTE 7.296296 (8) 7.833333 (9)
sbGAN 7.351852 (9) 5.870370 (4)
ADASYN 7.907407 (10) 8.333333 (10)
TabCaps 8.277778 (11) 8.481481 (11)

in Velocity-1.4.
Similarly to the previous experiment, the performance of TabCaps had significant divergences from dataset to

dataset. More specifically, the model achieved excellent measurements of Precision in 7 datasets. However, in 10
other cases its Precision values were (much) below 0.5. Unfortunately, as happened in the experiments of Balanced
Accuracy, TabCaps was on average the worst method among all. However, its top performance in several tests high-
lights its usefulness, while the bad results may be indicative of bad hyper-parameter tuning.

Another significant observation is that in three cases, the highest Precision was obtained when no oversampling
technique was applied. “None” was also the second best strategy in terms of Precision on two other datasets. Similarly
to the previous experiment, ADASYN and SMOTE were again among the two weakest methods.

Finally, Table 4 conveniently summarizes the performances of the 11 data augmentation approaches in terms of
Balanced Accuracy (column 2), and Precision (column 3). The numbers inside the parentheses denote the ranking
of the methods in this comparison. In the first case, it is shown that CBR was the method with the highest Balanced
Accuracy; its average ranking in all 27 measurements was approximately 3.19. In comparison, the average ranking of
the second best method, ctGAN, was exactly 5.0, followed by SVM SMOTE with an average ranking of 5.28.

Similar comments can be made for the third column that represents the Precision measurements. CBR was again
the highest performing method with an average ranking of 3.78. Nevertheless, there are changes in the ranking of the
algorithms below the first position. Therefore, SVM SMOTE was the method that achieved the second best Precision
measurements; on average, it was ranked 5.67-th.

The weakness of TabCaps, SMOTE and ADASYN in both Balanced Accuracy and Precision experiments is
demonstrated here. These methods consistently occupied the three last positions in the respective rankings.

5.6. Statistical Significance Tests

To examine the significance of our results, we performed two statistical analysis tests on both the Balanced Ac-
curacy and Precision measurements. For this purpose, we employed STAC2, an online statistical tool for algorithm
comparison [37]. In the following analysis, the significance level was considered equal to 0.05.

At first, the truth of the null hypothesis H0 “There is no statistical difference in the performance results of all
algorithms” was attested by executing the Friedman test. The test returned p-values equal to 1.658 ·10−6 for Balanced
Accuracy and 3.736 · 10−6 for Precision, indicating the rejection of H0.

We also conducted a post-hoc, non-parametric pairwise analysis by executing the Finner test on the obtained
measurements of Balanced Accuracy and Precision [12]. According to the experimental study of Garcı́a et al., the
Finner test yields better results compared to other statistical tests (like Bonferroni and Holm), while it is easy to
comprehend [13].

2https://tec.citius.usc.es/stac/
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Table 5: p-values of the Finner pairwise post-hoc test on the Balanced Accuracy results. Bold fonts denote statistically significant measurements.

Method None ROS SMOTE Border
SMOTE

SVM
SMOTE

k-Means
SMOTE

ADA
SYN CBR cGAN sbGAN ctGAN Tab

Caps
None – 0.5223 0.5843 0.6908 0.3249 0.6216 0.2936 0.0049 0.6062 0.5550 0.2252 0.1769
ROS 0.5223 – 0.2081 0.2914 0.7497 0.2368 0.0883 0.0491 0.2269 0.1920 0.6062 0.0412
SMOTE 0.5843 0.2081 – 0.8455 0.1097 0.9196 0.6272 0.0005 0.9449 0.9570 0.0472 0.4672
Border
SMOTE 0.6908 0.2914 0.8455 – 0.1626 0.9126 0.5262 0.0008 0.8937 0.8165 0.1047 0.3476

SVM
SMOTE 0.3249 0.7497 0.1097 0.1626 – 0.1313 0.0399 0.1047 0.1254 0.1047 0.8242 0.0147

k-Means
SMOTE 0.6216 0.2368 0.9196 0.9126 0.1313 – 0.5888 0.0005 0.9699 0.8937 0.0883 0.4149

ADASYN 0.2936 0.0883 0.6272 0.5262 0.0399 0.5888 – 0.0001 0.6062 0.6587 0.0182 0.7697
CBR 0.0049 0.0501 0.0005 0.0008 0.1047 0.0005 0.0001 – 0.0005 0.0005 0.1555 < 10−4

cGAN 0.6062 0.2269 0.9449 0.8937 0.1254 0.9699 0.6062 0.0005 – 0.9126 0.0883 0.4293
sbGAN 0.5550 0.1920 0.9570 0.8165 0.1047 0.8937 0.6587 0.0005 0.9126 – 0.0708 0.4944
ctGAN 0.2252 0.6062 0.0772 0.1047 0.8242 0.0883 0.0182 0.1555 0.0883 0.0708 – 0.0061
TabCaps 0.1769 0.0412 0.4672 0.3476 0.0147 0.4149 0.7697 < 10−4 0.4293 0.4944 0.0061 –

Table 6: p-values of the Finner pairwise post-hoc test on the Precision results. Bold fonts denote statistically significant measurements.

