
FLAGR: A Flexible High-Performance Library for Rank

Aggregation

Leonidas Akritidisa,∗, Miltiadis Alamaniotisb, Panayiotis Bozanisa

aSchool of Science and Technology, International Hellenic University, 14th km
Thessaloniki - N. Moudania, Thermi, Thessaloniki, Greece

bDepartment of Electrical and Computer Engineering University of Texas at San Antonio
San Antonio, USA

Abstract

The fusion of multiple preference lists into a single aggregate list with im-
proved element ranking is a well-studied research area with numerous appli-
cations in bioinformatics, information retrieval, collaborative filtering, and
election systems. Despite the existence of a large number of rank aggregation
methods, only a small portion of them have publicly available implementa-
tions. In this paper we introduce FLAGR, a high performance, modular,
open source library for rank aggregation. The library contains efficient im-
plementations of both baseline and state-of-the-art algorithms that receive
multiple ranked preference lists and output a single consensus ranking. We
also introduce PyFLAGR, a library that links to the FLAGR core and al-
lows the invocation of its implementations from standard Python programs.
The package also includes a special tool that can be used to evaluate and
compare the performance of the underlying algorithms. In contrast to other
solutions, FLAGR has been created with flexibility in mind: third-party re-
searchers and analysts may easily integrate their implementations into the
library by developing only a single function. These features render FLAGR
and PyFLAGR an attractive research platform for developing, comparing
and evaluating rank aggregation algorithms.

Extended descriptions of the library components and useful code exam-
ples are provided in the accompanying user manual (provided as supplemental
material) and the supporting Web site at https://flagr.site.

Keywords: rank aggregation, library, FLAGR, PyFLAGR, Python, C++

Email address: lakritidis@ihu.gr, Miltos.Alamaniotis@utsa.edu,

pbozanis@ihu.gr (Leonidas Akritidisa,∗, Miltiadis Alamaniotisb, Panayiotis Bozanisa)

Preprint submitted to SoftwareX February 12, 2023

https://flagr.site

Required Metadata

Current code version

Nr. Code metadata description Please fill in this column
C1 Current code version 1.0.8
C2 Permanent link to code/repository

used for this code version
https://github.com/

lakritidis/flagr

C3 Code Ocean compute capsule
C4 Legal Code License Apache License, 2.0 (Apache-2.0)
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
C, C++, Python

C7 Compilation requirements, operat-
ing environments & dependencies

GCC or MingW. No dependencies.

C8 If available Link to developer docu-
mentation/manual

https://flagr.site/

C9 Support email for questions lakritidis@ihu.gr

Table 1: Code metadata (mandatory)

1. Motivation and significance1

Knowledge discovery from the aggregation of multiple ranked lists is a2

multi-disciplinary problem with significant challenges. The objective of rank3

aggregation algorithms is to generate an improved output list derived from4

the processing of a number of given input lists. Such goals are frequently set5

in numerous scientific applications, including genomic data analysis, infor-6

mation retrieval, recommender systems, collaborative filtering, and so on.7

The challenge of creating an improved list from a set of individual input8

lists has attracted the attention of multiple researchers. Despite the pop-9

ularity of the problem, very few rank aggregation libraries exist. Most of10

them implement deprecated, or simplistic methods that ignore important as-11

pects of the problem such as input lists with partial overlap, and/or unequal12

sizes, and/or different importance. Built by multiple independent vendors in13

diverse programming languages, these packages do not allow researchers to14

reliably evaluate and compare the performance of the implemented methods.15

As a remedy to these drawbacks, we introduce FLAGR, an open-source,16

flexible and scalable library for developing and testing rank aggregation algo-17

rithms. FLAGR is designed to combine efficiency, portability, extendibility,18

and platform independence. As of version 1.0.8, the package implements the19

following algorithms:20

2

https://github.com/lakritidis/flagr
https://github.com/lakritidis/flagr
https://flagr.site/
mailto:lakritidis@ihu.gr

� Two linear combination methods: CombSUM and CombMNZ, each21

accompanied by four weight normalization techniques: Rank, Borda,22

Score, and Z-Score normalization [1].23

� Borda Count, equivalent to CombSUM with Borda normalization [1, 2].24

� Three majoritarian methods: Condorcet winners [3], Copeland winners25

[4] and the Outranking Approach of [5].26

� Kemeny optimal aggregation (brute force implementation).27

� Four methods based on the principles of Markov Chains [6] and the28

MCT variant introduced in [7].29

� Robust Rank Aggregation [8].30

� A weighted method, based on a preference relations graph [9].31

� A second weighted method that progressively merges the most proximal32

lists in a fashion very similar to agglomerative clustering [10].33

� A distance-based, weighted method called DIBRA [11]. DIBRA may34

use the computed weights not only for item scoring, but also for pruning35

the preference lists of the weakest rankers.36

The last 3 algorithms are known as weighted aggregators. They apply37

exploratory analysis to automatically identify the expert rankers in an unsu-38

pervised fashion. Then, they assign higher weights to those who are declared39

experts, thus boosting the scores of their submitted elements. To the best of40

our knowledge, no publicly available implementation for these methods exist.41

Regarding efficiency, the implementations utilize robust data structures42

and algorithms that ensure high performance. For instance, the aggregate43

list is implemented as a hash table with separate chaining to support fast44

element searches that accelerate input list fusion. Such choices allow FLAGR45

to be used in demanding applications that involve thousands of very long46

preference lists.47

FLAGR adopts a modular architecture, allowing third-party program-48

mers to easily integrate their own methods into the library. The design of49

the core facilitates the development of new algorithms by implementing only50

a single function. This function receives all the necessary information to51

conduct the aggregation via its arguments.52

The library is developed in C++ 11.0, one of the most popular program-53

ming languages for both scientific and industrial applications. Moreover,54

3

FLAGR exposes a set of C functions that allow it to be built as a shared55

(SO), or dynamic link library (DLL). This SO/DLL can be subsequently im-56

ported into third-party applications developed in other languages, including57

Python, Java, R, and PHP. PyFLAGR is an example of such case: it links to58

the aforementioned shared library and enables the execution of the FLAGR59

implementations from standard Python programs. Since the introduced li-60

braries support the most widespread programming languages presently, we61

expect their broad adoption by the research community.62

The initial versions of FLAGR have been used to support QuadSearch, a63

Web metasearch engine that drew results from 4 major search engines to64

respond to user queries [12, 13]. Recently, the library was substantially65

expanded to implement and evaluate DIBRA [11]. On the other hand,66

PyFLAGR has been created to popularize the software, support the Python67

community, and materialize a tool for easily utilizing and comparing the un-68

derlying algorithm implementations. Both libraries are licensed under the69

Apache 2 license that, among others, allows their free usage, modification,70

and redistribution.71

2. Software description72

A rank aggregation application involves a set of queriesQ = {q1, q2, ..., qN}73

and a set of rankers R = {r1, r2, ..., rm}. Each query q ∈ Q is submitted to74

all rankers in R, who respond by returning a ranked list of preference items75

sorted in decreasing importance, or relevance order. The goal of a rank aggre-76

gation algorithm is to merge all the preference lists for each query, discover77

the important latent information, and generate a single output list L(q) with78

improved element ordering.79

Table 2 illustrates an example where three rankers submit their ranked80

answers to the hypothetical query “Which accessories do you buy for your81

smartphone?”. Notice that similar queries are frequently posed to users who82

purchase goods through an e-commerce platform; the answers are extensively83

utilized in recommender systems.84

The objective of a rank aggregation method is to process the submitted85

preference lists and produce an ordering L of the most popular smartphone86

r1 r2 r3 L
MicroSD headphones headphones headphones

PowerBank MicroSD PowerBank MicroSD
headphones case case PowerBank

Table 2: An example of rank aggregation

4

accessories. In many cases, an algorithm must fulfil additional requirements,87

such as handling input lists of unequal lengths, lists with missing elements, or88

rankers of different importance. FLAGR implements the appropriate mech-89

anisms to effectively handle these cases.90

2.1. Compilation91

The software is accompanied by two building scripts that include:92

� a typical makefile for building FLAGR on Linux. The make com-93

mand automatically creates the executable FLAGR and the shared li-94

brary flagr.so.95

� a batch file for building FLAGR on Windows. Similarly to Linux,96

makefile.bat creates the executable FLAGR.exe and the dynamic link97

library flagr.dll.98

Both scripts require GCC compiler. All generated binary files are stored99

in bin/Release.100

2.2. Software Architecture101

2.2.1. FLAGR Architecture102

The FLAGR core comprises 14 C++ classes that link to each other ac-103

cording to the architecture of Fig. 1. The input includes one file that stores104

the preference lists to be aggregated, one file with the relevance judgments for105

each list element (called the Rels file), and several user-defined values that106

determine algorithm hyper-parameters, execution modes, etc. The Rels file107

is optional: if provided, then a built-in evaluation tool quantifies the aggre-108

gate list quality by computing the values of multiple measures.109

The input data is managed by two objects: InputParams and InputData.110

The first one stores vital execution parameters such as the selected rank111

aggregation algorithm, its hyper-parameters, input/output file locations, etc.112

InputParams is virtually visible by all FLAGR components as it is frequently113

required to access its contents. On the other hand, InputData accommodates114

the input preference lists, organized into an array of Query objects.115

A Query object maintains two major components: The first one is the116

Aggregator, a multi-purpose object that: i) stores an array with the input117

preference lists (InputList), ii) applies the selected algorithm, and iii) gen-118

erates the output aggregate list (called MergedList). The second component119

of Query is the Evaluator, an object that optionally computes the quality of120

the generated aggregate list by utilizing the user-defined relevance judgments121

(Rels object).122

5

InputData

Query

Aggregator

Evaluator

InputParams InputList

InputItem

Rels Rel

MergedList

MergedItem

Voter

Ranking

1:1

1:1

1:1

1:1

1:1

1:11:N

1:N

1:N

1:N

1:N1:N

aggregate list file

evaluation file
evaluate()

1:N

1:1 One-to-one relationship (implies a pointer or a single object)

One-to-many relationship (implies an array of objects)

The object is passed to a member function as an argument

Input/Output

in
p

u
t

li
st

 f
il

e

R
el

s
fi

le

in
p

u
t

p
ar

am
s

SimpleScore
Stats

1:1

aggregate()

Figure 1: Low-level architecture of FLAGR. The rectangles represent the 14 classes of the
library core. The functionality of the four arrow styles is described in the legend.

The output of FLAGR consists of a CSV file that stores the generated123

aggregate lists. The library creates one aggregate list per input query; so,124

if there are Q queries, FLAGR generates Q aggregate lists. Each row in125

the file represents an item of an aggregate list sorted in decreasing score126

order. In case a valid Rels file is provided, the evaluation process takes place127

automatically. In this case, the Evaluator computes multiple evaluation128

measures for each aggregate list and outputs a second CSV file, where it129

writes their values. We refer the reader to Subsection 3.1 of the supplemental130

material for a detailed description of the file organizations.131

2.2.2. Shared/Dynamic Link Library Architecture132

One of the most powerful features of FLAGR is its ability to be compiled133

as a shared library, allowing its utilization from third-party applications de-134

veloped in other programming languages. Despite this type of compilation135

is OS-specific, there are pre-compiled shared libraries for Windows (DLL)136

and Linux (SO) in the bin/Release folder of the package repository. A pre-137

compiled DYLIB for MacOS is planned for the future versions of FLAGR.138

FLAGR exposes a set of C functions that wrap around the original C++139

algorithm implementations and enable their linkage from other programs.140

They essentially act as dynamic references to which a client code can link to.141

When an exposed function is called, it accesses the FLAGR core and calls142

the implementation of the respective algorithm. Then, the procedure that143

was described previously takes place. Figure 2 depicts this architecture.144

6

SHARED/DYNAMIC LINK LIBRARY

Execution

driver

Dynamic library

references

(Exposed C

functions)
Library coreC/C++/Python

Application Linker/Loader

Figure 2: Linking to the Shared/Dynamic Link Library of FLAGR from a third-party ap-
plication. The application accesses the exposed dynamic references that are subsequently
executed by the Execution Driver.

The Execution Driver enables the exposed functions to be executed in145

a unified manner. Its input comprises a simple structure that stores the146

user-defined parameters and orchestrates the execution flow. Initially, it147

copies the parameters to an InputParams object and initializes an InputData148

object that reads the input data file. Then, the Driver sequentially invokes149

the aggregate() and evaluate() methods of InputData to perform rank150

aggregation and evaluation of the generated list, respectively.151

2.2.3. PyFLAGR Architecture152

PyFLAGR is a Python package built on top of FLAGR. It constitutes an153

example of how a third-party application can link to the exposed dynamic154

references to access the respective algorithm implementations. The required155

SO/DLL files are bundled within the main package, allowing PyFLAGR156

to be immediately utilized without any other requirements. PyFLAGR is157

a member of Python repository index and can be installed with the pip158

package manager: pip install pyflagr.159

The library comprises a base class called RAM (Rank Aggregation Method),160

and a collection of derived classes whose main role is to call the respective161

exposed functions of FLAGR. Figure 3 illustrates the class hierarchy and162

demonstrates how it fits into the global architecture of Figure 2. RAM performs163

a number of vital operations, including I/O handling, linking to the FLAGR164

shared library, data integrity checks, etc.165

The implementations of the aforementioned derived classes reside within166

6 modules: Linear, Majoritarian, MarkovChains, Weighted, Kemeny, and167

RRA. Each class handles a specific rank aggregation method by calling the168

respective exposed function of the linked shared library. Notice that a mod-169

ule is essentially a group of classes that handle methods belonging into the170

same category. For instance, the Majoritarian module includes the classes171

CondorcetWinners, CopelandWinners and OutrankingApproach, which in172

turn handle the respective rank aggregation methods.173

Moreover, PyFLAGR offers a special class named Comparator that im-174

7

FLAGR SHARED/DYNAMIC LINK LIBRARY

Execution

driver

Dynamic library

references

(Exposed C

functions)
Library core

Linear
module

RAM module

Majoritarian
module

MarkovChains
module

Weighted
module

PyFLAGR

Kemeny
module

RRA
module

Figure 3: Fitting PyFLAGR into the architecture of Figure 2.

plements several tools for conducting performance comparisons. Its input175

includes a data file with the input preference lists, another file with the176

relevance judgments for the involved list elements, and a group of rank ag-177

gregation algorithms to be compared. After running the algorithms on the178

input data, the class produces comparison tables in various formats (e.g.,179

CSV, LATEX, etc.) and plots of Precision, Recall, Mean Average Precision180

(MAP) [14], DCG (Discounted Cumulative Gain), and nDCG (normalized181

DCG) [15].182

2.3. Software Functionalities183

2.3.1. Rank Aggregation184

The introduced libraries implement baseline and state-of-the-art algo-185

rithms for aggregating multiple preference lists and generating improved con-186

sensus rankings. Such algorithms are presently utilized in a wide variety of187

applications in the fields of bioinformatics, recommender systems, etc. These188

applications frequently involve large volumes of data. Therefore, the code has189

been carefully optimized for execution speed and memory consumption.190

2.3.2. Custom Algorithm Implementations191

FLAGR adopts a modular architecture, allowing new algorithms to be192

integrated into the core. A special file named CustomMethods.cpp contains193

empty function bodies where a programmer may implement new algorithms.194

This file is imported in advance by the appropriate FLAGR components,195

enabling the library to be compiled without any further actions. Additionally,196

an exposed function exists for these custom methods, so the FLAGR shared197

library immediately obtains access to them.198

8

2.3.3. Performance Evaluation and Comparison199

FLAGR includes a robust tool for evaluating rank aggregation algorithms200

by computing the values of multiple well-established measures, including201

MAP, Precision, Recall, DCG, and nDCG. The results of the evaluation202

are written into a CSV file, which can be subsequently converted to other203

formats, or be visualized by using plotting libraries.204

2.3.4. Results’ Vizualization205

Apart from allowing the usage of FLAGR in Python programs, PyFLAGR206

is also capable of illustrating the generated results. As of version 1.0.8,207

PyFLAGR produces bar plots for MAP, and comparative diagrams for Preci-208

sion, Recall, DCG and nDCG. Internally, PyFLAGR constructs a Dataframe209

that stores the computed evaluation measures. Then, it employs matplotlib210

to illustrate the Dataframe’s tabular data.211

3. Illustrative Examples212

In this section, we present two examples that demonstrate the usefulness213

of PyFLAGR in conducting comparative studies on rank aggregation meth-214

ods. Both examples utilize a dataset1 that contains 1000 ranked preference215

lists submitted by 50 customers of an electronic store, in response to 20 given216

queries. Each list contains 30 elements (namely, products). To aggregate the217

50 preference lists for each query, and obtain a list of the most popular prod-218

ucts, we imported 19 rank aggregation methods into the Comparator class219

of PyFLAGR.220

Figure 4 depicts a comparative bar plot of the MAP [14] achieved by221

the 19 participating methods. The results indicate that MC3 achieved the222

highest MAP, followed by DIBRA. Moreover, Figure 5 depicts the value223

of mean Precision at the first 5 positions of the 19 aggregate lists. MC1224

and MC2 achieved the highest P@1, whereas DIBRA and DIBRA-prune225

outperformed all the other methods in terms of P@3, P@4 and P@5.226

The complete example, with additional documentation, reside in the227

/examples/jupyter/ folder of the package repository.228

4. Impact229

According to the relevant literature, the weighted algorithms frequently230

produce aggregate lists of higher quality compared to their non-weighted231

1Created with RASDaGen, an open-source synthetic dataset generator for rank aggre-
gation problems https://github.com/lakritidis/RASDaGen

9

https://github.com/lakritidis/RASDaGen

Co
m

bS
UM

-R
an

k

Co
m

bS
UM

-B
or

da

Co
m

bS
UM

-S
co

re

Co
m

bM
NZ

-R
an

k

Co
m

bM
NZ

-B
or

da

Co
m

bM
NZ

-S
co

re

Co
nd

or
ce

t

Co
pe

la
nd

Ou
tra

nk
in

g
Ap

pr
oa

ch

M
C1

M
C2

M
C3

M
C4 M
CT

RR
A-

Ex
ac

t

RR
A

Pr
ef

Re
l

DI
BR

A

DI
BR

A-
Pr

un
e0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

Mean Average Precision (MAP)

Figure 4: A comparative bar plot of Mean Average Precision achieved by the 19 partici-
pating methods.

