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Abstract The problem of data imbalance in machine learning is related to the un-
even distribution of the training examples to the involved classes. Nowadays, a large
number of research fields and applications suffer from class imbalance, including
Cybersecurity, Bioinformatics, Natural Language Processing, management of mul-
timedia content, and so on. Directly training machine/deep learning classifiers with
such data has been proved quite problematic, because the generated models become
strongly biased towards the majority class. Unable to learn the minority classes ef-
fectively, the accuracy of these “imbalanced” models degrades rapidly. Given the
importance of the problem, numerous researchers have introduced innovative, state-
of-the-art approaches with the aim of addressing it. In this chapter, we present a
survey on the most significant advances in the area, by adopting a multi-dimensional
categorization approach. Specifically, we classify the relevant works according to: i)
the application field they focus on, ii) the methods they introduce to mitigate class
imbalance, and iii) the classification models they utilize to evaluate the introduced
algorithms. Additionally, we cover the state-of-the-art overviews in a systematic
manner and we describe the proposed methods and their achieved results.

1 Introduction

The problem of data imbalance occurs when the input samples of a dataset are
unequally distributed across its classes. For example, a collection of 100 images, of
which 80 illustrate dogs and the rest of them depict other animals, constitutes an
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imbalanced dataset. The class that contains the majority of the samples is called the
majority class (the dog class in our example), whereas the other classes are known
as minority classes. In extreme situations, the majority class vastly outnumbers the
minority classes (a ratio of say 1000:1 or more), so the problem is often referred as
extreme data imbalance.

Imbalanced datasets are common in a wide range of applications, including
computer vision, image processing, intrusion, malware and fraud detection, NLP,
sentiment analysis, bioinformatics, etc. [53]. In these fields, most real-world data
collections are imbalanced to one extent or another. Unfortunately, such collections
introduce significant problems in classification tasks, because the underlying models
have an enormous difficulty in learning the minority class. In particular, the classifiers
become biased towards the majority class and their (balanced) accuracy degrades
significantly.

Due to the severe consequences of data imbalance in classification performance, a
large number of research studies have been conducted with the aim of confronting it.
During our research, we discovered that the related articles have a three-dimensional
nature. The first dimension concerns the application field that the article focuses
on. For example, there are numerous works attempting to confront the problem
from the perspective of Cybersecurity (e.g., intrusion detection or credit card fraud
detection), whereas others emphasize on Bioinformatics (e.g., protein or microRNA
classification) or Natural Language Processing (e.g., sentiment analysis).

The second dimension is related to the method that is employed to mitigate the im-
balanced class distribution. In this context, multiple algorithms have been proposed
either for enriching the minority classes with valuable samples (oversampling), or
for removing samples from the majority class (undersampling).

A third category includes the hybrid algorithms that apply both oversampling and
undersampling together. Noticeably, the relevant works can be further classified ac-
cording to the nature of their proposed method. Hence, in the literature we encounter
effective oversampling solutions that employ deep generative models (like GANs),
nearest neighbor techniques (e.g. SMOTE), and feature engineering approaches.

Although the problem of data imbalance is of particular importance for all data
mining and machine learning applications, the articles encountered in the literature
mainly focus on classification tasks. A common methodology adopted by many
relevant works is to examine the effectiveness of a data imbalance solution in com-
bination with a variety of classifiers. Hence, usually the authors first describe a data
preprocessing technique, and then they evaluate it by applying a set of classifiers on
several test datasets. To cover this aspect, we present a third way of categorizing the
relevant literature. We call this organization as classifier-based, because it is based
on the classification models that have been devised or employed to evaluate a data
imbalance algorithm.

The rest of the chapter is organized as follows: Section 2 describes our research
methodology and introduces its triadic nature. In the sequel, Sections 3, 4 and 5
present the state-of-the-art works from an application-based, technique-based, and
classifier-based perspective, respectively. Finally, Section 7 concludes the overview
with important findings and key observations.
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Fig. 1 The triadic (or 3-dimensional) nature of our survey: We examine the relevant works from
the perspective of the applications they focus on, the techniques they introduce and the classifiers
they employ.

2 Methodology and Organization

The articles presented in this chapter have been retrieved by using one academic
search engine (Google Scholar1), and four scientific digital libraries: SpringerLink2,
ACM library3, IEEE Xplore4, and ScienceDirect5. The queries that we submitted to
these services were formed according to the application field, or the approach that
was adopted to confront data imbalance. We provide more details on how the queries
were crafted in the list below.