Method None ROS SMOTE Border
SMOTE

SVM
SMOTE

k-Means
SMOTE

ADA
SYN CBR cGAN sbGAN ctGAN Tab

Caps
None – 0.3108 0.0249 0.0443 0.5461 0.0443 0.0049 0.3743 0.4484 0.4441 0.2432 0.0048
ROS 0.3108 – 0.1948 0.3743 0.6579 0.3743 0.0913 0.0443 0.7456 0.7671 0.8582 0.0687
SMOTE 0.0249 0.1948 – 0.6707 0.0871 0.6707 0.6707 0.0008 0.1060 0.1114 0.2457 0.5945
Border
SMOTE 0.0443 0.3743 0.6707 – 0.1920 1.0000 0.4246 0.0048 0.2432 0.2432 0.4484 0.3743

SVM
SMOTE 0.5461 0.6579 0.0871 0.1920 – 0.1920 0.0426 0.1232 0.8774 0.8582 0.5461 0.0299

k-Means
SMOTE 0.0443 0.3743 0.6707 1.0000 0.1920 – 0.4246 0.0048 0.2432 0.2432 0.4484 0.3743

ADASYN 0.0049 0.0913 0.6707 0.4246 0.0426 0.4246 – 0.0001 0.0421 0.0481 0.1171 0.8877
CBR 0.3743 0.0543 0.0008 0.0048 0.1232 0.0048 0.0001 – 0.0964 0.0957 0.0426 0.0001
cGAN 0.4484 0.7456 0.1060 0.2432 0.8774 0.2432 0.0421 0.0964 – 0.9715 0.6388 0.0426
sbGAN 0.4441 0.7671 0.1114 0.2432 0.8582 0.2432 0.0481 0.0957 0.9715 – 0.6579 0.0426
ctGAN 0.2432 0.8582 0.2457 0.4484 0.5461 0.4484 0.1171 0.0426 0.6388 0.6579 – 0.0960
TabCaps 0.0048 0.0687 0.5945 0.3743 0.0299 0.3743 0.8877 0.0001 0.0426 0.0426 0.0960 –

The results of the Finner tests are reported in Tables 5 and 6 for Balanced Accuracy and Precision, respectively.
The readings in bold fonts indicate statistically significant measurements. The obtained p-values reveal that CBR
performs differently compared to all the other resampling methods. In combination with the results of the previous
subsections, we may safely conclude that the superiority of CBR in the aforementioned experiments was not random.

In contrast, the results of the Finner tests regarding the adversary resampling methods indicate performance dif-
ferences that, in most cases, were statistically insignificant.

5.7. Execution Times
We also performed an experimental study of the time efficiency of the involved methods. Table 7 presents the

execution times of CBR compared to the ones of the other oversampling approaches. Since our experiments have
been conducted by using 5-fold cross validation, these times concern the mean duration of oversampling for all 5
folds.

The results reveal that CBR is at least as fast as SMOTE, its variants, and ADASYN. In fact, it was proved that
CBR outperformed these methods in all datasets, even by small margins. Despite our approach applies agglomerative
clustering on the underlying data (cubic time complexity), it is still capable of achieving better running times, because
it avoids the expensive nearest neighbor searches used by the other methods.
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Table 7: Method execution times.