P_
1

P_
2

P_
3

P_
4

P_
5

List cutoff point

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ec

isi
on

CombSUM-Rank
CombSUM-Borda
CombSUM-Score
CombMNZ-Rank
CombMNZ-Borda
CombMNZ-Score
Condorcet
Copeland
Outranking Approach
MC1
MC2
MC3
MC4
MCT
RRA-Exact
RRA
PrefRel
DIBRA
DIBRA-Prune

Figure 5: A comparative bar plot of Precision for all top-5 list elements.

10

counterparts. However, to the best of our knowledge, no publicly available232

implementations exist for these techniques. In contrast, FLAGR implements233

3 such methods [9, 10, 11]. Therefore, its modular design, combined with234

the embodied evaluation tool, establishes a strong ground for developing and235

testing novel weighted aggregators.236

Additional novel research topics that can be studied with FLAGR in-237

cluding weight-based list pruning and discarding. The former topic examines238

whether, or how the lowest-ranked elements of the less important input lists239

can be discarded. The latter examines whether entire low-weighted input240

lists should be ignored during the aggregation process.241

One of the primary objectives of FLAGR is to establish a reliable en-242

vironment for developing and evaluating rank aggregation methods. This243

objective is achieved by three key elements : i) its modular design, that244

facilitates the implementation and integration of new methods, ii) the imple-245

mentations of numerous competitive algorithms for testing purposes, and iii)246

its built-in evaluation tool that provides accurate performance measurements247

for the implemented techniques.248

Compiling FLAGR as a shared library is another crucial step towards249

increasing its impact. Third-party scientific and industrial applications can250

link to this library and execute the implemented methods without consid-251

ering complex theoretical and practical details. PyFLAGR constitutes a252

demonstration of this logic. PyFLAGR also includes several advanced tools253

for testing and comparing rank aggregation algorithms that it an attractive254

research platform for this area.255

5. Conclusions256

In this paper we introduced FLAGR and PyFLAGR, two flexible rank257

aggregation libraries. The former includes efficient C++ implementations258

of numerous state-of-the-art algorithms and adopts a modular architecture259

that facilitates the integration of new methods. Furthermore, an embodied260

evaluation tool provides quality measurements of the generated aggregate261

lists by using multiple well-established metrics, like MAP, Precision, Recall,262

DCG, and nDCG. One of the most powerful characteristics of FLAGR is the263

exposure of several C functions that allow it to be built as a shared library.264

In this case, FLAGR can be imported by independent programs to exploit265

the existing implementations.266

On the other hand, PyFLAGR is a library that imports the algorithm267

implementations of FLAGR into standard Python programs. Specifically,268

PyFLAGR links to the aforementioned shared library and provides access to269

11

its exposed functions. It also includes robust visualization tools that produce270

various plots of the acquired performance measurements.271

6. Conflict of Interest272

No conflict of interest exists: We wish to confirm that there are no known273

conflicts of interest associated with this publication and there has been no274

significant financial support for this work that could have influenced its out-275

come.276

Acknowledgements277

The authors would like to thank John Burkardt for kindly permitting278

the usage of the ASA063 and ASA109 algorithm implementations for the279

computation of the incomplete beta integrals.280

References281

[1] M. E. Renda, U. Straccia, Web Metasearch: Rank vs. Score Based Rank282

Aggregation Methods, in: Proceedings of the 2003 ACM Symposium on283

Applied Computing, 2003, pp. 841–846.284

[2] J. d. Borda, Mémoire sur les élections au scrutin, Histoire de l’Academie285

Royale des Sciences pour 1781 (Paris, 1784).286

[3] M. Condorcet, Essai sur r application de Ianalyse à la probabilité des287

décisions rendues à la pluralité des voix, Paris.288

[4] A. H. Copeland, A reasonable social welfare function, Tech. rep., Mimeo,289

University of Michigan USA (1951).290

[5] M. Farah, D. Vanderpooten, An Outranking Approach for Rank Ag-291

gregation in Information Retrieval, in: Proceedings of the 30th Annual292

International ACM SIGIR Conference on Research and Development in293

Information Retrieval, 2007, pp. 591–598.294

[6] C. Dwork, R. Kumar, M. Naor, D. Sivakumar, Rank Aggregation Meth-295

ods for the Web, in: Proceedings of the 10th International Conference296

on World Wide Web, 2001, pp. 613–622.297

[7] R. P. DeConde, S. Hawley, S. Falcon, N. Clegg, B. Knudsen, R. Etzioni,298

Combining Results of Microarray Experiments: A Rank Aggregation299

Approach, Statistical Applications in Genetics and Molecular Biology300

5 (1).301

12

[8] R. Kolde, S. Laur, P. Adler, J. Vilo, Robust Rank Aggregation for Gene302

List Integration and Meta-Analysis, Bioinformatics 28 (4) (2012) 573–303

580.304

[9] M. S. Desarkar, S. Sarkar, P. Mitra, Preference Relations Based Unsu-305

pervised Rank Aggregation for Metasearch, Expert Systems with Ap-306

plications 49 (2016) 86–98.307

[10] S. Chatterjee, A. Mukhopadhyay, M. Bhattacharyya, A Weighted Rank308

Aggregation Approach Towards Crowd Opinion Analysis, Knowledge-309

Based Systems 149 (2018) 47–60.310

[11] L. Akritidis, A. Fevgas, P. Bozanis, Y. Manolopoulos, An Unsupervised311

Distance-Based Model for Weighted Rank Aggregation with List Prun-312

ing, Expert Systems with Applications 202 (2022) 117435.313

[12] L. Akritidis, D. Katsaros, P. Bozanis, Effective ranking fusion meth-314

ods for personalized metasearch engines, in: Proceedings of the 12th315

Panhellenic Conference on Informatics, IEEE, 2008, pp. 39–43.316

[13] L. Akritidis, D. Katsaros, P. Bozanis, Effective rank aggregation for317

metasearching, Journal of Systems and Software 84 (1) (2011) 130–143.318

[14] C. Manning, P. Raghavan, H. Schtze, Introduction to Information Re-319

trieval, Cambridge University Press, 2008.320

[15] K. Järvelin, J. Kekäläinen, Cumulated gain-based evaluation of IR tech-321

niques, ACM Transactions on Information Systems (TOIS) 20 (4) (2002)322

422–446.323

Current executable software version324

13

Nr. (Executable) software meta-
data description

Please fill in this column

S1 Current software version 1.0.8
S2 Permanent link to executables of

this version
https://github.com/

lakritidis/flagr

S3 Legal Software License Apache License, 2.0 (Apache-2.0)
S4 Computing platforms/Operating

Systems
Linux, Microsoft Windows

S5 Installation requirements & depen-
dencies

No dependencies

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

https://flagr.site and https:

//github.com/lakritidis/

FLAGR/blob/main/docs/FLAGR_

manual.pdf

S7 Support email for questions lakritidis@ihu.gr

Table 3: Software metadata (optional)

14

https://github.com/lakritidis/flagr
https://github.com/lakritidis/flagr
https://flagr.site
https://github.com/lakritidis/FLAGR/blob/main/docs/FLAGR_manual.pdf
https://github.com/lakritidis/FLAGR/blob/main/docs/FLAGR_manual.pdf
https://github.com/lakritidis/FLAGR/blob/main/docs/FLAGR_manual.pdf
https://github.com/lakritidis/FLAGR/blob/main/docs/FLAGR_manual.pdf
mailto:lakritidis@ihu.gr

User Manual

Version: 1.0.8

Web Site: https://flagr.site/

Github: https://github.com/lakritidis/FLAGR

Python Package Index: https://pypi.org/project/pyflagr/

https://flagr.site/
https://github.com/lakritidis/FLAGR
https://pypi.org/project/pyflagr/

Table of Contents

1. Getting started .. 5

1.1 Introduction ... 5

1.2 Download ... 6

1.3 Compilation and execution .. 6

1.4 Dynamic library references (Exposed C functions) .. 7

1.5 Execution driver ... 8

2. Rank Aggregation methods ... 9

2.1 Linear Combination methods – The Linear() function .. 9

2.2 Condorcet Winners – The Condorcet() function ... 10

2.3 Copeland Winners – The Copeland() function.. 11

2.4 Outranking Approach – OutrankingApproach() .. 11

2.5 Markov Chains methods – The MC() function ... 13

2.6 Kemeny Optimal Aggregation – The Kemeny() function .. 14

2.7 Robust Rank Aggregation – The RobustRA() function ... 15

2.8 Iterative Distance-Based weighted aggregation – The DIBRA() function 16

2.9 Preference Relations weighted method ... 18

2.10 Agglomerative weighted aggregation ... 19

3. FLAGR API Documentation .. 20

3.1 Input and Output files ... 20

3.2 Aggregator class ... 22

3.3 Evaluator class ... 22

3.4 InputItem class ... 23

3.5 InputList class ... 23

3.6 InputParams class ... 24

3.7 InputData class ... 27

3.8 MergedItem class ... 27

3.9 MergedList class ... 28

3.10 Query class .. 29

3.11 Ranking class ... 29

3.12 Rel class .. 30

3.13 Rels class .. 30

3.14 SimpleScoreStats class .. 30

3.15 Voter class .. 31

3.16 Integrating custom methods .. 31

4. PyFLAGR API Documentation .. 34

4.1 Introduction .. 34

4.2 Installation ... 35

4.3 RAM module ... 35

4.4 Linear module... 36

4.5 Majoritarian module ... 38

4.6 MarkovChains module ... 39

4.7 Weighted module .. 40

4.8 Kemeny module... 44

4.9 RRA module ... 45

4.10 Comparator module .. 46

5. Appendix .. 51

5.1 Evaluation measures .. 51

5.2 References ... 53

5.3 Acknowledgments .. 54

1. Getting started

1.1 Introduction

FLAGR is a high performance, modular, open source library for rank aggregation problems. It

implements baseline and recent state-of-the-art aggregation algorithms that accept ranked

preference lists and generate a single consensus list of elements.

The core project is developed in C++. The source code is available on GitHub and can be compiled as

a standard application, or as a shared library. In the second case, the library file can be linked or loaded

by other programs in other languages. PyFLAGR is an example of such application. In brief, FLAGR:

 employs efficient data structures and algorithms that ensure high performance,

 is cross-platform supporting Windows and Linux. An extension that supports MacOS users is

currently under construction,

 is modular, allowing third-party programmers to easily implement their methods within the

core library,

 is open-source.

The current version of FLAGR is 1.0.8. It includes implementations of the following algorithms:

 CombSUM linear combination with 5 different score/rank normalization techniques; namely:

Rank, Borda, Simple Borda, Score, and Z-Score normalization (Renda, et al., 2003).

 CombMNZ linear combination with 5 different score/rank normalization techniques; namely:

Rank, Borda, Simple Borda, Score, and Z-Score normalization (Renda, et al., 2003).

 Borda Count (equivalent to CombSUM with Borda normalization, (Renda, et al., 2003)).

 Condorcet Winners.

 Copeland Winners.

 Outranking Approach of Farah & Vanderpooten, 2007.

 Distance-based iterative unsupervised algorithm of Akritidis et al., 2022 (all the above methods

can be used as the starting non-weighted aggregator).

 Robust Rank Aggregation in two variants: the first one employs the Stuart/Ares method for p-

value correction, whereas the other one does not.

 Kemeny optimal aggregation (brute force implementation, not applicable to large, or many

input preference lists).

 Markov Chains (MC) methods of Dwork et al., 2001 and DeConde et al., 2006.

 Weighted agglomerative aggregation method of Chatterjee et al., 2018.

 Preference relation unsupervised algorithm of Desarkar et al., 2016.

These methods are also supported by PyFLAGR through a set of modules and classes.

https://github.com/lakritidis/FLAGR

1.2 Download

FLAGR is an open-source project, licensed under the Apache License, version 2.

The library can be downloaded from its GitHub repository at https://github.com/lakritidis/FLAGR. The

repository contains:

 The core C++ components (/src directory) and rank aggregation algorithm implementations

(/src/ram directory).

 The dynamic library references (cflagr.cpp and dllflagr.cpp files), which allow the

compilation of FLAGR as a shared or a dynamic link library.

 A precompiled shared library (pyflagr/pyflagr/flagr.so, Linux only) and a dynamic link

library (pyflagr/pyflagr/flagr.dll, Windows only) with its dependencies.

 The PyFLAGR library, which allows the usage of FLAGR in Python applications (/pyflagr

directory).

 Documentation (/docs directory).

 Code examples for C++ and Python (/examples directory).

1.3 Compilation and execution

FLAGR can be compiled as a standard console application, or as a shared/dynamic link library in both

Linux and Windows systems.

Building FLAGR in Linux

In Linux platforms, the user must navigate to the root directory of the package through the Terminal

and execute the makefile that exists there by typing:

make

The build script compiles the source code and produces two files within the /bin/Release directory:

 the binary executable file /bin/Release/FLAGR

 the Linux shared library /bin/Release/flagr.so that can be linked by third-party

applications to obtain access to the FLAGR algorithm implementations.

Building FLAGR in Windows

Similarly to the previous case, in Windows platforms the user must navigate to the root directory of

the package through the Command Prompt and execute the batch file that exists there by typing:

makefile.bat

The build script compiles the source code and produces two files within the /bin/Release directory:

 the binary executable file /bin/Release/FLAGR.exe

 the Dynamic Link Library library /bin/Release/flagr.dll that can be linked by third-party

applications to obtain access to the FLAGR algorithm implementations.

http://www.apache.org/licenses/LICENSE-2.0
https://github.com/lakritidis/FLAGR
https://github.com/lakritidis/FLAGR/tree/main/src
https://github.com/lakritidis/FLAGR/tree/main/src/ram
https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/tree/main/pyflagr/pyflagr/flagr.so
https://github.com/lakritidis/FLAGR/tree/main/pyflagr/pyflagr/flagr.dll
https://github.com/lakritidis/FLAGR/tree/main/pyflagr
https://github.com/lakritidis/FLAGR/tree/main/docs
https://github.com/lakritidis/FLAGR/tree/main/examples
https://github.com/lakritidis/FLAGR/blob/main/makefile
https://github.com/lakritidis/FLAGR/tree/main/bin/Release
https://github.com/lakritidis/FLAGR/blob/main/bin/Release/FLAGR
https://github.com/lakritidis/FLAGR/blob/main/bin/Release/flagr.so
https://github.com/lakritidis/FLAGR/blob/main/makefile.bat
https://github.com/lakritidis/FLAGR/tree/main/bin/Release
https://github.com/lakritidis/FLAGR/blob/main/bin/Release/FLAGR.exe
https://github.com/lakritidis/FLAGR/blob/main/bin/Release/flagr.dll

Running the FLAGR executable

The FLAGR binary is executed in an identical manner, regardless of the operating system. The

application accepts 4 optional arguments in the following fashion:

FLAGR [cutoff] [input_file] [output_path] [qrels_file]

The input arguments are:

 cutoff: this is the evaluation cut-off point. That is, the number of items of the aggregate list

that will be included in the evaluation process. If nothing is passed, then the value 10 is used.

 input_file: The full path to the input file that stores the input lists to be aggregated. This is

where the aggregation algorithm/s read data from.

 output_path: This is where the program writes the generated aggregate lists and the results

of the evaluation process. If nothing is passed, then the default value output is used.

 qrels_file: This file stores the relevance judgments of the list elements. It is used by FLAGR

to evaluate the employed rank aggregation algorithm/s. If nothing is passed, then no

evaluation takes place.