The presentation is based on a three-dimensional approach. Each dimension
represents a different perspective from which each paper can be viewed, or a different
category where each study belongs (Figure 1). Specifically:

• Application-based organization: The studies are categorized on the basis of the ap-
plication(s) they focus on. They were collected by submitting application specific
queries to the aforementioned services, concatenated with the phrase “imbal-
anced data”. For example, to retrieve articles that studied the problem from the
perspective of malware detection, we submitted the query “malware detection
imbalanced data”. The hierarchical structure of Figure 2 implies the formation of
28 such queries. The most important results that were retrieved by this procedure
are discussed in Section 3.

• Technique-based organization: The papers are presented according to the tech-
niques that they introduce (or apply) to confront data imbalance. Notice that a
significant number of relevant works in the area examine the general-case version
of the problem; that is, without considering any particular application. Therefore,
the organization of Section 4 includes both generic and application-specific solu-
tions. Similarly to the previous procedure, we formed multiple targeted queries to
locate relevant articles. For example, we submitted the query “GAN data imbal-
ance” to retrieve works that utilized or adapted Generative Adversarial Networks
to oversample the minority class.

1 https://scholar.google.com
2 https://link.springer.com/
3 https://dl.acm.org/
4 https://ieeexplore.ieee.org/Xplore/home.jsp
5 https://www.sciencedirect.com/
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Fig. 2 Application-wise categorization of methods for handling data imbalance.

• Classifier-based organization: Data imbalance has been extensively studied in the
context of classification, either from a generic or an application-specific point
of view. Several researchers have adapted well-established models to address
the problem, whereas others utilized a variety of classifiers to evaluate their
techniques on test datasets. A brief overview of these classifiers is presented in
the third part of this chapter.

3 Application-based Organization

As mentioned earlier, the problem of data imbalance concerns a large number of
applications from diverse scientific, enterprise and industrial fields. In the follow-
ing subsections we present the most indicative applications and we refer to studies
that examined the problem of data imbalance from the perspective of these appli-
cations. The works cited below are summarized per category in Table 1. A visual
representation of the aforementioned categorization is provided in Figure 2.

3.1 Cybersecurity

Cybersecurity is a broad field that studies security issues for software and computer
systems. It includes various sub-areas that deal with malware and virus detection,
fraud and spam detection, intrusion detection, and so forth. The most recent solutions
that confront these problems rely on machine learning models that predict whether
an action is normal or malicious. Nonetheless, training such models is a challeng-
ing task because the utilized datasets usually include highly imbalanced samples.
For instance, in intrusion detection scenarios, the training examples that represent
legitimate actions vastly outnumber those that represent attack actions. Similarly, in
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Table 1 Data imbalance solutions categorized by application field.
Application field Application Papers
Cybersecurity Attack prediction [6], [102]

Malware detection [25], [76]
Fraud detection [36], [72], [86]
Intrusion detection [3], [9], [11], [28], [37], [63], [118]
Data augmentation [109]

Bioinformatics and Disease diagnosis [10], [58], [83], [100], [116]
Medical Sciences Protein Classification [93], [123]

Protein sub-cellular prediction [101]
Hospital infections [26]
microRNA classification [16]
Data augmentation [29], [121]

Natural Language Sentiment Analysis [44], [60], [77], [104]
Processing Text classification [75], [79], [80], [112], [94]

String classification [19]
Data augmentation [5], [70]

Multimedia Computer vision [42], [87], [113]
Image classification [51], [54], [62], [74], [82], [85]
Evaluation measures [106]

anti-malware applications the infected files are much fewer than the harmless files.
In both cases, training models without confronting the lurking class imbalance leads
to biased classifiers with degraded performance.

To address the problem in question, Wang et al. introduced an oversampling model
with an attention-based mechanism, called AOPL [102]. The attention mechanism
is employed to decrease the redundancy during the generation of the artificial attack
examples. The experimental evaluation of AOPL demonstrated its robustness against
several deep learning models on four real datasets.

More recently, Akash et al. [6] presented a work that employed the Synthetic
Minority Oversampling Technique (SMOTE), Borderline SMOTE and Adaptive
Synthetic Sampling (ADASYN) to tackle class imbalance during attack prediction
in IoT devices. Interestingly, the authors concluded that none of these methods had
a significant impact on the predictive ability of cyber attack detection. On a similar
fashion, Wheelus et al. evaluated four preprocessing methods for mitigating class
imbalance in the UNSW-NB15 Cybersecurity dataset [109]. They found that only
the Bagging technique consistently improved performance; SMOTE had a positive
effect only in combination with 3 out of the 5 attested classifiers.