Dataset ROS SMOTE Border
SMOTE

SVM
SMOTE

k-Means
SMOTE ADASYN CBR cGAN sbGAN ctGAN

Camel-1.2 0.69 0.62 0.58 0.67 0.63 0.64 0.61 8.61 7.74 41.77
Camel-1.4 1.09 0.99 0.98 0.98 1.10 1.07 0.96 13.57 7.88 59.00
Camel-1.6 1.08 0.95 0.84 0.98 1.23 0.85 0.90 13.57 10.13 67.00
CM1 0.77 0.68 0.63 0.61 0.70 0.66 0.53 7.26 3.35 35.66
IVY-1.1 0.15 0.16 0.15 0.15 0.16 0.15 0.14 1.68 1.70 5.85
IVY-2.0 0.48 0.48 0.43 0.43 0.51 0.48 0.32 5.01 2.54 22.68
jEdit-4.0 0.39 0.40 0.38 0.41 0.39 0.39 0.33 4.42 3.19 19.80
jEdit-4.1 0.39 0.39 0.36 0.37 0.38 0.36 0.34 4.40 3.17 19.85
jEdit-4.2 0.37 0.38 0.35 0.44 0.34 0.35 0.28 5.41 2.75 25.25
KC1 2.56 2.31 2.05 2.27 1.90 2.43 1.93 31.32 15.35 154.97
KC2 0.70 0.63 0.69 0.71 0.67 0.63 0.56 7.97 4.33 38.66
KC3 0.52 0.48 0.53 0.51 0.53 0.50 0.37 6.82 3.12 48.91
log4j-1.0 0.14 0.13 0.12 0.14 0.14 0.13 0.11 2.16 1.66 8.60
log4j-1.1 0.15 0.15 0.14 0.15 0.16 0.15 0.14 1.69 1.57 5.79
log4j-1.2 0.18 0.18 0.19 0.22 0.19 0.19 0.16 3.32 1.71 14.29
Lucene-2.2 0.31 0.30 0.32 0.32 0.32 0.30 0.28 3.82 3.33 16.97
Lucene-2.4 0.37 0.39 0.39 0.39 0.38 0.39 0.36 4.88 4.43 22.42
PC1 1.22 1.27 1.14 1.03 1.08 1.19 0.95 17.68 5.23 77.01
PC3 1.09 1.21 1.07 1.13 1.11 1.18 0.95 21.33 8.34 157.40
PC4 1.38 1.22 1.21 1.19 1.10 1.20 1.12 19.87 8.96 145.73
POI-1.5 0.24 0.26 0.27 0.29 0.29 0.25 0.19 3.30 3.17 14.22
POI-2.0 0.45 0.43 0.39 0.41 0.38 0.41 0.31 4.45 2.41 19.83
Velocity-1.4 0.27 0.30 0.27 0.29 0.28 0.27 0.16 2.78 1.69 11.44
Velocity-1.6 0.30 0.31 0.31 0.32 0.31 0.32 0.28 3.34 2.92 14.23
Xerces-1.2 0.51 0.46 0.47 0.39 0.48 0.37 0.40 5.92 3.85 30.78
Xerces-1.3 0.50 0.47 0.47 0.54 0.52 0.47 0.38 6.65 3.23 30.83
Xerces-1.4 0.70 0.70 0.66 0.69 0.71 0.72 0.55 8.12 4.30 39.06

Moreover, as anticipated, CBR is much faster than all Generative Adversarial Nets, and especially ctGAN. In
particular, CBR outperforms the conditional GAN and SB-GAN in terms of execution times by more than an order of
magnitude. On the other hand, ctGAN was the slowest model: the way this model encodes the numerical features (by
using a Bayesian Gaussian Mixture) increases the dataset dimensionality, leading to significantly degraded execution
durations.

6. Conclusions and Future Work

In this paper we introduced a new clustering-based data resampling technique called CBR. The proposed method
was designed to effectively handle imbalanced data in software defect detection tasks. However, it is applicable to all
multi-class imbalanced classification problems. One of the most powerful features of CBR is that it can simultaneously
perform undersampling of the majority class and oversampling of the minority classes.

Initially, a distance threshold is automatically specified by applying a simple heuristic that first, computes the
distances between all pairs of samples and then, divides their median by 3. Next, agglomerative clustering is applied
to the imbalanced dataset by preventing clusters to be merged in case their distance is larger than the aforementioned
threshold. At the time clustering is completed, the remaining singleton clusters are treated as outliers (because they
are too far away to be merged with other samples). The majority class outliers are evicted from the dataset (thus
performing undersampling), whereas the minority class outliers are preserved, but are not used as reference for over-
sampling.
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In the sequel, the algorithm attempts to balance each cluster by applying conditional oversampling. The conditions
dictate how oversampling will or will not take place. For example, if the majority of the points in a cluster belong
to a minority class, then these points are also not used for oversampling. Furthermore, instead of creating artificial
data instances between a sample and its nearest neighbors, as SMOTE and k-Means SMOTE do, we synthesize data
between a sample and its respective centroid. In this manner, we avoid the costly spatial k-NN queries, creating also
data of better quality; e.g., we avoid generating samples between two distant neighbors.

CBR has been extensively evaluated by using 27 well-established datasets from the research area of software engi-
neering. The proposed method has demonstrated superior Balanced Accuracy, Precision and running times compared
to a wide range of adversary approaches. In particular, we compared it against six traditional oversampling approaches
(Random Oversampling, SMOTE, Borderline SMOTE, SVM SMOTE, k-Means SMOTE, and ADASYN), three state-
of-the-art Generative Adversarial Networks (Conditional GAN, Safe-Borderline GAN, and ctGAN) and TabCaps, a
Capsule Network designed for classifying tabular data.

In the context of software defect detection, the aforementioned heuristic specifies the cluster distance threshold
in a satisfactory manner. However, a more extensive case study is required to examine its performance in other
applications. Moreover, CBR applies the traditional agglomerative clustering algorithm to effectively identify clusters
of similar data instances. Despite this is a general case method with acceptable performance, it does not provide
information on the underlying probability distribution of the input data. Other clustering algorithms, like the Gaussian
Mixture Model, could provide an attractive alternative.

Our future work includes experiments that will combine the strong features of GANs with the cluster structure
analysis strategy of CBR. More specifically, ctGAN is ingeniously modelling the continuous variables with a Bayesian
mixture of Gaussians. However, the additional columns created render the model slow. Moreover, ctGAN does not
take into consideration the outliers. These elements provide an additional motivation for further research on the area.
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