1.4 Dynamic library references (Exposed C functions)

FLAGR exposes a set of C functions through an extern "C" statement, allowing their linkage from

other C programs. These are the dynamic library references to which a client C code can link to. At

first, FLAGR must be compiled as a shared/dynamic link library. Then, the client C program can link to

that shared library and include a typical C header file that contains just the declaration of these

functions. The called function is able to access the C++ FLAGR core through the Execution Driver. The

following diagram depicts this scenario:

The FLAGR architecture and the possibility of building it as a shared library allows its usage not only

in third party C programs, but also in programs written in other languages. PyFLAGR is an example of

such case. PyFLAGR is a Python library that enables the execution of the algorithm C++

implementations of FLAGR from standard Python programs. The Python program must be able to

successfully import the PyFLAGR modules.

The exposed C functions of FLAGR exist in two files: cflagr.cpp and dllflagr.cpp. These files are

almost identical: they contain the same functions with exactly the same arguments and bodies. What

changes is the usage of several special keywords in the function declarations of dllflagr.cpp that

enable the building of FLAGR as a DLL for Windows-based systems. These functions are:

 void Linear(): It executes one of the supported linear combination methods (CombSUM

and CombMNZ, each one with 5 variants).

https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp

 void Condorcet(): It executes the Condorcet Winners method.

 void Copeland(): It executes the Copeland Winners method.

 void OutrankingApproach(): It executes the Outranking Approach of Farah &

Vanderpooten, 2007.

 void Kemeny(): It executes the optimal Kemeny optimal aggregation algorithm (brute force

implementation).

 void RobustRA(): It executes the Robust Rank Aggregation (RRA) method of Kolde et al.,

2012.

 void DIBRA(): It executes the distance-based iterative rank aggregation method of Akritidis

et al., 2022.

 void PrefRel(): It executes the preference relations method of Desarkar et al., 2016.

 void Agglomerative(): It executes the agglomerative rank aggregation method of

Chatterjee et al., 2018.

 void MC(): It executes the Markov Chain-based rank aggregation method of Dwork et al.,

2001.

1.5 Execution driver

The Execution Driver is a simple function defined in driver.cpp. Its role is to offer a unified manner

of executing the exposed C functions. It takes as an argument a simple C structure that stores the

user-defined input parameters and algorithm hyper-parameters, and orchestrates the execution flow.

More specifically, the Execution driver initially copies the user-defined input parameters from the

aforementioned C structure to an InputParams C++ object. In the sequel, it creates an InputData

object which immediately starts reading the provided input file/s. Next, the aggregate() method of

InputData is called to perform rank aggregation. Notice that the InputParams object is propagated

to all FLAGR components and carries all the required parameters with it. Therefore, the rank

aggregation method to be applied is automatically executed without any further checks, since

InputParams notifies the Aggregator about the aggregation method that was selected by the user.

In case the user provided a valid input file with relevance judgments, the Execution Driver proceeds

to the evaluation of the generated aggregate list. This is achieved by calling the evaluate() method

of InputData, which in turn triggers the Evaluator.

The following block diagram depicts the role of the execution driver as the connector between the

dynamic library references and the C++ FLAGR core.

https://github.com/lakritidis/FLAGR/blob/main/driver.cpp

2. Rank Aggregation methods
This section describes the rank aggregation algorithms implemented in FLAGR. The following articles

also contain brief descriptions of the respective exposed C functions that make these algorithms

accessible from other programs (in case the FLAGR shared library is used).

2.1 Linear Combination methods – The Linear() function

In linear combination methods, the score of each element is computed by summing up the partial

scores of that element with respect to its rankings in each input preference list. The Linear() function

triggers the execution of two such combination methods: CombSUM, and CombMNZ. Both of them

are implemented in accordance to the paper of Renda et al., 2003.

Each method is accompanied by an element rank/score normalization technique, as it is described in

the aforementioned paper. These techniques are: Rank normalization, Borda normalization, Score

normalization, and Z-Score normalization. In FLAGR, there is a fifth normalization technique, called

Simple Borda. In contrast to the traditional Borda normalization, Simple Borda assigns zero partial

scores in case an element has not been ranked by an input preference list.

In addition, notice that CombSUM with Borda normalization is equivalent to the well-known

BordaCount rank aggregation method.

Function Definitions

void Linear(const char inf[], const char relf[], const int evpts, const int
ram, const char ranstr[], const char out[])

and

__declspec(dllexport) void __cdecl Linear(const char inf[], const char relf[],
const int evpts, const int ram, const char ranstr[], const char out[])

Implementation Files

 Linear() function: cflagr.cpp and dllflagr.cpp.

 CombSUM: src/ram/CombSUM.cpp.

 CombMNZ: src/ram/CombMNZ.cpp.

Input arguments

 const char inf[]: The path of the input file that stores the preference lists to be aggregated.

 const char relf[]: The path of the input file that stores the element relevance judgments.

 const int evpts: the elements in the aggregate list on which the evaluation measures (i.e.

Precision, and nDCG) will be computed.

 const int ram: The selected rank aggregation method (see the aggregation_method

parameter in this document for a list of possible values).

 const char ranstr[]: A string that is embedded in the names of the output files. Used when

FLAGR is compiled as a shared library.

 const char out[]: The file system location where the output file with the aggregate list will

be stored.

https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/CombSUM.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/CombMNZ.cpp

Description

The input parameters are parsed and stored in a special C structure called UserParams that is defined

in src/InputParams.h. Then, UserParams is passed to the execution driver and the rank aggregation

process starts.

2.2 Condorcet Winners – The Condorcet() function

The Condorcet() function executes the Condorcet Winners method. The score of an element 𝑟𝑖 is

determined by the number of its "victories" against all the other involved elements. A victory for 𝑟𝑖 is

achieved if the majority of the voters rank 𝑟𝑖 higher than another element 𝑟𝑗. Finally, the elements are

sorted in decreasing victory order.

Function Definitions

void Condorcet(const char inf[], const char relf[], const int evpts, const char
ranstr[], const char out[])

and

__declspec(dllexport) void __cdecl Condorcet(const char inf[], const char
relf[], const int evpts, const char ranstr[], const char out[])

Implementation Files

 Condorcet() function: cflagr.cpp and dllflagr.cpp.

 Condorcet Winners method: src/ram/CondorcetWinners.cpp.

Input arguments

 const char inf[]: The path of the input file that stores the preference lists to be aggregated.

 const char relf[]: The path of the input file that stores the element relevance judgments.

 const int evpts: the elements in the aggregate list on which the evaluation measures (i.e.

Precision, and nDCG) will be computed.

 const char ranstr[]: A string that is embedded in the names of the output files. Used when

FLAGR is compiled as a shared library.

 const char out[]: The file system location where the output file with the aggregate list will

be stored.

Description

The input parameters are parsed and stored in a special C structure called UserParams that is defined

in src/InputParams.h. Then, UserParams is passed to the execution driver and the rank aggregation

process starts.

https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h
https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/CondorcetWinners.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h

2.3 Copeland Winners – The Copeland() function

The Copeland() function executes the Copeland Winners method. The score of an element 𝑟𝑖 is

determined by the number of its "victories" against all the other involved elements. A victory for 𝑟𝑖 is

achieved if the majority of the voters rank 𝑟𝑖 higher than another element 𝑟𝑗. In contrast to the

Condorcet method, Copeland Winners assign "half" a victory (i.e., a score of 0.5) to each element of a

pair (𝑟𝑖, 𝑟𝑗) in the case of tie. A tie happens when exactly half of the voters rank 𝑟𝑖 higher than 𝑟𝑗 and

the other half voters rank 𝑟𝑗 higher than 𝑟𝑖.

Finally, the elements are sorted in decreasing victory order.

Function Definitions

void Copeland(const char inf[], const char relf[], const int evpts, const char
ranstr[], const char out[])

and

__declspec(dllexport) void __cdecl Copeland(const char inf[], const char relf[],
const int evpts, const char ranstr[], const char out[])

Implementation Files

 Copeland() function: cflagr.cpp and dllflagr.cpp.

 Copeland Winners method: src/ram/CopelandWinners.cpp.

Input arguments

 const char inf[]: The path of the input file that stores the preference lists to be aggregated.

 const char relf[]: The path of the input file that stores the element relevance judgments.

 const int evpts: the elements in the aggregate list on which the evaluation measures (i.e.

Precision, and nDCG) will be computed.

 const char ranstr[]: A string that is embedded in the names of the output files. Used when

FLAGR is compiled as a shared library.

 const char out[]: The file system location where the output file with the aggregate list will

be stored.

Description

The input parameters are parsed and stored in a special C structure called UserParams that is defined

in src/InputParams.h. Then, UserParams is passed to the execution driver and the rank aggregation

process starts.

2.4 Outranking Approach – OutrankingApproach()

The Outranking Approach of Farah & Vanderpooten is a majoritarian method that identifies the

"winning" elements by performing pairwise comparisons of their individual rankings. The method is

implemented in accordance to the following paper:

https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/CopelandWinners.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h

 Farah, M., Vanderpooten, D., "An outranking approach for rank aggregation in information

retrieval", In Proceedings of the 30th ACM Conference on Research and Development in

Information Retrieval, pp. 591-598, 2007.

The algorithm is based on four threshold values that introduce different perspectives of the majority

criterion. These values are the concordance, discordance, preference, and veto thresholds. The user

may pass all of them to FLAGR as hyper-parameters, through the input arguments of the

OutrankingApproach() function (see below).

Function Definitions

void OutrankingApproach(const char inf[], const char relf[], const int evpts,
const char ranstr[], const char out[], const float pref_t, const float veto_t,
const float conc_t, const float disc_t)

and

__declspec(dllexport) void __cdecl OutrankingApproach(const char inf[], const
char relf[], const int evpts, const char ranstr[], const char out[], const float
pref_t, const float veto_t, const float conc_t, const float disc_t)

Implementation Files

 The OutrankingApproach() C function: cflagr.cpp and dllflagr.cpp.

 Algorithm Implementation: src/ram/OutrankingApproach.cpp.

Input arguments

 const char inf[]: The path of the input file that stores the preference lists to be aggregated.

 const char relf[]: The path of the input file that stores the element relevance judgments.

 const int evpts: the elements in the aggregate list on which the evaluation measures (i.e.

Precision, and nDCG) will be computed.

 const char ranstr[]: A string that is embedded in the names of the output files. Used when

FLAGR is compiled as a shared library.

 const char out[]: The file system location where the output file with the aggregate list will

be stored.

 const float pref_t: Algorithm hyper-parameter - The value of the preference threshold.

 const float veto_t: Algorithm hyper-parameter - The value of the veto threshold.

 const float conc_t: Algorithm hyper-parameter - The value of the concordance threshold.

 const float disc_t: Algorithm hyper-parameter - The value of the discordance threshold.

Description

The input parameters are parsed and stored in a special C structure called UserParams that is defined

in src/InputParams.h. Then, UserParams is passed to the execution driver and the rank aggregation

process starts.

https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/OutrankingApproach.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h

2.5 Markov Chains methods – The MC() function

The Markov Chains methods constitute a well-established family of rank aggregation methods.

Originally proposed by Dwork et al., (2001), they consider an aggregate list as a system that moves

from one state to another with respect to a particular criterion. Dwork et al. (2001) introduced four

such methods in the following article:

 C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Methods for the Web", In

Proceedings of the 10th International Conference on World Wide Web, pp. 613-622, 2001.

In addition, DeConde et al. (2006) introduced MCT, a variant that constructs the transition matrix by

considering the proportion of lists which prefer an element over another.

 R.P. DeConde, S. Hawley, S. Falcon, N. Clegg, B. Knudsen, R. Etzioni, "Combining results of

microarray experiments: a rank aggregation approach", Statistical Applications in Genetics and

Molecular Biology, vol. 5, no. 1, 2006.

The execution of all five methods takes place by passing the appropriate arguments to the MC

exposed C function of FLAGR.

Function Definitions

void MC(const char inf[], const char relf[], const int evpts, const int ram,
const char ranstr[], const char out[], const float ergodic_number, const float
delta, const int iter)

and

__declspec(dllexport) void __cdecl MC(const char inf[], const char relf[], const
int evpts, const int ram, const char ranstr[], const char out[], const float
ergodic_number, const float delta, const int iter)

Implementation Files

 MC() function: cflagr.cpp and dllflagr.cpp.

 Markov Chains implementation: src/ram/MC.cpp.

Input arguments

 const char inf[]: The path of the input file that stores the preference lists to be aggregated.

 const char relf[]: The path of the input file that stores the element relevance judgments.

 const int evpts: the elements in the aggregate list on which the evaluation measures (i.e.

Precision, and nDCG) will be computed.

 const int ram: The selected (Markov Chains-based) rank aggregation method (801, 802,

803, 804, or 805 - see the aggregation_method parameter in this document).

 const char ranstr[]: A string that is embedded in the names of the output files. Used when

FLAGR is compiled as a shared library.

 const char out[]: The file system location where the output file with the aggregate list will

be stored.

 const float ergodic_number: The ergodic number, used during the computation of the

ergodic transition matrix from the normalized transition matrix.

 const float iter: Controls the maximum number of iterations before convergence.

https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/MC.cpp

Description

The input parameters are parsed and stored in a special C structure called UserParams that is defined

in src/InputParams.h. Then, UserParams is passed to the execution driver and the rank aggregation

process starts.

2.6 Kemeny Optimal Aggregation – The Kemeny() function

This function executes Kemeny optimal aggregation. This algorithm identifies the optimal aggregate

list as the list that minimizes its distance from all the input preference lists.

Kemeny optimal aggregation is an NP-hard problem, with very high computational complexity. It

requires the computation of all permutations of the input items and the calculation of the distances

of each permutation from all input lists. The brute force solution becomes infeasible when the number

of elements gets greater than 15-20, or the number of input lists is greater than 4, so caution is advised.

Function Definitions

void Kemeny(const char inf[], const char relf[], const int evpts, const char
ranstr[], const char out[])

and

__declspec(dllexport) void __cdecl Kemeny(const char inf[], const char relf[],
const int evpts, const char ranstr[], const char out[])

Implementation Files

 Kemeny() function: cflagr.cpp and dllflagr.cpp.

 Kemeny optimal aggregation method: src/ram/KemenyOptimal.cpp.

Input arguments

 const char inf[]: The path of the input file that stores the preference lists to be aggregated.

 const char relf[]: The path of the input file that stores the element relevance judgments.

 const int evpts: the elements in the aggregate list on which the evaluation measures (i.e.

Precision, and nDCG) will be computed.

 const char ranstr[]: A string that is embedded in the names of the output files. Used when

FLAGR is compiled as a shared library.

 const char out[]: The file system location where the output file with the aggregate list will

be stored.

Description

The input parameters are parsed and stored in a special C structure called UserParams that is defined

in src/InputParams.h. Then, UserParams is passed to the execution driver and the rank aggregation

process starts.

https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h
https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/KemenyOptimal.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h

2.7 Robust Rank Aggregation – The RobustRA() function

This function executes the Robust Rank Aggregation (RRA) method of Kolde et al., 2012. The method

is implemented in accordance to the following paper:

 R. Kolde, S. Laur, P. Adler, J. Vilo, "Robust rank aggregation for gene list integration and meta-

analysis", Bioinformatics, vol. 28, no. 4, pp. 573-580, 2012.

RRA is mostly used in bio-informatics applications to aggregate gene lists. It is based on a probabilistic

model (beta distribution) that makes the algorithm parameter free and robust to outliers, noise and

errors. The FLAGR C++ implementation of RRA produces the same results as the R implementation of

Kolde (see the RobustRankAggreg R package).