Regarding malware detection, Chen et el. combined several machine learning
models with network traffic analysis techniques to recognize malicious applications
in mobile devices [25]. To overcome the problem of imbalance in the traffic data,
the authors combined SMOTE with Support Vector Machines (SVM), cost-sensitive
SVMs, and C4.5 cost-sensitive methods. Another relatively recent malware detection
method for mobile devices was proposed by Oak et al. [76]. In that paper, the authors
employed Bidirectional Encoder Representations from Transformers (BERT) to dy-
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namically examine activity sequences in Android applications. They subsequently
showed that BERT was particularly effective in handling imbalanced datasets.

Intrusion detection is among the Cybersecurity applications that are heavily af-
fected by data imbalance. Hence, a remarkable number of research studies have
been conducted recently towards this direction. Particularly, Bagui and Li examined
how a variety of oversampling and undersampling techniques affect the performance
of several multi-class neural network classifiers on a set of benchmark Cyberse-
curity datasets [11]. They found that these techniques increase Recall significantly
only in cases of extreme data; otherwise, their impact is rather limited. Moreover,
oversampling had a better performance on attack detection (minority data).

Azizjon et al. tackled class imbalance with a random oversampling technique and
a one-dimensional Convolutional Neural Network (CNN) classifier [9]. In contrast,
Fu et al. adopted the ADASYN oversampling method, introducing a sophisticated
classifier called DLNID based on a CNN combined with Bi-Directional Long-Short
Term Memory (BiLSTM) units [37].

Regarding the hybrid sampling methods, Zhang et al. utilized SMOTE for over-
sampling and a Gaussian Mixture Model to perform clustering on the samples of the
majority class [118]. Another interesting hybrid approach was introduced by Ding et
al. in [28], where the undersampling process was performed by a 𝑘-NN algorithm,
whereas the oversampling was carried out by a Generative Adversarial Network
(GAN) called TACGAN.

In fact, GANs have been proved quite effective in a wide variety of oversampling
tasks. In the context of intrusion detection, the study of Lee and Park used GANs to
perform oversampling of the minority class, and then, they used a Random Forest
classifier to test the detection accuracy [63]. Other deep learning models have also
been examined in the recent literature including the aforementioned CNNs [9, 118],
CNN-BiLSTM hybrids [37], and Deep Neural Networks (DNN) with Variational
Autoencoders (VAE) [3].

Fraud detection is another sub-area of Cybersecurity where class imbalance is
observed. Makki et al. compared 8 machine learning methods, along with several
re-sampling techniques to address class imbalance in credit card fraud classification
[72]. Remarkably, the study concluded that the standard techniques for tackling
data imbalance may have unpleasant consequences when the imbalance is extreme,
because they generate a significant number of false positives. Finally, Fu et al.
proposed a CNN-based fraud detection framework, to capture significant patterns
of fraud behaviors learned from labeled data [36]. The authors utilized a massive
transaction dataset to demonstrate the superiority of their model against standard
machine learning classifiers like Random Forests, Neural Networks and SVMs.

3.2 Bioinformatics and Medical Sciences

The primary objective in Bioinformatics is to study and develop computational
models with the aim of analyzing medical and biological data. When the underlying
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data includes genomic information, the problem of class imbalance in classification
tasks becomes too severe to be ignored. Examples of such tasks include disease
diagnosis [100, 116, 58, 10], protein classification [123, 93], protein sub-cellular
prediction [101], prediction of drug effectiveness, and so forth.

In one of the first studies in the area, Cohen et al. viewed the problem of hospital
infections as a classification problem [26]. The 11:89 imbalance ratio of the under-
lying data motivated the authors to introduce, first, an effective hybrid re-sampling
approach, and, second, a modified support vector classifier that was adjusted to
improve the recognition of rare cases.

The work of Bugnon et al. studied multiple deep learning architectures in order
to confront extreme data imbalance (ratios of up to 1:2000) in precursor microRNA
classification [16]. The most interesting conclusion of this study is that, in presence
of imbalanced data, the Deep Belief Networks (DBN) achieve superior performance
than other deep learning models such as self-organizing maps (SOM). On a similar
spirit, Bach et al. attested various data preprocessing techniques and classification
algorithms to achieve decent performance in osteoporosis predictions [10]. They
inferred that, for a dataset with an imbalance ratio of about 7:93, the highest accuracy
was obtained by combining SMOTE with a Random Forest classifier. The Random
Forest classifier has also been studied in an older paper authored by Dittman et al.
[29]. In that work, the random undersampling technique was applied to augment
15 imbalanced bioinformatics datasets. In the context of Type 2 Diabetes Mellitus
detection, Ramadhan compared SMOTE and ADASYN in conjunction with an SVM
classifier and found ADASYN superior [83].