The computation of the incomplete beta function is performed with the John Burkardt's

implementation of ASA063 algorithm (K.L. Majumder and G. Bhattacharjee):

 K.L. Majumder, G.P. Bhattacharjee, "Algorithm AS 63: The incomplete Beta Integral", Applied

Statistics, vol. 22, no. 3, pp. 409-411, 1973.

Furthermore, the computation of the inverse of the incomplete beta function is performed with the

John Burkardt's implementation of ASA109 algorithm (GW Cran, KJ Martin and GE Thomas):

 G.W. Cran, M.J. Martin, G.E. Thomas, "Remark AS R19 and Algorithm AS 109: A Remark on

Algorithms AS 63: The Incomplete Beta Integral and AS 64: Inverse of the Incomplete Beta

Integeral", Applied Statistics, Volume 26, Number 1, 1977, pages 111-114.

Function Definitions

void RobustRA(const char inf[], const char relf[], const int evpts, const char
ranstr[], const char out[], const bool exact)

and

__declspec(dllexport) void __cdecl RobustRA(const char inf[], const char relf[],
const int evpts, const char ranstr[], const char out[], const bool exact)

Implementation Files

 RobustRA() function: cflagr.cpp and dllflagr.cpp.

 RRA implementation: src/ram/RobustRA.cpp.

 Incomplete beta function implementation (ASA 063 algorithm), inverse of the incomplete Beta

function implementation (ASA 109 algorithm): src/ram/tools/BetaDistribution.cpp.

Input arguments

 const char inf[]: The path of the input file that stores the preference lists to be aggregated.

 const char relf[]: The path of the input file that stores the element relevance judgments.

 const int evpts: the elements in the aggregate list on which the evaluation measures (i.e.

Precision, and nDCG) will be computed.

 const char ranstr[]: A string that is embedded in the names of the output files. Used when

FLAGR is compiled as a shared library.

https://cran.r-project.org/web/packages/RobustRankAggreg/index.html
https://people.math.sc.edu/Burkardt/cpp_src/asa063/asa063.html
https://people.math.sc.edu/Burkardt/cpp_src/asa063/asa063.html
https://people.math.sc.edu/Burkardt/cpp_src/asa063/asa063.html
https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/RobustRA.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/tools/BetaDistribution.cpp

 const char out[]: The file system location where the output file with the aggregate list will

be stored.

 const bool exact: If true the Stuart algorithm for p-value correction is applied.

Description

The input parameters are parsed and stored in a special C structure called UserParams that is defined

in src/InputParams.h. Then, UserParams is passed to the execution driver and the rank aggregation

process starts.

2.8 Iterative Distance-Based weighted aggregation – The

DIBRA() function

This function executes the iterative, distance-based method (abbreviated DIBRA) of Akritidis el. al

2022. The method is implemented in accordance to the following paper:

 L. Akritidis, A. Fevgas, P. Bozanis, Y. Manolopoulos, "An Unsupervised Distance-Based Model

for Weighted Rank Aggregation with List Pruning", Expert Systems with Applications, vol. 202,

pp. 117435, 2022.

DIBRA belongs to the weighted rank aggregation methods. It employs exploratory analysis to

automatically identify the expert voters in an unsupervised fashion. Then, it assigns higher weights to

the voters who were identified as experts, thus boosting the scores of their submitted elements.

In particular, DIBRA employs a standard non-weighted method to generate an initial aggregate

ranking (see aggregation_method in this document for a list of the supported methods). Then, it

repeatedly assigns higher weights to the input lists that have smaller distances from the aggregate

lists. The process terminates when the voter weights converge and a stable aggregate list is obtained.

The algorithm also includes an optional list pruning mechanism that arranges the input list lengths

according to the respective voter weights.

Function Definitions

void DIBRA(const char inf[], const char relf[], const int evpts, const int agg,
const char ranstr[], const char out[], const int wnorm, const int dist, const
bool prune, const float gamma, const float d1, const float d2, const float tol,
const int iter, const float pref_t, const float veto_t, const float conc_t,
const float disc_t)

and

__declspec(dllexport) void __cdecl DIBRA(const char inf[], const char relf[],
const int evpts, const int agg, const char ranstr[], const char out[], const
int wnorm, const int dist, const bool prune, const float gamma, const float d1,
const float d2, const float tol, const int iter, const float pref_t, const float
veto_t, const float conc_t, const float disc_t)

Implementation Files

 DIBRA() function: cflagr.cpp and dllflagr.cpp.

 DIBRA method implementation: src/ram/DIBRA.cpp.

https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h
https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/DIBRA.cpp

Input arguments

 const char inf[]: The path of the input file that stores the preference lists to be aggregated.

 const char relf[]: The path of the input file that stores the element relevance judgments.

 const int evpts: the elements in the aggregate list on which the evaluation measures (i.e.

Precision, and nDCG) will be computed.

 const int agg: The selected non-weighted base rank aggregation method (see the

aggregation_method parameter in this document for a list of possible values).

 const char ranstr[]: A string that is embedded in the names of the output files. Used when

FLAGR is compiled as a shared library.

 const char out[]: The file system location where the output file with the aggregate list will

be stored.

 const int wnorm: The voter weights normalization method (see the

weights_normalization parameter in this document for a list of possible values).

 const int dist: The correlation method that is used to measure the distance between an

input list and the temporary aggregate list (see the correlation_method parameter in this

document for a list of possible values).

 const bool prune: Triggers a weight-dependent list pruning mechanism.

 const float gamma: The 𝛾 hyper-parameter.

 const float d1: The 𝛿1 hyper-parameter (applicable when prune=true).

 const float d2: The 𝛿2 hyper-parameter (applicable when prune=true).

 const float tol: Controls the convergence precision. This tolerance threshold represents

the minimum precision of the difference between the voter weight in an iteration and the voter

weight of the previous iteration.

 const int iter: Controls the maximum number of iterations.

 const float pref_t: The preference threshold (applicable when the Outranking Approach

is selected as the non-weighted base method; namely, agg=5300).

 const float veto_t: The veto threshold (applicable when the Outranking Approach is

selected as the non-weighted base method; namely, agg=5300).

 const float conc_t: The concordance threshold (applicable when the Outranking Approach

is selected as the non-weighted base method; namely, agg=5300).

 const float disc_t: The discordance threshold (applicable when the Outranking Approach

is selected as the non-weighted base method; namely, agg=5300).

Description

The input parameters are parsed and stored in a special C structure called UserParams that is defined

in src/InputParams.h. Then, UserParams is passed to the execution driver and the rank aggregation

process starts.

https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h

2.9 Preference Relations weighted method

This function executes the Preference Relations weighted rank aggregation method of Desarkar et al.,

2016. The method is implemented in accordance to the following paper:

 M.S. Desarkar, S. Sarkar, P. Mitra, "Preference relations based unsupervised rank aggregation

for metasearch", Expert Systems with Applications, vol. 49, pp. 86-98, 2016.

The Preference Relations algorithm belongs to the weighted rank aggregation methods. It employs

exploratory analysis to automatically identify the expert voters in an unsupervised fashion. Then, it

assigns higher weights to the voters who were identified as experts, thus boosting the scores of their

submitted elements.

The method constructs a preference relations graph which contains the individual elements as vertices

and their weights as edges.

Function Definitions

void PrefRel(const char inf[], const char relf[], const int evpts, const char
ranstr[], const char out[], const float alpha, const float beta)

and

__declspec(dllexport) void __cdecl PrefRel(const char inf[], const char relf[],
const int evpts, const char ranstr[], const char out[], const float alpha, const
float beta)

Implementation Files

 PrefRel() function: cflagr.cpp and dllflagr.cpp.

 Preference Relations method implementation: src/ram/PrefRel.cpp.

 Helper class MergedItemPair implementation: src/ram/tools/MergedItemPair.cpp.

Input arguments

 const char inf[]: The path of the input file that stores the preference lists to be aggregated.

 const char relf[]: The path of the input file that stores the element relevance judgments.

 const int evpts: the elements in the aggregate list on which the evaluation measures (i.e.

Precision, and nDCG) will be computed.

 const char ranstr[]: A string that is embedded in the names of the output files. Used when

FLAGR is compiled as a shared library.

 const char out[]: The file system location where the output file with the aggregate list will

be stored.

 const float alpha: The 𝛼 hyper-parameter.

 const float beta: The 𝛽 hyper-parameter.

Description

The input parameters are parsed and stored in a special C structure called UserParams that is defined

in src/InputParams.h. Then, UserParams is passed to the execution driver and the rank aggregation

process starts.

https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/PrefRel.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/tools/MergedItemPair.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h

2.10 Agglomerative weighted aggregation

This function executes the Agglomerative weighted rank aggregation method of Chatterjee et al.,

2018. The method is implemented in accordance to the following paper:

 S. Chatterjee, A. Mukhopadhyay, M. Bhattacharyya, "A weighted rank aggregation approach

towards crowd opinion analysis", Knowledge-Based Systems, vol. 149, pp. 47-60, 2018.

The Agglomerative Aggregation algorithm belongs to the weighted rank aggregation methods. It

employs exploratory analysis to automatically identify the expert voters in an unsupervised fashion.

Then, it assigns higher weights to the voters who were identified as experts, thus boosting the scores

of their submitted elements.

This method works very similarly to the well-established agglomerative clustering algorithm.

Specifically, it repeatedly merges the two most similar input lists into a temporary aggregate list.

During list merging, it modifies the weights of the respective voters, thus affecting the future merges.

Function Definitions

void Agglomerative(const char inf[], const char relf[], const int evpts, const
char ranstr[], const char out[], const float c1, const float c2)

and

__declspec(dllexport) void __cdecl Agglomerative(const char inf[], const char
relf[], const int evpts, const char ranstr[], const char out[], const float c1,
const float c2)

Implementation Files

 Agglomerative() function: cflagr.cpp and dllflagr.cpp.

 Agglomerative Aggregation method implementation: src/ram/Agglomerative.cpp.

Input arguments

 const char inf[]: The path of the input file that stores the preference lists to be aggregated.

 const char relf[]: The path of the input file that stores the element relevance judgments.

 const int evpts: the elements in the aggregate list on which the evaluation measures (i.e.

Precision, and nDCG) will be computed.

 const char ranstr[]: A string that is embedded in the names of the output files. Used when

FLAGR is compiled as a shared library.

 const char out[]: The file system location where the output file with the aggregate list will

be stored.

 const float c1: The 𝑐1 hyper-parameter.

 const float c2: The 𝑐2 hyper-parameter.

Description

The input parameters are parsed and stored in a special C structure called UserParams that is defined

in src/InputParams.h. Then, UserParams is passed to the execution driver and the rank aggregation

process starts.

https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/Agglomerative.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h

3. FLAGR API Documentation
In this section the FLAGR library core is presented. The following Figure depicts a block diagram of

the core’s architecture.

In the following subsections, the format of the input and output files is described. Then, the

participating classes of FLAGR are presented. The final Subsection contains a detailed guide on how

custom algorithm implementations can be integrated to FLAGR.

3.1 Input and Output files

Input 1: The file of the input preference lists

FLAGR requires that the input preference lists to be aggregated are stored in a single CSV file,

regardless of the number of the involved topics (queries) or voters (rankers). The columns of this CSV

file must be organized in the following manner:

Query/Topic String, Voter Name, Item Code, Item Score, Algorithm/Dataset

where:

 Query/Topic: the query string or the topic for which the preference list is submitted.

 Voter: the name of the voter, or the ranker who submits the preference list for the specified

Query/Topic.

 Item Code: a unique name that identifies a particular element of the preference list. A voter

cannot submit the same element for the same query/topic two or more times. This means that

each element appears exactly once in each preference list. However, the same element may

appear in lists submitted by other voters.

 Item Score: the preference score assigned to an item by a specific voter. It reflects the

importance (or the relevance, or the weight) of the element. In many cases (e.g., search engine

rankings), the preference scores are unknown. In such cases, the scores can be replaced by the

(reverse) ranking of an item in such a manner that the top rankings receive higher scores than

the ones that have been assigned lower rankings.

 Algorithm/Dataset: A user-defined string that usually represents the origin of a particular

preference list. It may receive any non-blank value.

You may find an example of an input list CSV file here. This example file contains the preference lists

that were submitted by 50 voters for 20 queries. Each input list contains 30 elements. Therefore, the

number of rows in this file is equal to 50·20·30=30000.

Output 1: The file of the aggregate list/s

In this file FLAGR stores the result (output) of the selected rank aggregation method. Namely, the final

lists that derive after the aggregation of the input preference lists. The library creates one aggregate

list per input query/topic. So, if there are 𝑄 input queries, FLAGR generates 𝑄 aggregate lists and

stores them in a CSV file. Each row in the file represents an element of the aggregate list stored in

decreasing score order. The columns are organized as follows:

Query/Topic String, Voter Name, Item Code, Item Score

Input 2: The file of relevant elements (or, the Rels file)

Optionally, the user may provide a second CSV file (we call it Rels file) that contains relevance

judgments for the preference list elements of the primary input file for each query. The Rels file is

employed by the FLAGR's evaluation module to evaluate each created aggregate list. Its columns must

be formatted as follows:

Query/Topic String, 0, Item Code, Relevance Score

where:

 Query/Topic: the query string or the topic for which the list is submitted.

 0: unused. This value must be always 0.

 Item Code: a unique name that identifies a particular element. There cannot be two relevance

judgments for the same element for the same query.

 Relevance Score: An integer value that represents the relevance of the item with respect to

the mentioned Query/Topic. Typically, zero values represent irrelevant and incorrect elements,

negative values represent spam elements; and positive values represent relevant, correct and

informative elements.

You may find an example of an input Rels file here. This example file contains the relevance judgments

for the elements of all preference lists for all queries of the previous input list file. Notice that in case

FLAGR does not find a relevance judgment for an element, then it automatically considers it as irrelevant

(that is, it sets its Relevance Score equal to 0).

Output 2: The evaluation file

As soon as a valid Rels file is provided, the evaluation process takes place automatically. In this case

FLAGR evaluates each aggregate list individually and outputs a second CSV file, where it writes the

results of the evaluation.

https://flagr.site/assets/testdata.csv
https://flagr.site/assets/testdata_qrels.csv
https://flagr.site/assets/testdata.csv

If there are 𝑄 input queries, then 𝑄 aggregate lists are generated and the evaluation file contains 𝑄 +

1 rows. The first 𝑄 rows store the evaluation metrics for each aggregate list, whereas the last row

contains the average values. On the other hand, the columns of the evaluation file depend on the

eval_pts parameter that is set by the user. More specifically, the columns are 6 + 4 ∙ eval_pts:

q, num_ret, num_rel, num_rel_ret, ap, P@1, ..., P@eval_pts, R@1, ...,
R@eval_pts, D@1, ..., D@eval_pts, N@1, ..., N@eval_pts, ram

where:

 q is the query string.

 num_ret is the length (i.e. the number of elements in the) aggregate list.

 num_rel is the total number of relevant elements for this query.

 num_rel_ret is the number of relevant elements included in the aggregate list.

 ap is the Average Precision for a specific aggregate list w.r.t q.

 P@X is the running Precision at the X-th element of the aggregate list.

 R@X is the running Recall at the X-th element of the aggregate list..

 D@X is the running Discounted Cumulative Gain (DCG) at the X-th item of the aggregate list.

 N@X is the running normalized Discounted Cumulative Gain (nDCG) at the X-th item.

 ram is the name of the applied rank aggregation method.

3.2 Aggregator class

The Aggregator class triggers the execution of a rank aggregation algorithm on a collection (array)

of InputLists. Typically, the output of the aggregation process is a single MergedList object.

Implementation files

The Aggregator class is defined in the src/Aggregator.h header file; its member functions are

implemented in src/Aggregator.cpp.

Technical Details

The input_lists member variable stores the input lists to be aggregated. Technically, it is an array

(i.e. double pointer) of InputList objects. The allocated size of this array is equal to

num_alloc_lists, whereas the real number of non-null input lists is num_lists. Naturally, it must

always hold that num_alloc_lists ≥ num_lists.

The rank aggregation process takes places inside a Query object. For this reason, a Query object

contains a pointer to a single Aggregator object (see the respective block diagram).

The aggregate() member function is responsible for executing the rank aggregation procedure. It

accepts an InputParams object that stores the selected rank aggregation method, the hyper-

parameter values and the execution parameters and returns a single MergedList.

3.3 Evaluator class

The Evaluator class evaluates the quality of an aggregate list with respect to a given set of judgments

that determine the relevance of (some, or all) list elements. The set of relevance judgments is stored

in a Rels object. The results of the evaluation (i.e. evaluation measures) are written in a CSV file.

https://github.com/lakritidis/FLAGR/blob/main/src/Aggregator.h
https://github.com/lakritidis/FLAGR/blob/main/src/Aggregator.cpp

Implementation files

The Evaluator class is defined in the src/Evaluator.h header file; its member functions are

implemented in src/Evaluator.cpp.