In [58], Krawczyk et al. presented a clinical decision support system for breast
cancer malignancy grading. The system employs three segmentation algorithms to
extract the most important features from clinical images, and feeds them to EUS-
Boost, a novel ensemble classification model. The model itself brings balance to the
underlying data via undersampling with boosting. Wan et al. introduced another en-
semble classifier named HPSLPred to efficiently perform multi-label classification
of protein sub-cellular localization [101]. The problem of data imbalance is tack-
led by applying an SVM-based algorithm that searches for balanced samples near
the decision boundary. In [116], the authors utilized an asymmetric bagging (asBag-
ging) ensemble classifier to classify high-dimensional imbalanced biomedicine data.
Their model was improved by integrating an improved random subspace generation
strategy that is called feature subspace (FSS).

More recently, Zhang et al. [121] introduced a new method called pseudo-negative
sampling that is suitable for extremely imbalanced datasets. This work assumes that
the negative samples constitute the majority class, and proposes a technique that
converts negative (majority) samples into positive (minority) samples. These samples
are called pseudo-negatives, and they are identified by applying a supervised method
based on a max-relevance min-redundancy criterion beyond Pearson correlation
coefficient. The method was experimentally attested on seven datasets by employing
multiple classifiers, and it was found superior to SMOTE, max-relevance, and min-
redundancy.
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Finally, Song et al. devised a multi-stage method to effectively identify of DNA-
binding proteins [93]. In the heart of this method, a feature extraction method
generated 188-dimensional feature vectors based on the property of minimum Re-
dundancy and Maximum Relevance to represent the protein structure. In the sequel,
the vectors were fed into an ensemble classifier named imDC, and the final out-
put was produced by a new predictor named nDNA-Prot. The performance of the
proposed framework was experimentally attested against DNA-Prot and iDNA-Prot,
and it was found superior in terms of accuracy and Area Under the Curve (AUC).

3.3 Natural Language Processing (NLP)

The extraction of useful knowledge from raw text and the capture of meanings in
text collections have improved dramatically over the past few years. The tremendous
growth of the deep learning research has been beneficial for Natural Language
Processing. Nevertheless, the problem of data imbalance affects significantly the
performance of the underlying models in this application area too.

In [80], Padurariu and Breaban presented an experimental analysis by using
different classifiers, text representations and class balancing techniques to derive
an effective model for classifying short job descriptions. The authors introduced a
differential evolution algorithm to establish a cost-sensitive method. On the other
hand, Yang et al. proposed a hybrid approach that modifies a standard CNN with
the aim of handling the majority class, whereas it also applies few-shot learning
techniques to handle the minority classes [112]. Castellanos et al. introduced a
SMOTE-based iterative approach that applies to classification with imbalanced string
data. More specifically, their method generates artificial strings that lie between
two training samples without requiring the original data to be transformed into
embeddings [19].

In an older work, Ogura et al. introduced a feature selection algorithm to confront
data imbalance [79]. The authors utilized multiple metrics to determine the feature
importance in text training data, and concluded that the signed versions of chi-
squared and Information Gain are far superior to their unsigned counterparts. Another
comparative study of a set of re-sampling methods in text classification with SVMs
was conducted by Sun et al. [94]. Interestingly, the authors employed 10 such methods
and found that none of them had a positive impact on the SVM effectiveness.

Nowadays, sentiment analysis is among the hottest NLP research topics. The
polarity classification of user opinions in reviews, comments, blog posts, etc., is of
crucial importance in many diverse applications [7]. To confront the distribution
imbalance of review texts, Wang et al. introduced the BRC algorithm for under-
sampling the majority class in the decision boundary region [104]. Kübler et al.
evaluated several feature selection methods to alleviate the imbalance of user ratings
on a collection of cooking recipes [60].

On a similar study, Obiedat et al. worked with customer reviews on restaurants.
The authors tackle the problem of polarity imbalance by testing multiple oversam-
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pling techniques, including SMOTE, two of its variants, and Adaptive Synthetic
Sampling. The augmented data is eventually fed into a cost-sensitive SVM classifier
with Particle Swarm Optimization [77]. The work of Ghosh et al. was focused on
micro-blogging platforms [44]. The authors applied oversampling on the minority
class samples, and they utilized SVM and Naive Bayes models for binary senti-
ment classification. Another oversampling approach based on the satisfaction of the
distributional hypothesis was introduced by Moreo et al. [75].