Technical Details

The evaluation process takes place inside a Query object, provided that a file of relevance judgments

is provided to FLAGR (see more in the article about Input and Output files). For this reason, a Query

object contains a pointer to a single Evaluator object.

The evaluation process is performed by the evaluate() member function. The procedure is based

on the Rels object that contains the aforementioned relevance judgments. Finally, the four following

arrays are created:

 precision: in its 𝑖-th position, it stores the value of the Precision measure at the 𝑖-th element

of the aggregate list.

 recall: in its 𝑖-th position, it stores the value of the Recall measure at the 𝑖-th element of the

aggregate list.

 dcg: in its 𝑖-th position, it stores the value of the Discounted Cumulative Gain (DCG) measure

at the 𝑖-th element of the aggregate list.

 ndcg: in its 𝑖-th position, it stores the value of the normalized Discounted Cumulative Gain

(nDCG) measure at the 𝑖-th element of the aggregate list.

3.4 InputItem class

An InputItem is a single element that is read from the input file. It is a part of an InputList and

possesses three properties:

 A unique string identifier that is used by FLAGR to identify the common elements among all

InputLists,

 Its (integer) ranking in the input preference list, and

 An optional score value that is assigned by the associated voter and justifies its ranking in the

input list. The score data type can be either float, or double; this is determined by the

score_t data type definition in driver.cpp.

Implementation files

The InputItem class is defined in the src/InputItem.h header file; its member functions are

implemented in src/InputItem.cpp.

3.5 InputList class

This class is used to store and represent an input preference list submitted by a voter. It consists of an

array of InputItem objects and it is connected to the voter who submitted it via a pointer that points

to a Voter object.

The input lists are read from the input file by using an InputData object. The entire collection of them

is handled by an Aggregator.

https://github.com/lakritidis/FLAGR/blob/main/src/Evaluator.h
https://github.com/lakritidis/FLAGR/blob/main/src/Evaluator.cpp
https://github.com/lakritidis/FLAGR/blob/main/driver.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/InputItem.h
https://github.com/lakritidis/FLAGR/blob/main/src/InputItem.cpp

Implementation files

The InputList class is defined in the src/InputList.h header file; its member functions are

implemented in src/InputList.cpp.

Technical Details

The actual number of elements in an InputList is num_items; the allocated memory is

num_alloc_items. Naturally it derives that num_alloc_items must always be greater than, or equal

to num_items.

3.6 InputParams class

The InputParams class stores options and execution parameters that have been passed to FLAGR by

the user. These parameters concern input and output file locations, rank aggregation methods,

algorithm hyper-parameters, etc. See the table below for a complete list of the supported parameters

and their respective valid values.

This object is passed as an argument to multiple functions of FLAGR including the implementations

of the rank aggregation methods. This is how these implementations get access to the user-defined

hyper-parameters.

Implementation files

The InputParams class is defined in the src/InputParams.h header file; its member functions are

implemented in src/InputParams.cpp.

Details

The supported parameters include:

Parameter
Data

Type
Description

input_file
String

(ASCII)

The path of the input CSV file that contains the preference

lists to be aggregated.

rels_file
String

(ASCII)

The path of the optional CSV file that contains the relevance

judgments of the input list elements. If set, it automatically

triggers the evaluation process of the generated aggregate

list. Otherwise, no evaluation takes place.

output_file
String

(ASCII)

The file system location where the output file with the

aggregate list will be stored. If left empty, the default OS

temp directory is used.

eval_file
String

(ASCII)

The file system location where the output file with the

evaluation of the aggregate list will be stored. If left empty,

the default OS temp directory is used.

random_string
String

(ASCII)

A string that is embedded in the names of the output files.

Used when FLAGR is compiled as a shared library.

https://github.com/lakritidis/FLAGR/blob/main/src/InputList.h
https://github.com/lakritidis/FLAGR/blob/main/src/InputList.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.h
https://github.com/lakritidis/FLAGR/blob/main/src/InputParams.cpp

aggregation_method Integer

Determines the algorithm that will be used to perform rank

aggregation. The valid values are:

100: for CombSUM with Borda normalization

101: for CombSUM with Rank normalization

102: for CombSUM with Score normalization

103: for CombSUM with Z-Score normalization

104: for CombSUM with Simple Borda normalization

110: for CombMNZ with Borda normalization

111: for CombMNZ with Rank normalization

112: for CombMNZ with Score normalization

113: for CombMNZ with Z-Score normalization

114: for CombMNZ with Simple Borda normalization

200: for the Condorcet Winners method

201: for the Copeland Winners method

300: for the Outranking Approach

400: for Kemeny optimal aggregation

401: for Robust Rank Aggregation (RRA)

5100: for DIBRA with CombSUM and Borda Normalization

5101: for DIBRA with CombSUM and Rank Normalization

5102: for DIBRA with CombSUM and Score Normalization

5103: for DIBRA with CombSUM and Z-Score Normalization

5104: for DIBRA CombSUM and Simple Borda Normalization

5110: for DIBRA with CombMNZ and Borda Normalization

5111: for DIBRA with CombMNZ and Rank Normalization

5112: for DIBRA with CombMNZ and Score Normalization

5113: for DIBRA with CombMNZ and Z-Score Normalization

5114: for DIBRA CombMNZ and Simple Borda Normalization

5200: for DIBRA with the Condorcet Winners method

5201: for DIBRA with the Copeland Winners method

5300: for DIBRA with the Outranking Approach

600: for the Preference Relations Method

700: for the Agglomerative Aggregation Method

801: for Markov Chains 1 (MC1)

802: for Markov Chains 2 (MC2)

803: for Markov Chains 3 (MC3)

804: for Markov Chains 4 (MC4)

805: for MCT

correlation_method Integer

The correlation method that is used to measure the distance

between an input list and the temporary aggregate list. The

valid values are:

1: for the Spearman's ρ correlation coefficient.

2: for the scaled variant of Spearman's Footrule distance.

3: for Cosine similarity of the lists' vector representations.

5: for the Kendall's τ correlation coefficient.

weights_normalization Integer

The voter weights normalization method. Used when the

DIBRA algorithm is selected. The valid values are:

1: for no voter weight normalization.

2: for normalizing the voter weights with min-max scaling.

3: for z-normalizing the voter weights.

max_iterations Integer

This parameter controls the maximum number of iterations.

FLAGR will stop the execution of DIBRA if the requested

number of iterations have been performed, even if the voter

weights have not fully converged.

max_list_items Integer Limits the length of the input preference lists.

eval_points Integer

Determines the elements in the aggregate list on which the

evaluation measures (i.e. Precision, and nDCG) will be

computed. For example, for eval_pts=10 FLAGR will

compute 𝑃@1, 𝑃@2, . . . , 𝑃@10 and 𝑁@1, 𝑁@2, . . . , 𝑁@10.

list_pruning Boolean
Triggers a weight-dependent list pruning mechanism. Used

in combination with the DIBRA weighted method only.

convergence_precision
Float or

Double

Controls the convergence precision. This tolerance threshold

represents the minimum precision of the difference between

the voter weight in an iteration and the voter weight of the

previous iteration. Used in combination with the DIBRA

weighted method only.

alpha
Float or

Double
The 𝛼 hyper-parameter of the Preference Relations method.

beta
Float or

Double
The 𝛽 hyper-parameter of the Preference Relations method.

gamma
Float or

Double
The 𝛾 hyper-parameter of DIBRA.

c1
Float or

Double

The 𝑐1 hyper-parameter of the Agglomerative Aggregation

method.

c2
Float or

Double

The 𝑐2 hyper-parameter of the Agglomerative Aggregation

method.

pref_thr
Float or

Double

The preference threshold of the Outranking Approach. It

takes values in the range [0,1].

veto_thr
Float or

Double

The veto threshold of the Outranking Approach. It takes

values in the range [0,1].

conc_thr
Float or

Double

The concordance threshold of the Outranking Approach. It

takes values in the range [0,1].

disc_thr
Float or

Double

The discordance threshold of the Outranking Approach. It

takes values in the range [0,1].

3.7 InputData class

This class is responsible for reading and parsing the input data file/s. For the moment, FLAGR accepts

only CSV-formatted input files.

Implementation files

The InputData class is defined in the src/input/InputData.h header file; its member functions are

implemented in src/input/InputData.cpp and src/input/InputDataCSV.cpp.

Input list files

Detailed information about how the input files must be formatted can be found here.

Also notice that FLAGR is designed to accept data directly from RASDaGen, a synthetic dataset

generator for rank aggregation problems.

Technical Details

The role of InputData is broader and it is not limited to just reading the input files. More specifically,

during the input file parsing process, one or more Query objects are constructed. In the sequel, inside

each Query the corresponding Aggregator and Evaluator objects are created to initialize and

evaluate the aggregation process.

There is also a pointer called params that connects InputData with InputParams. In this manner,

InputData is able to subsequently pass user-defined algorithm hyper-parameters and several other

execution parameters to the rest of the application components.

3.8 MergedItem class

A MergedItem is an element of an aggregate MergedList. The class derives from InputItem and

inherits all its member variables and functions.

Implementation files

The MergedItem class is defined in the src/MergedItem.h header file; its member functions are

implemented in src/MergedItem.cpp.

Technical Details

MergedItem maintains an array of Ranking objects that store the individual rankings (and scores) of

the element in each preference InputList. Notice that the number of elements of this array

(num_alloc_rankings) is always equal to the number of the input preference lists. In case the

associated InputItem has not been ranked by a preference list (i.e. it is not included in the list), then

its corresponding ranking in the Rankings array is set equal to NOT_RANKED_ITEM_RANK (defined in

driver.cpp). The actual number of the input preference lists that include a particular MergedItem is

stored in the num_rankings member variable. This approach consumes more memory, but enables

𝑂(1) constant search times of the ranking of a particular item on a particular InputList.

The class also includes a self-class next pointer that points to another MergedItem object. This allows

the storage of a collection of MergedItems in dynamic data structures, e.g. linked lists. Such structures

are employed in MergedList, where MergedItems are stored in a hash table with linked lists as chains.

https://github.com/lakritidis/FLAGR/blob/main/src/input/InputData.h
https://github.com/lakritidis/FLAGR/blob/main/src/input/InputData.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/input/InputDataCSV.cpp
https://github.com/lakritidis/RASDaGen
https://github.com/lakritidis/FLAGR/blob/main/src/MergedItem.h
https://github.com/lakritidis/FLAGR/blob/main/src/MergedItem.cpp
https://github.com/lakritidis/FLAGR/blob/main/driver.cpp

3.9 MergedList class

The result of the rank aggregation process is an aggregate list that is stored in a MergedList object.

MergedList contains a collection of MergedItems, typically sorted in decreasing score order. The

score is assigned by a rank aggregation method.

Regarding the evaluation, the generated aggregate list is fed to the evaluate() function of an

Evaluator. The results are written in a CSV file according to this document.

Implementation files

The MergedList class is defined in the src/MergedList.h header file; its member functions are

implemented in src/MergedList.cpp. The implementations of the supported rank aggregation

methods are stored in the /ram directory. More specifically:

 src/ram/Agglomerative.cpp implements the Agglomerative Aggregation method of

Chatterjee et al., 2018.

 src/ram/CombMNZ.cpp implements the CombMNZ linear combination methods as they are

described in the paper of Renda et al., 2003.

 src/ram/CombSUM.cpp implements the CombSUM linear combination methods (including

Borda Count) as they are described in the paper of Renda et al., 2003.

 src/ram/CondorcetWinners.cpp implements one of the oldest approaches to rank

aggregation, the Condorcet criterion method.

 src/ram/CopelandWinners.cpp implements the method of Copeland Winners which is a

variant of the Condorcet Winners method.

 src/ram/CustomMethods.cpp contains two sample functions that facilitate the integration of

custom rank aggregation methods.

 src/ram/DIBRA.cpp implements the Iterative Distance-Based Weighted method of Akritidis

et al., 2022.

 src/ram/KemenyOptimal.cpp contains the brute force implementation of Kemeny optimal

aggregation.

 src/ram/MC.cpp implements the four Markov Chains method of Dwork et al., 2001 and the

MCT method of DeConde et al., 2006.

 src/ram/OutrankingApproach.cpp implements the Outranking Approach of Farah and

Vanderpooten, 2007.

 src/ram/PrefRel.cpp implements the Preference Relations Weighted method of Desarkar

et al., 2016.

 src/ram/RobustRA.cpp implements the Robust Rank Aggregation method (RRA) of Kolde et

al., 2012.

For more details, please visit the Publications section, or follow the links in the Introduction section. A

guide on how custom rank aggregation implementations can be integrated to FLAGR is given here.

Technical Details

The elements of MergedList are organized in two ways. More specifically:

https://github.com/lakritidis/FLAGR/blob/main/src/MergedList.h
https://github.com/lakritidis/FLAGR/blob/main/src/MergedList.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/Agglomerative.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/CombMNZ.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/CombSUM.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/CondorcetWinners.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/CopelandWinners.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/CustomMethods.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/DIBRA.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/KemenyOptimal.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/MC.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/OutrankingApproach.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/PrefRel.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/RobustRA.cpp

 A hash table (hash_table member variable) with linked lists as chains (for collision resolution)

is employed to support fast fusion of the individual InputLists. The contents of this hash

table are MergedItem objects; the search keys are the unique identifiers of the associated

InputItems (MergedItem inherits the members of InputItem).

 A typical array of MergedItem pointers (item_list member variable) that is used to sort the

objects in decreasing score order.

3.10 Query class

A Query represents a topic for which a set of voters or rankers submit their preference lists. For

example, a Query may be a simple question like "who is the best football player for 2022?", or a more

complex structure like a sequence of genes.

Implementation files

The Query class is defined in the src/Query.h header file; its member functions are implemented in

src/Query.cpp.

Technical Details

The role of this object is central in the entire rank aggregation process, since it connects the input

preference lists and the output aggregate list. In particular, a Query is connected to:

 an Aggregator that triggers the execution of a rank aggregation algorithm on the collection

of the InputLists, and

 an Evaluator the evaluates the quality of the generated aggregate list with respect to a set

of relevance judgments.

3.11 Ranking class

This is a simple class that stores the ranking information of a MergedItem in a particular input

preference list. An array of Ranking objects is maintained inside each MergedItem.

Implementation files

The Ranking class is defined in the src/Ranking.h header file; its member functions are

implemented in src/Ranking.cpp.

Technical Details

A Ranking class comprises three members:

 A pointer to the corresponding preference InputList,

 The (integer) ranking in the preference InputList, and

 The score value that is assigned by the voter to this element. The score data type can be either

float, or double; this is determined by the score_t data type definition in driver.cpp.

https://github.com/lakritidis/FLAGR/blob/main/src/Query.h
https://github.com/lakritidis/FLAGR/blob/main/src/Query.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/Ranking.h
https://github.com/lakritidis/FLAGR/blob/main/src/Ranking.cpp
https://github.com/lakritidis/FLAGR/blob/main/driver.cpp
https://github.com/lakritidis/FLAGR/blob/main/driver.cpp

3.12 Rel class

A Rel object contains a relevance judgement about a list element. It is read from a special input CSV

file and it is used by an Evaluator to compute several evaluation measures about the generated

aggregate list.

A Rel object is a member of a Rels collection, which in turn is referenced by an Evaluator.

Implementation files

The Rel class is defined in the src/Rel.h header file; its member functions are implemented in

src/Rel.cpp.

Technical Details

The Rel class consists of the following member variables:

 a string that represents the unique identifier of a MergedItem,

 an integer relevance judgment. The higher the value of this variable, the more

relevant/important the item is considered.

 a next pointer to another Rel object that allows the creation of dynamic data structures (e.g.

linked lists of Rel objects, etc.).

3.13 Rels class

Rels contains the relevance judgements that are required by the Evaluator in order to evaluate the

quality of the generated aggregate list.

The relevance judgments are provided as an input to the library via a special CSV file.

Implementation files

The Rels class is defined in the src/Rels.h header file; its member functions are implemented in

src/Rels.cpp.

Technical Details

Notice that the Evaluator contains a pointer to a Rels object. In this way, the Evaluator can quickly

access the required relevance judgments during the evaluation procedure.

The Rels object is implemented as a standard hash table with the string item identifiers being its

search key. The hash values are computed by the hash function of Daniel J. Bernstein, whereas the

collisions are resolved by using chains in the form of linked lists.

3.14 SimpleScoreStats class

SimpleScoreStats is a very simple class that stores several score statistics. In the current FLAGR

implementations, it is used exclusively for storing statistical information about the generated

aggregate lists. More specifically, the minimum, maximum, and mean score values are stored there,

including their standard deviation.

https://github.com/lakritidis/FLAGR/blob/main/src/Rel.h
https://github.com/lakritidis/FLAGR/blob/main/src/Rel.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/Rels.h
https://github.com/lakritidis/FLAGR/blob/main/src/Rels.cpp
https://gist.github.com/MohamedTaha98/ccdf734f13299efb73ff0b12f7ce429f

Implementation files

The SimpleScoreStats class is defined in the src/SimpleScoreStats.h header file; its member

functions are implemented in src/SimpleScoreStats.cpp.

3.15 Voter class

A voter (also called ranker, or source), submits preferences for one or more topics (queries) in the

form of a ranked preference list. The preference lists of all voters are subsequently aggregated by a

rank aggregation method in order to generate a single consensus ranking. In FLAGR, a Voter submits

a single InputList for each Query.

A Voter object possesses two properties:

 A unique string identifier that represents the voter's name, and

 A weight value that reflects the importance (degree of expertise) of the voter for a particular

query. Non-weighted rank aggregation methods consider that all voters are equivalent.

Therefore, their lists are processed in an identical manner. In contrast, the weighted methods

apply unsupervised learning techniques and exploratory analysis to automatically determine

the significance of each voter. The weight data type can be either float, or double; this is

determined by the score_t data type definition in driver.cpp.

Implementation files

The Voter class is defined in the src/Voter.h header file; its member functions are implemented in

src/Voter.cpp.

3.16 Integrating custom methods

This step-by-step guide describes how custom rank aggregation methods can be implemented and

integrated into FLAGR. If you intend to implement fewer than three methods, then several of the steps

below are already implemented in FLAGR. For three or more custom methods, additional actions must

be performed.

Implementing your own method/s

Custom methods must be implemented as C++ functions in the src/ram/CustomMethods.cpp file.

This file already contains two such functions: CustomMethod1() and CustomMethod2(). In case you

desire to implement more methods (e.g., CustomMethod3(), etc.), then you must implement them

similarly in that file.

Typically, a rank aggregation method assigns scores to the list elements and then, it sorts the elements

in either increasing, or decreasing score order. For this reason, the last step in your implementation

must be the sorting of the elements of MergedList. Observe that CustomMethod1() and

CustomMethod2() contain a call to qsort (QuickSort) in order to perform the required sorting.

Each algorithm implementation (including the built-in ones) takes three arguments:

https://github.com/lakritidis/FLAGR/blob/main/src/SimpleScoreStats.h
https://github.com/lakritidis/FLAGR/blob/main/src/SimpleScoreStats.cpp
https://github.com/lakritidis/FLAGR/blob/main/driver.cpp
https://github.com/lakritidis/FLAGR/blob/main/driver.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/Voter.h
https://github.com/lakritidis/FLAGR/blob/main/src/Voter.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/ram/CustomMethods.cpp

 An array of the input preference lists (class InputList ** inlists). Most rank aggregation

methods do not require access to this array, since when the function is called, the input lists

have already been merged in the MergedList object. However, several methods require the

computation of list distances (e.g. DIBRA, Agglomerative) and the inlists pointer provides

access to this array.

 A pointer to a SimpleScoreStats object in case you desire to store score statistics (max, min,

mean, etc.).

 A pointer to the InputParams object that contains the user-defined input parameters.

The following code example demonstrates an iteration through the elements of the aggregate list.

For each element q, an iteration through its individual rankings in each input preference list is

performed:

void MergedList::CustomMethod1 (class InputList ** inlists, class
SimpleScoreStats * s, class InputParams * prms) {

 class MergedItem * q;

 class Ranking * r;

 for (rank_t i = 0; i < this->num_nodes; i++) {

 /// q stores an element of the aggregate list

 q = this->item_list[i];

 /// Iterate through the individual rankings of q

 for (uint32_t j = 0; j < q->get_num_alloc_rankings(); j++) {

 r = q->get_ranking(j);

 /// Do something with q and r

 }

 }

 /// Sort the list elements in decreasing score order

 qsort(this->item_list, this->num_nodes, sizeof(class MergedItem *),

 &MergedList::cmp_score_desc);

}

Calling the new method/s

The implementation of the new methods can be immediately used, provided that you have not

changed the names of the functions CustomMethod1() and CustomMethod2(). In this case, the

following piece of code inside the main() function in main.cpp the new implementations:

/// Execution of CustomMethod1

Custom1(input_file, qrels_file, 20, "Custom1", output_dir);

/// Execution of CustomMethod2

Custom2(input_file, qrels_file, 20, "Custom2", output_dir);

https://github.com/lakritidis/FLAGR/blob/main/main.cpp

If you change the aforementioned function names, or you create a new function for a new algorithm

implementation, then a sequence of actions must be taken so that it becomes available for usage.

More specifically:

 The user must determine an integer identifier for the algorithm. To avoid conflicts with the

built-in methods of FLAGR, it is advised that the leading digit of the identifier is 9 (e.g., 900).

 The user must update the aggregate() function of the Aggregator to allow the execution of

the custom method. More specifically, the if statement must be appropriately extended.

 An exposed C function must be written in both cflagr.cpp and dllflagr.cpp with the aim

of including the custom implementation in a shared/dynamic link library. The function can be

called in the main() function of main.cpp.

Additional details for custom method implementations

1. A custom rank aggregation method must be declared as a public member function of the

MergedList class. This is performed in the class descriptor, in the src/MergedList.h header file.

CustomMethod1() and CustomMethod2() are already public members of MergedList.

2. The required cpp file that contains the implementation of the member function must be stored in

the src/ram directory.

3. Then, the cpp file is imported in the project with an include statement in src/MergedList.cpp.

https://github.com/lakritidis/FLAGR/blob/main/cflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/dllflagr.cpp
https://github.com/lakritidis/FLAGR/blob/main/main.cpp
https://github.com/lakritidis/FLAGR/blob/main/src/MergedList.h
https://github.com/lakritidis/FLAGR/tree/main/src/ram
https://github.com/lakritidis/FLAGR/blob/main/src/MergedList.cpp

4. PyFLAGR API Documentation
PyFLAGR is a Python library built on top of FLAGR. It includes a driver module called RAM that links to

the FLAGR shared library and provides access to the algorithm implementations. Then, a set of classes

inherit from RAM and allow the end user to execute the selected algorithm.

4.1 Introduction

PyFLAGR is a Python library built on top of FLAGR. It provides easy access to the algorithm

implementations of FLAGR from standard Python programs. PyFLAGR has been designed with

simplicity in mind: with only a few lines of code the programmer may efficiently execute complex rank

aggregation methods and get the results in a Pandas Dataframe.

From a technical perspective, PyFLAGR links to the FLAGR shared/dynamic link library and makes use

of its reference functions (namely, its exposed C functions) to pass the user-defined parameters and

perform rank aggregation. In the sequel, it simply reads the output files that are produced by FLAGR

and stores their contents in Pandas Dataframes. The Dataframes are then returned to the user.

PyFLAGR consists of the following modules:

 RAM: It implements the RAM base class that is responsible for several functional procedures like

the library I/O, the linkage and loading of the FLAGR shared library, Dataframe handling, and

so on. All the other classes of PyFLAGR derive from this class.

 Linear: It includes several classes that execute linear combination rank aggregation methods

(CombSUM, CombMNZ, Borda Count).

 Majoritarian: It includes several classes that execute majoritarian rank aggregation methods

(Condorcet Winners, Copeland Winners, Outranking Approach of Farah and Vanderpooten,

2007).

 MarkovChains: It executes the algorithms which are based on Markov Chains (MC1, MC2,

MC3, MC4, see Dwork et al., 2001).

 Weighted: It executes the rank aggregation methods that automatically determine the voter

weights in an unsupervised learning fashion (Preference Relations Method of Desarkar et al.,

2016, Agglomerative Aggregation method of Chatterjee et al., 2018, Iterative Distance-based

method of Akritidis et al., 2022).

 Kemeny: It executes Kemeny optimal aggregation (brute force, NP-Hard implementation).

 RRA: It executes the Robust Rank Aggregation (RRA) method of Kolde et al., 2012.

Please refer to the Publications section for more information about the relevant papers.

4.2 Installation

PyFLAGR can be installed directly by using pip:

pip install pyflagr

Alternatively, PyFLAGR can be installed from the sources by navigating to the directory where

setup.py resides:

pip install /path/to/setup.py

4.3 RAM module

The RAM module implements a driver base class also named RAM. The RAM base class performs several

important functional procedures, including PyFLAGR I/O, linkage and loading of the FLAGR shared

library, I/O Dataframe handling, and so on. The majority of the other classes of PyFLAGR derive from

this class and inherit its members and properties.

The class constructor takes as argument the eval_pts parameter that determines the elements in the

aggregate list on which the evaluation measures (i.e., Precision, and nDCG) will be computed. The

most important operation of the constructor is the loading of the FLAGR shared library, according to

the underlying operating system. Therefore, if PyFLAGR is executed on a Linux-based system, then

pyflagr/pyflagr/flagr.so is loaded. Similarly, if PyFLAGR is executed on a Windows-based

system, then pyflagr/pyflagr/flagr.dll is loaded. For the time being, FLAGR has not been tested

on MacOS-based systems and no pre-compiled shared libraries exist for this platform.

The successful loading of the FLAGR shared/dynamic link library creates the flagr_lib connection

handler. flagr_lib acts as a connector between PyFLAGR and FLAGR, making the exposed C

functions of FLAGR accessible from RAM and its derived classes.

Other member functions include check_get_input() and check_get_rels_input(). These two

functions perform several sanity checks on the provided input files. On the other hand, the role of

get_output() is to read the output files created by FLAGR and load their content into two Pandas

Dataframes. These two Dataframes are eventually returned to the user.

Implementation file

pyflagr/pyflagr/RAM.py

https://github.com/lakritidis/FLAGR/blob/main/pyflagr/pyflagr/flagr.so
https://github.com/lakritidis/FLAGR/blob/main/pyflagr/pyflagr/flagr.dll
https://github.com/lakritidis/FLAGR/blob/main/pyflagr/pyflagr/RAM.py

4.4 Linear module

The Linear module provides access to the implementations of the linear combination methods of

FLAGR. In these methods, the score of each element is computed by summing up the partial scores

of that element with respect to its rankings in each input preference list. The module includes four

classes which are described below: CombSUM, CombMNZ, BordaCount and SimpleBordaCount.

Implementation file

pyflagr/pyflagr/Linear.py

The CombSUM and CombMNZ Python classes

Both classes derive from RAM, a base class defined in the RAM module. They inherit the flagr_lib

connector from RAM, and through it, they obtain access to the FLAGR shared library. Their constructors

are identical and determine the data types of the input arguments and the return type of the Linear()

exposed function. Observe the similarity between the members of

self.flagr_lib.Linear.argtypes and the input arguments of the Linear() exposed function.

The arguments of the constructors of CombSUM and CombMNZ include:

Parameter Type Default Description

eval_pts

Integer, Optional.

Considered only if

rels_file or

rels_df is set.

10

Determines the elements in the aggregate list on which

the evaluation measures (i.e., Precision, and nDCG) will

be computed. For example, for eval_pts=10 FLAGR will

compute Average Precision, 𝑃@1, 𝑃@2, . . . 𝑃@10 and

𝑁@1, 𝑁@2, . . . 𝑁@10.

norm String, Optional. borda

Rank or score normalization methods.

 borda: The aggregation is performed by normalizing

the element rankings according to the Borda

normalization method.

 rank: The aggregation is performed by normalizing

the element rankings according to the Rank

normalization method.

 score: The aggregation is performed by normalizing

the element scores according to the Score

normalization method.

 z-score: The aggregation is performed by

normalizing the element scores according to the Z-

Score normalization method.

 simple-borda: Similar to borda normalization but

no partial score is assigned to an element if it is not

ranked by a voter.

CombSUM and CombMNZ also include an aggregate() function that receives the user-defined input

parameters and passes them to the Linear() exposed C function, that subsequently performs the

aggregation of the ranked input preference lists. The arguments of the aggregate() function include

the following:

https://github.com/lakritidis/FLAGR/blob/main/pyflagr/pyflagr/Linear.py

Parameter Type Default Description

input_file

String Required,

unless input_df is

set.

Empty

String

A CSV file that contains the input lists to be

aggregated.

input_df

Pandas DataFrame

- Required, unless

input_file is set.

None

A Pandas DataFrame that contains the input lists to

be aggregated.

Note: If both input_file and input_df are set,

only the former is used; the latter is ignored.

rels_file String, Optional.
Empty

String

A CSV file that contains the relevance judgements

of the involved list elements. If such a file is passed,

FLAGR will evaluate the generated aggregate list(s)

by computing several retrieval effectiveness

evaluation measures. The results of the evaluation

will be stored in the eval_df DataFrame.

Otherwise, no evaluation will take place and

eval_df will be empty.

rels_df
Pandas DataFrame,

Optional.
None

A Pandas DataFrame that contains the relevance

judgements of the involved list elements. If such a

dataframe is passed, FLAGR will evaluate the

generated aggregate list(s) by computing several

retrieval effectiveness evaluation measures. The

results of the evaluation will be stored in the

eval_df DataFrame. Otherwise, no evaluation will

take place and eval_df will be empty.

Note: If both rels_file and rels_df are set, only

the former is used; the latter is ignored.

output_dir String, Optional.

Temporary

directory

(OS-

specific)

The directory where the output files (aggregate

lists and evaluation) will be stored. If it is not set,

the default location will be used.

The BordaCount and SimpleBordaCount Python classes

These two classes have been included in PyFLAGR for historical reasons. They are equivalent to the

CombSUM linear combination method with norm='borda' and norm='simple-borda'

normalization methods, respectively.

BordaCount and SimpleBordaCount derive from CombSUM (which in turn derives from RAM). They do

not have an aggregate() method, so they both call the same aggregate() function of CombSUM.

Their only difference lies in their constructors: The former initializes CombSUM with norm='borda',

whereas the latter with norm='simple-borda'.

4.5 Majoritarian module

The Majoritarian module provides access to the implementations of the majoritarian rank aggregation

methods of FLAGR. These methods are based on the majority criterion that, under several

circumstances, identify the “winning” elements. The module includes three classes which are described

below: CondorcetWinners, CopelandWinners and OutrankingApproach. Each method implements

different scenarios for the majority criterion.

Implementation file

pyflagr/pyflagr/Majoritarian.py

The CondorcetWinners and CopelandWinners Python classes

Both classes derive from RAM, a base class defined in the RAM module. They inherit the flagr_lib

connector from RAM, and through it, they obtain access to the respective exposed functions of FLAGR.

The constructor of CondorcetWinners determines the data types of the input arguments and the

return type of the Condorcet() exposed function. Similarly, the constructor of CopelandWinners

determines the data types of the input arguments and the return type of the Copeland() exposed

function. Both constructors accept just one argument:

Parameter Type Default Description

eval_pts

Integer, Optional.

Considered only if

rels_file or

rels_df is set.

10

Determines the elements in the aggregate list on which

the evaluation measures (i.e., Precision, and nDCG) will

be computed. For example, for eval_pts=10 FLAGR will

compute Average Precision, 𝑃@1, 𝑃@2, . . . 𝑃@10 and

𝑁@1, 𝑁@2, . . . 𝑁@10.

CondorcetWinners and CopelandWinners also include an aggregate() function that receives the

user-defined parameters and passes them to the Condorcet() and Copeland() exposed functions

respectively. The arguments of the aggregate() function are identical to those of the CombSUM and

CombMNZ classes (refer to the respective table of Subsection 4.4).

The OutrankingApproach Python class

This class can be used to execute the Outranking Approach of Farah and Vanderpooten, 2007. Similarly

to the other majoritarian methods, OutrankingApproach derives from RAM, a base class defined in

the RAM module. It also inherits the flagr_lib connector from RAM and obtains access to the

OutrankingApproach() exposed function of FLAGR.

The constructor of OutrankingApproach determines the data types of the input arguments and the

return type of the OutrankingApproach() exposed function. Observe the similarity between the

members of self.flagr_lib.OutrankingApproach.argtypes and the input arguments of the

OutrankingApproach() exposed function.

https://github.com/lakritidis/FLAGR/blob/main/pyflagr/pyflagr/Majoritarian.py

Parameter Type Default Description

eval_pts

Integer, Optional.

Considered only if

rels_file or

rels_df is set.

10

Determines the elements in the aggregate list on

which the evaluation measures (i.e., Precision, and

nDCG) will be computed. For example, for

eval_pts=10 FLAGR will compute Average Precision,

𝑃@1, 𝑃@2, . . . 𝑃@10 and 𝑁@1, 𝑁@2, . . . 𝑁@10.

preference
Hyper-parameter,

Float, Optional.
0.00 The value of the preference threshold.

veto
Hyper-parameter,

Float, Optional.
0.75 The value of the veto threshold.

concordance
Hyper-parameter,

Float, Optional.
0.00 The value of the concordance threshold.

discordance
Hyper-parameter,

Float, Optional.
0.25 The value of the discordance threshold.

OutrankingApproach includes an aggregate() function that receives the user-defined parameters

and passes them to the OutrankingApproach() exposed function. The arguments of the

aggregate() function are identical to those of the CombSUM and CombMNZ classes (refer to the

respective table of Subsection 4.4).

4.6 MarkovChains module

The MarkovChains module provides access to the implementations of the Markov Chains methods

of Dwork et al., 2001 and DeConde et al., 2006. It includes the MC driver class, and five small derived

classes (namely, MC1, MC2, MC3, MC4 and MCT) that can be employed by the user to execute the

corresponding methods.

Implementation file

pyflagr/pyflagr/MarkovChains.py

The MC base class

This is the driver class of the module. Its direct usage is weakly discouraged. The users should prefer

employing the 5 classes that derive from MC (see below) and indirectly trigger the corresponding

algorithm implementations of FLAGR.

Similarly to the other PyFLAGR classes, MC derives from RAM, another base class that is defined in the

RAM module. It inherits the flagr_lib connector from RAM, and through it, it obtains access to the

FLAGR shared library. Its constructor determines the data types of the input arguments and the return

type of the FLAGR's MC() exposed function. Observe the similarity between the members of

self.flagr_lib.MC.argtypes and the input arguments of the MC() exposed function.

The constructor of MC takes the following arguments:

https://github.com/lakritidis/FLAGR/blob/main/pyflagr/pyflagr/MarkovChains.py

Parameter Type Default Description

eval_pts

Integer, Optional.

Considered only if

rels_file or

rels_df is set.

10

Determines the elements in the aggregate list on

which the evaluation measures (i.e., Precision, and

nDCG) will be computed. For example, for

eval_pts=10 FLAGR will compute Average

Precision, 𝑃@1, 𝑃@2, . . . 𝑃@10 and

𝑁@1, 𝑁@2, . . . 𝑁@10.

ergodic_number Float, Optional. 0.15

The ergodic number, used during the computation

of the ergodic transition matrix from the

normalized transition matrix.

max_iterations Integer, Optional. 100
The maximum number of iterations for the

computation of the state matrix.

chain Integer, Optional. 804

The Markov Chain method to execute. The

possible values include:

 801: Markov Chains Method 1 (MC1).

 802: Markov Chains Method 2 (MC2).

 803: Markov Chains Method 3 (MC3).

 804: Markov Chains Method 4 (MC4).

 805: Markov Chains Thurstone Method (MCT).

MC includes an aggregate() function that receives the user-defined parameters and passes them to

the MC() exposed function, that subsequently performs the aggregation of the ranked input

preference lists. The arguments of the aggregate() function are identical to those of the CombSUM

and CombMNZ classes (refer to the respective table of Subsection 4.4).

The MC1, MC2, MC3, MC4 and MCT derived classes

These classes derive from the aforementioned MC base class; as children of MC, they also inherit from

the RAM class. Each of these classes triggers the execution of a different Markov Chain algorithm,

simply by passing different parameters to the constructor MC. Hence, MC1 sets chain=801, MC2 sets

chain=802, and so on.

Also notice that notice that none of these classes have an aggregate() function. Consequently, the

aggregate() of the base class (i.e. MC) is executed when the end user invokes that function.

4.7 Weighted module

The Weighted module provides access to the implementations of the weighted methods of FLAGR.

Most rank aggregation approaches treat all input preference lists equally. In contrast, the weighted

methods employ exploratory analysis techniques to automatically identify the expert voters in an

unsupervised fashion. In the sequel, they assign higher weights to those who were identified as

experts, thus boosting the scores of their submitted elements. The module in question includes three

classes: DIBRA, Agglomerative and PreferenceRelationsGraph.

Implementation file

pyflagr/pyflagr/Weighted.py

Distance-Based Iterative Rank Aggregation: The DIBRA Python class

This class links to the FLAGR implementation of the weighted method of Akritidis et al., 2022. It derives

from RAM, a base class defined in the RAM module. It inherits the flagr_lib connector from RAM and

through it, it obtains access to the FLAGR shared library. Its constructor determines the data types of

the input arguments and the return type of the DIBRA() exposed function. Observe the similarity

between the members of self.flagr_lib.DIBRA.argtypes and the input arguments of the

DIBRA() exposed function.

The algorithm initially employs a standard non-weighted method to generate a starting consensus

list. Then, it iteratively assigns converging weights to the voters according to the distances of their

submitted lists with this consensus list. Therefore, the DIBRA constructor takes as arguments all the

possible hyper-parameters of the supported non-weighted methods. Specifically:

Parameter Type Default Description

eval_pts

Integer, Optional.

Considered only if

rels_file or

rels_df is set.

10

Determines the elements in the aggregate list on

which the evaluation measures (i.e., Precision,

and nDCG) will be computed. For example, for

eval_pts=10 FLAGR will compute Average

Precision, 𝑃@1, 𝑃@2, . . . 𝑃@10 and

𝑁@1, 𝑁@2, . . . 𝑁@10.

aggregator
Hyper-parameter,

String, Optional.

combsum:bor
da

The selected non-weighted method that does

the initial aggregation. Possible values include:

 combsum:borda: CombSUM with Borda

normalization.

 combsum:rank: CombSUM with Rank

normalization.

 combsum:score: CombSUM with minmax

score normalization.

 combsum:z-score: CombSUM with Z-score

normalization.

 combsum:simple-borda: CombSUM with

simple Borda normalization.

 combmnz:borda: CombMNZ with Borda

normalization.

 combmnz:rank: CombMNZ with Rank

normalization.

 combmnz:score: CombMNZ with minmax

score normalization.

 combmnz:z-score: CombMNZ with Z-score

normalization.

https://github.com/lakritidis/FLAGR/blob/main/pyflagr/pyflagr/Weighted.py

 combmnz:simple-borda: CombMNZ with

simple Borda normalization.

 condorcet: Condorcet Winners.

 copeland: Copeland Winners.

 outrank: Outranking Approach.

w_norm
Hyper-parameter,

String, Optional.
minmax

The voter weights normalization method.

Possible values include:

 none: no weight normalization takes place.

 minmax: minmax weight normalization.

 z: z weight normalization.

dist
Hyper-parameter,

String, Optional.
cosine

The correlation/distance metric that measures

the distance between an input list and the

temporary aggregate list. Possible values

include:

 rho: Spearman's 𝜌.

 cosine: a metric based on cosine similarity

(see Akritidis et al., 2022).

 footrule: Spearman's Footrule distance.

 tau: Kendall's 𝜏

prune
Hyper-parameter,

Boolean, Optional.
False

Triggers a weight-dependent list pruning

mechanism.

gamma
Hyper-parameter,

Float, Optional.
1.5

The 𝛾 hyper-parameter that determines the

steplength of weight learning.

d1
Hyper-parameter,

Float, Optional.
0.4

The 𝛿1 hyper-parameter of the list pruning

mechanism. Applies only if prune=True.

d2
Hyper-parameter,

Float, Optional.
0.1

The 𝛿2 hyper-parameter of the list pruning

mechanism. Applies only if prune=True.

tol
Hyper-parameter,

Float, Optional.
0.01

Controls the convergence precision. This

tolerance threshold represents the minimum

precision of the difference between the voter

weight in an iteration and the voter weight of

the previous iteration.

max_iter
Hyper-parameter,

Integer, Optional.
50

Controls the maximum number of iterations

before the voter weights converge.

pref
Hyper-parameter,

Float, Optional.
0.0

The preference threshold. Applies only if

aggregator=outrank.

veto
Hyper-parameter,

Float, Optional.
0.75

The veto threshold. Applies only if

aggregator=outrank.

conc
Hyper-parameter,

Float, Optional.
0.0

The concordance threshold. Applies only if

aggregator=outrank.

disc
Hyper-parameter,

Float, Optional.
0.25

The discordance threshold. Applies only if

aggregator=outrank.

DIBRA also includes an aggregate() function that receives the user-defined parameters and passes

them to the DIBRA() exposed function, that subsequently performs the aggregation of the ranked

input preference lists. The arguments of the aggregate() function are identical to those of the

CombSUM and CombMNZ classes (refer to the respective table of Subsection 4.4).

Agglomerative weighted aggregation: The Agglomerative Python class

This class employs the implementation of the Agglomerative weighted method of Chatterjee et al.,

2018. Similarly to all weighted methods, it derives from RAM, a base class defined in the RAM module.

It inherits the flagr_lib connector from RAM, and, through it, they obtain access to the FLAGR shared

library. Its constructor determines the data types of the input arguments and the return type of the

Agglomerative() exposed function. Observe the similarity between the members of

self.flagr_lib.Agglomerative.argtypes and the input arguments of the Agglomerative()

exposed function.

The constructor's arguments include:

Parameter Type Default Description

eval_pts

Integer, Optional.

Considered only if

rels_file or

rels_df is set.

10

Determines the elements in the aggregate list on which

the evaluation measures (i.e., Precision, and nDCG) will

be computed. For example, for eval_pts=10 FLAGR will

compute Average Precision, 𝑃@1, 𝑃@2, . . . 𝑃@10 and

𝑁@1, 𝑁@2, . . . 𝑁@10.

c1
Hyper-parameter,

Float, Optional.
0.1 The 𝑐1 hyper-parameter of the algorithm.

c2
Hyper-parameter,

Float, Optional.
0.5 The 𝑐2 hyper-parameter of the algorithm.

Agglomerative includes an aggregate() function that receives the user-defined parameters and

passes them to the Agglomerative() exposed function, that subsequently performs the aggregation

of the ranked input preference lists. The arguments of the aggregate() function are identical to those

of the CombSUM and CombMNZ classes (refer to the respective table of Subsection 4.4).

Preference relations weighted method: The PreferenceRelationsGraph Python class

This class links to the FLAGR implementation of the weighted method of Desarkar et al., 2016. Similarly

to all weighted methods, it derives from RAM, a base class defined in the RAM module. It inherits the

flagr_lib connector from RAM, and through it, they obtain access to the FLAGR shared library. Its

constructor determines the data types of the input arguments and the return type of the PrefRel()

exposed function. Observe the similarity between the members of

self.flagr_lib.PrefRel.argtypes and the input arguments of the PrefRel() exposed function.

The constructor's arguments include:

Parameter Type Default Description

eval_pts

Integer, Optional.

Considered only if

rels_file or

rels_df is set.

10

Determines the elements in the aggregate list on which

the evaluation measures (i.e. Precision, and nDCG) will

be computed. For example, for eval_pts=10 FLAGR will

compute Average Precision, 𝑃@1, 𝑃@2, . . . 𝑃@10 and

𝑁@1, 𝑁@2, . . . 𝑁@10.

alpha
Hyper-parameter,

Float, Optional.
0.1 The 𝛼 hyper-parameter of the algorithm.

beta
Hyper-parameter,

Float, Optional.
0.5 The 𝛽 hyper-parameter of the algorithm.

PreferenceRelationsGraph also includes an aggregate() function that receives the user-defined

parameters and passes them to the PrefRel() exposed function, that subsequently performs the

aggregation of the ranked input preference lists. The arguments of the aggregate() function are

identical to those of the CombSUM and CombMNZ classes (refer to the respective table of Subsection

4.4).

4.8 Kemeny module

The Kemeny module provides access to the implementation of Kemeny Optimal Aggregation of

FLAGR. It is stressed out that due to the method's high complexity, the brute force implementation

becomes infeasible even when the number of elements, or the number of input lists receive moderate

values.

Implementation file

pyflagr/pyflagr/Kemeny.py

The KemenyOptimal class

The KemenyOptimal class derives from RAM, a base class defined in the RAM module. It inherits the

flagr_lib connector from RAM, and through it, it obtains access to the FLAGR shared library. Its

constructor determines the data types of the input arguments and the return type of the FLAGR's

Kemeny() exposed function. Observe the similarity between the members of

self.flagr_lib.Kemeny.argtypes and the input arguments of the Kemeny() exposed function.

The arguments of the constructor includes one parameter:

https://github.com/lakritidis/FLAGR/blob/main/pyflagr/pyflagr/Kemeny.py

Parameter Type Default Description

eval_pts

Integer, Optional.

Considered only if

rels_file or

rels_df is set.

10

Determines the elements in the aggregate list on which

the evaluation measures (i.e., Precision, and nDCG) will

be computed. For example, for eval_pts=10 FLAGR will

compute Average Precision, 𝑃@1, 𝑃@2, . . . 𝑃@10 and

𝑁@1, 𝑁@2, . . . 𝑁@10.

KemenyOptimal also includes an aggregate() function which receives the user-defined parameters

and passes them to the Kemeny() exposed function, that subsequently performs the aggregation of

the ranked input preference lists. The arguments of the aggregate() function are identical to those

of the CombSUM and CombMNZ classes (refer to the respective table of Subsection 4.4).

4.9 RRA module

The RRA module provides access to the implementation of Robust Rank Aggregation of Kolde et al.,

2012.

Implementation file

pyflagr/pyflagr/RRA.py

The RRA class

The RRA class derives from RAM, a base class defined in the RAM module. It inherits the flagr_lib

connector from RAM, and through it, it obtains access to the FLAGR shared library. Its constructor

determines the data types of the input arguments and the return type of the FLAGR's RobustRA()

exposed function. Observe the similarity between the members of

self.flagr_lib.RobustRA.argtypes and the input arguments of RobustRA() exposed function.

The arguments of the constructor includes two parameters:

Parameter Type Default Description

eval_pts

Integer, Optional.

Considered only if

rels_file or

rels_df is set.

10

Determines the elements in the aggregate list on which

the evaluation measures (i.e. Precision, and nDCG) will

be computed. For example, for eval_pts=10 FLAGR will

compute Average Precision, 𝑃@1, 𝑃@2, . . . 𝑃@10 and

𝑁@1, 𝑁@2, . . . 𝑁@10.

exact Boolean, Optional. False
Determines whether the computed p-Values of the list

elements will be corrected with the Stuart-Ares method.

RRA also includes an aggregate() function that receives the user-defined parameters and passes

them to the RobustRA() exposed function, that subsequently performs the aggregation of the ranked

input preference lists. The arguments of the aggregate() function are identical to those of the

CombSUM and CombMNZ classes (refer to the respective table of Subsection 4.4).

https://github.com/lakritidis/FLAGR/blob/main/pyflagr/pyflagr/RRA.py

4.10 Comparator module

The Comparator module includes a class that implements several tools for conducting performance

comparisons of rank aggregation algorithms. The input includes a data file with the input preference

lists, another file that contains the relevance judgments for the involved list elements, and a group of

rank aggregation algorithms to be compared. After running the selected algorithms on the input data,

Comparator produces comparison tables in various formats (e.g. CSV, LaTeX, etc.) and plots of

multiple evaluation measures. Extended code examples of usage are presented in this notebook.

Implementation file

pyflagr/pyflagr/Comparator.py

Member variables

The class maintains three member variables:

 aggregators: A Python list that contains the objects that handle rank aggregation algorithms,

along with a user-defined description.

 results: A Pandas Dataframe that stores the results of the evaluation (namely, the values of

various evaluation measures).

 ev_pts: An integer that represents the cutoff point at which the evaluation measures will be

computed.

Member methods

add_aggregator(): This function appends new records into the aggregators list. Each record

represents a rank aggregation method that will participate in the comparison tests.

Parameter Type Default Description

name
String,

Required.
- The name of the rank aggregation algorithm that is inserted.

obj
Object,

Required.
-

An object that handles the corresponding rank aggregation

method.

Here is a quick example that initializes a Comparator object and appends three rank aggregation

methods:

import pyflagr.Linear as Linear

import pyflagr.Majoritarian as Majoritarian

import pyflagr.Weighted as Weighted

import pyflagr.Comparator as Comparator

EV_PTS = 10

cmp = Comparator.Comparator(EV_PTS)

cmp.add_aggregator("CombSUM-Borda",Linear.CombSUM(norm='borda',
eval_pts=EV_PTS))

cmp.add_aggregator("Copeland", Majoritarian.CopelandWinners(eval_pts=EV_PTS))

cmp.add_aggregator("DIBRA-Prune", Weighted.DIBRA(aggregator='combsum:borda',
gamma=1.2, prune=True, w_norm='minmax', d1=0.3, d2=0.05, eval_pts=EV_PTS))

https://github.com/lakritidis/FLAGR/blob/main/examples/jupyter/CodeExamples_Comparator.ipynb
https://github.com/lakritidis/FLAGR/blob/main/pyflagr/pyflagr/Comparator.py

aggregate(): Sequentially invokes the aggregate() method of each algorithm included in the

aggregators array.

This method also requires a file (or a Dataframe) that contains relevance judgments for the individual

list elements. The generated aggregate lists of each algorithm are automatically evaluated (by FLAGR)

by using these relevance judgments. The class computes the values of multiple well-established

evaluation measures including Mean Average Precision (MAP), Precision, Recall, DCG (Discounted

Cumulative Gain), and nDCG (normalized DCG). The computed values are written into the

self.results Dataframe.

aggregate() takes four arguments:

Parameter Type Default Description

input_file

String, Required,

unless input_df is

set.

Empty

String

A CSV file that contains the input lists to be

aggregated.

input_df

Pandas

DataFrame,

Required, unless

input_file is set.

None

A Pandas DataFrame that contains the input lists to be

aggregated.

Note: If both input_file and input_df are set, only

the former is used; the latter is ignored.

rels_file

String, Required,

unless rels_df is

set.

Empty

String

A CSV file that contains the relevance judgements of

the involved list elements. FLAGR will evaluate the

generated aggregate list/s by computing the values of

multiple performance evaluation measures. The results

of the evaluation will be stored in the self.results

Dataframe.

rels_df

Pandas

DataFrame,

Required, unless

rels_file is set.

None

A Pandas DataFrame that contains the relevance

judgements of the involved list elements. FLAGR will

evaluate the generated aggregate list/s by computing

the values of multiple performance evaluation

measures. The results of the evaluation will be stored

in the self.results Dataframe.

Note: If both rels_file and rels_df are set, only the

former is used; the latter is ignored.

Example:

The input data file with the input lists to be aggregated.

lists = 'testdata.csv'

The input data file with the relevance judgements.

qrels = 'testdata_qrels.csv'

cmp.aggregate(input_file=lists, rels_file=qrels)

plot_average_precision(): Creates a comparative bar plot of Mean Average Precision (MAP). The

arguments include:

Parameter Type Default Description

dimensions
(x,y) tuple -

Optional.
(10.24,7.68) The plot dimensions (width, height).

show_grid
Boolean -

Optional.
True Determines whether the plot will include grid lines.

query
String -

Optional.
'all'

In case the input data file contains preference lists for

multiple queries, this parameter determines which query

to plot. Notice that 'all' does not mean that all queries

will be plotted; instead, it dictates the plotting of the

average MAP for all queries.

Example:

cmp.plot_average_precision((16, 7), True, query='all')

plot_metric(): Creates a plot for a metric at a given cutoff point. The input arguments include:

Parameter Type Default Description

cutoff
Integer -

Required.
-

The cutoff point in the aggregate list. The cutoff point must

be lower than self.ev_pts.

metric
String -

Required.
-

Determines the evaluation measure to be plotted.

Acceptable values are 'precision', 'recall', 'dcg', and

'ndcg'.

plot_type
String -

Optional.
'bar'

Determines the plot type. Acceptable values are 'bar' and

'lines'.

dimensions
(x,y) tuple -

Optional.

(10.24,
7.68)

The plot dimensions (width, height).

show_grid
Boolean -

Optional.
True Determines whether the plot will include grid lines.

query
String -

Optional.
'all'

In case the input data file contains preference lists for

multiple queries, this parameter determines which query to

plot. Notice that 'all' does not mean that all queries will

be plotted; instead, it dictates the plotting of the average

MAP for all queries.

Example:

cmp.plot_metric (EV_PTS, metric='precision', plot_type='bar', dimensions=(16,8),
show_grid=True, query='all')

get_results(): Returns slices of self.results by setting specific evaluation measures (columns)

and queries (rows). The input arguments include:

Parameter Type Default Description

cutoff
Integer -

Required.
-

The cutoff point in the aggregate list. The cutoff point must be

lower than self.ev_pts.

metric
String -

Required.
-

Determines the evaluation measure to be plotted. Acceptable

values are 'precision', 'recall', 'dcg', and 'ndcg'.

query
String -

Optional.
'all'

In case the input data file contains preference lists for multiple

queries, this parameter determines which query to retrieve.

Notice that 'all' does not mean that all queries will be plotted;

instead, it dictates the plotting of the average MAP for all

queries.

convert_to_latex(): Returns the LaTeX code of slices of self.results. The input arguments are:

Parameter Type Default Description

cutoff
Integer -

Required.
-

The cutoff point in the aggregate list. The cutoff point must

be lower than self.ev_pts.

metric
String -

Required.
-

Determines the evaluation measure to be plotted.

Acceptable values are 'precision', 'recall', 'dcg', and

'ndcg'.

query
String -

Optional.
'all'

In case the input data file contains preference lists for

multiple queries, this parameter determines which query to

retrieve. Notice that 'all' does not mean that all queries

will be plotted; instead, it dictates the plotting of the average

MAP for all queries.

dec_pts

Integer -

Optional -

Maximum value

is 6.

6
Sets the precision (i.e. the number of decimal points) of the

values of the returned evaluation measures.

5. Appendix

5.1 Evaluation measures

This section provides some brief descriptions of the most popular performance evaluation measures

for rank aggregation algorithms. These measures are computed by the evaluation tool of FLAGR in

case a valid qrels file is provided as input.

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧@𝒌

Precision measures the ability of an algorithm to precisely detect the relevant elements. It is defined

as the ratio of the number of relevant elements at the 𝑘-th element of a list, divided by the number

of retrieved elements (i.e. 𝑘)}:

Precision@𝑘 =
true positives@𝑘

(true positives@𝑘) + (false positives@𝑘)

𝐑𝐞𝐜𝐚𝐥𝐥@𝒌

Recall measures the ability of an algorithm to detect the relevant elements early. It is defined as the

ratio of the number of relevant elements at the 𝑘-th element of a list, divided by the number of all

relevant elements:

Recall@𝑘 =
true positives@𝑘

(true positives@𝑘) + (false negatives@𝑘)

𝑭𝟏@𝒌

𝐹1 is a well-established measure that combines Precision and Recall into a single scoring formula:

𝐹1@𝑘 =
2 ∙ Precision@𝑘 ∙ Recall@𝑘

Precision@𝑘 + Recall@𝑘

Discounted Cumulative Gain 𝑫𝑪𝑮@𝒌

𝐷𝐶𝐺 is another measure for evaluating the performance of an algorithm. In contrast to the previous

measures, this one can handle non-binary relevance judgments. In other words, the relevance score

of an item may be a real value, and not just a relevant/non-relevant label. It is defined by the following

formula:

𝐷𝐶𝐺@𝑘 = ∑
2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)

𝑘

𝑖=1

where 𝑟𝑒𝑙𝑖 is the relevance score of the element at index 𝑖. For binary problems, we set 𝑟𝑒𝑙𝑖 = 1 if the

𝑖-th list element is relevant and 𝑟𝑒𝑙𝑖 = 0 otherwise.

Normalized Discounted Cumulative Gain (𝒏𝑫𝑪𝑮@𝒌)

One disadvantage of 𝐷𝐶𝐺 is that it is non-decreasing; it either stays the same (if the current element

is non-relevant), or it increases (if the current element is relevant). This means that queries that return

larger result sets will probably always have higher 𝐷𝐶𝐺 scores than queries that return small result

sets. The Normalized Discounted Cumulative Gain (𝑛𝐷𝐶𝐺) confronts this problem by dividing 𝐷𝐶𝐺

with the maximum possible 𝐷𝐶𝐺 at each threshold 𝑘:

𝑛𝐷𝐶𝐺@𝑘 =
𝐷𝐶𝐺@𝑘

𝐼𝐷𝐶𝐺@𝑘

where 𝐼𝐷𝐶𝐺@𝑘 is the Ideal 𝐷𝐶𝐺@𝑘. To compute it, we first create an ideal ranking, where the elements

are ranked in decreasing relevance order. Then, 𝐼𝐷𝐶𝐺@𝑘 is simply equal to 𝐷𝐶𝐺@𝑘 in that ideal

ranking, namely:

𝐼𝐷𝐶𝐺@𝑘 = ∑
2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)

relevant items @𝑘

𝑖=1

Average Precision (𝑨𝑷)

𝐴𝑃 is another evaluation metric that quantifies the ability of an algorithm to rank the relevant elements

in the highest list positions. It is defined by the following equation:

𝐴𝑃 = ∑(Recall@𝑘 − Recall@𝑘 − 1) ∙ Precision@𝑘

𝑘

Mean Average Precision (MAP)

Average Precision quantifies the quality of a single ranked list compared with the ground truth. In

other words, 𝐴𝑃 examines a single ranking that is generated in response to a single query. In contrast,

Mean Average Precision (MAP) evaluates a ranking model for a set of queries 𝑄. MAP is simply defined

as the mean of the Average Precisions over all queries. Consequently, its computation is performed

by firstly summing up the 𝐴𝑃𝑞 value for each query 𝑞 in the dataset and then, the sum is divided by

the number of queries:

𝑀𝐴𝑃 =
1

|𝑄|
∑ 𝐴𝑃𝑞

|𝑄|

𝑞=1

Example

Consider a ranked list including 8 elements that has been submitted as a response to a query. From

these elements, the 1st, 3rd, 4th, and 6th are relevant to the query. The rest of the elements are

considered as not relevant. The first two columns of the following table show the list and the relevance

of its elements. The rest of the columns contain the running values of Precision, Recall, 𝐹1, 𝐷𝐶𝐺, 𝐼𝐷𝐶𝐺,

𝑛𝐷𝐶𝐺 and Average Precision (𝐴𝑃) at each list element.

Rank Relevant 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧@𝒌 𝐑𝐞𝐜𝐚𝐥𝐥@𝒌 𝑭𝟏@𝒌 𝑫𝑪𝑮@𝒌 𝑫𝑪𝑮@𝒌 𝑫𝑪𝑮@𝒌 𝑨𝑷

1 Yes 1.00 0.25 0.40 1.00 1.00 1.00 1.00

2 No 0.50 0.25 0.33 1.00 1.63 0.61 1.00

3 Yes 0.67 0.50 0.62 1.50 2.13 0.70 0.83

4 Yes 0.75 0.75 0.75 1.93 2.56 0.75 0.81

5 No 0.60 0.75 0.66 1.93 2.56 0.75 0.81

6 Yes 0.67 1.00 0.80 2.29 2.56 0.89 0.77

7 No 0.57 1.00 0.73 2.29 2.56 0.89 0.77

8 No 0.50 1.00 0.66 2.29 2.56 0.89 0.77

Example calculations at the 5th element of the list (@5)

According to the aforementioned definitions, the following calculations are performed:

Precision@5 =
relevant elements found up to position 5

retrieved elements up to position 5
=

3

5
= 0.60

Recall@5 =
relevant elements found up to position 5

all relevant elements
=

3

4
= 0.75

𝐹1@5 =
2 ∙ Precision@5 ∙ Recall@5

Precision@5 + Recall@5
=

2 ∙ 0.60 ∙ 0.75

0.60 + 0.75
= 0.67

𝐷𝐶𝐺@5 = ∑
2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)
=

21 − 1

log2(1 + 1)
+

20 − 1

log2(2 + 1)
+

21 − 1

log2(3 + 1)
+

21 − 1

log2(4 + 1)
+

20 − 1

log2(5 + 1)
= 1.9

5

𝑖=1

𝐼𝐷𝐶𝐺@5 = ∑
2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)
=

21 − 1

log2(1 + 1)
+

21 − 1

log2(2 + 1)
+

21 − 1

log2(3 + 1)
+

21 − 1

log2(4 + 1)
= 2.56

4

𝑖=1

𝑛𝐷𝐶𝐺@5 =
𝐷𝐶𝐺@5

𝐼𝐷𝐶𝐺@5
=

1.93

2.56
= 0.75

𝐴𝑃 =
1 + 0.67 + 0.75

3
= 0.81

5.2 References

FLAGR utilizes algorithms, methods, and techniques from the following bibliography:

 E. Renda, U. Straccia, "Web metasearch: rank vs. score based rank aggregation methods", In

Proceedings of the 2003 ACM symposium on Applied computing, pp. 841-846, 2003.

 M. Farah, D. Vanderpooten, "An outranking approach for rank aggregation in information

retrieval", In Proceedings of the 30th ACM Conference on Research and Development in

Information Retrieval, pp. 591-598, 2007.

 M.S. Desarkar, S. Sarkar, P. Mitra, "Preference relations based unsupervised rank aggregation

for metasearch", Expert Systems with Applications, vol. 49, pp. 86-98, 2016.

 S. Chatterjee, A. Mukhopadhyay, M. Bhattacharyya, "A weighted rank aggregation approach

towards crowd opinion analysis", Knowledge-Based Systems, vol. 149, pp. 47-60, 2018.

 L. Akritidis, A. Fevgas, P. Bozanis, Y. Manolopoulos, "An Unsupervised Distance-Based Model

for Weighted Rank Aggregation with List Pruning", Expert Systems with Applications, vol. 202,

pp. 117435, 2022.

 C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Methods for the Web", In

Proceedings of the 10th International Conference on World Wide Web, pp. 613-622, 2001.

 R. Kolde, S. Laur, P. Adler, J. Vilo, "Robust rank aggregation for gene list integration and meta-

analysis", Bioinformatics, vol. 28, no. 4, pp. 573-580, 2012.

 K.L. Majumder, G.P. Bhattacharjee, "Algorithm AS 63: The incomplete Beta Integral", Applied

Statistics, vol. 22, no. 3, pp. 409-411, 1973.

 R.P. DeConde, S. Hawley, S. Falcon, N. Clegg, B. Knudsen, R. Etzioni, "Combining results of

microarray experiments: a rank aggregation approach", Statistical Applications in Genetics and

Molecular Biology, vol. 5, no. 1, 2006.

 J. d. Borda, M´emoire sur les ´elections au scrutin, Histoire de l’Academie Royale des Sciences

pour 1781 (Paris, 1784).

 M. Condorcet, Essai sur r application de Ianalyse `a la probabilit´e des d´ecisions rendues a` la

pluralit´e des voix, Paris.

 A. H. Copeland, "A reasonable social welfare function", Technical Report., Mimeo, University of

Michigan USA, 1951.

 L. Akritidis, D. Katsaros, P. Bozanis, "Effective ranking fusion methods for personalized

metasearch engines", In Proceedings of the 12th Panhellenic Conference on Informatics, IEEE,

2008, pp. 39–43.

 L. Akritidis, D. Katsaros, P. Bozanis, "Effective rank aggregation for metasearching, Journal of

Systems and Software, vol. 84, no. 1, pp. 130–143, 2011.

 C. Manning, P. Raghavan, H. Schtze, "Introduction to Information Retrieval", Cambridge

University Press, 2008.

 K. Jarvelin, J. Kekäläinen, "Cumulated gain-based evaluation of IR techniques", ACM

Transactions on Information Systems (TOIS), vol. 20, no. 4, pp. 422–446, 2002.

5.3 Acknowledgments

FLAGR, PyFLAGR, the supporting Web site https://flagr.site and this user manual have been created

by Leonidas Akritidis. You may contact the author at lakritidis@ihu.gr.

Deep thanks to John Burkardt for kindly permitting the usage of the ASA063 and ASA109 algorithm

implementations about the computation of the incomplete beta integrals.

Bugs should be reported through the FLAGR's GitHub repository.

Third-party researchers are strongly encouraged to submit their own algorithm implementations,

regardless of the programming language they are using.

https://flagr.site/
mailto:lakritidis@ihu.gr
https://github.com/lakritidis/FLAGR

	Motivation and significance
	Software description
	Compilation
	Software Architecture
	FLAGR Architecture
	Shared/Dynamic Link Library Architecture
	PyFLAGR Architecture

	Software Functionalities
	Rank Aggregation
	Custom Algorithm Implementations
	Performance Evaluation and Comparison
	Results' Vizualization

	Illustrative Examples
	Impact
	Conclusions
	Conflict of Interest