It is apparent that the majority of works in the area either apply or enhance typical
methods, such as re-sampling, cost-sensitive algorithm modifications, or hybrid
approaches. In contrast, Abonizio et al. studied additional text augmentation methods
such as back-translation and BART in conjunction with modern deep classification
models (LSTMs, CNNs, GRUs, etc.) [5]. The experimental results revealed that
data augmentation (particularly of the minority classes) can indeed lead to better
sentiment classification performance. In addition, Liu et al. introduced a probabilistic
term-weighting method to identify the documents of the minority classes effectively.
More specifically, they devised two relevance indicators that were translated as
probabilities reflecting the document class [70].

3.4 Computer Vision

This field studies AI algorithms that extract meaningful information from images
and multimedia content like videos and streaming visual data. These algorithms are
usually accompanied by augmentation techniques that pre-process the input data
with the aim of enhancing their effectiveness.

The problem of imbalance in computer vision occurs when a large number of
training images do not contain the objects of interest. Therefore, the performance of
the utilized classification models is poor when these objects are present. To address
this problem, Gao et al. introduced a step-wise hierarchical structure algorithm
(called EHS) that performed sampling, filtering, and model training at each step. In
comparison to the traditional oversampling and undersampling methods, EHS was
proved to be superior in two TRECVID2010 datasets [42]. Yang and Chen proposed a
new sampling technique that was subsequently combined with an ensemble learning
process. The framework was named PEEL, and its effectiveness was experimentally
demonstrated in the context of video event detection [113].

In Subsection 3.1 we have discussed about the effectiveness of GANs in address-
ing the issue of data imbalance in multiple applications. GANs have been utilized
extensively with the aim of generating artificial samples for the minority classes.
Hence, this model can also be viewed as an oversampling approach. In their recent
study, Sampath et al. investigated the most recent advances in GAN-based research
for imbalanced image data [87].

Regarding the popular problem of image classification, multiple research groups
have focused on the introduction of methods that combat class imbalance. More
specifically, Khan et al. proposed a cost-sensitive deep CNN to learn the most
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important features from both the majority and minority classes [54]. The learning
procedure of this architecture, called CoSen, jointly optimizes the class-dependent
costs and the neural network parameters. In their study, Reza and Ma worked with
two imbalanced medical image datasets about breast cancer [85]. The authors tested
several oversampling and undersampling techniques with the aim of improving the
accuracy of their CNN classifier, and highlighted the usefulness of oversampling.

The work of Huynh et al. [51] was also oriented towards medical imaging.
However, it mainly applies to perturbation-based semi-supervised learning meth-
ods. ACBL is an adaptive model that includes a supervised part that optimizes the
cross-entropy loss of a ResNet CNN and a semi-supervised part that minimizes the
consistency loss between the class distributions of the unlabelled and the predicted
image data. Before they are fed into the model, the unlabelled images are augmented
by using the Unsupervised Data Augmentation (UDA) method.

In 2017, Odena et al. introduced ACGAN, a model based on Generative Adver-
sarial Networks (GAN) with label conditioning [78]. ACGAN produces 128 × 128
resolution images that capture important class information. Nevertheless, this model
was not specifically designed for imbalanced datasets. In their preprint, Mariani et
al. proposed BAGAN, a model that, similarly to ACGAN, used label conditioning to
perform augmentation of imbalanced image data [74]. BAGAN synthesizes images
belonging to the minority class by using useful features that it learnt from its training
with majority class images. The class distributions in the latent space are inferred by
the encoder part of an autoencoder. This strategy allows the adversarial training to
begin from a more stable point. The authors demonstrated the superior performance
of BAGAN by comparing it with other state-of-the-art GANs including ACGAN.

In [62], the authors introduced a transfer learning approach for plankton image
classification. At first, Random Oversampling was applied to the data to alleviate
class imbalance. Then, a CNN was pre-trained on the balanced data, and the model
was subsequently fine-tuned by using the original data. Pouyanfar et al. proposed a
dynamic sampling approach that adapts itself according to how well a deep CNN has
learnt a specific class [82]. In this way, the classes for which the accuracy is low are
oversampled, whereas, in contrast, the high performance classes are undersampled.

Finally, Wardhani et al. [106] examined various evaluation metrics in the context
of imbalanced image classification. Among a set of different choices, the authors
conclude that Area Under the Curve (AUC) is the measure that most accurately
reflects the performance of a classifier in the presence of imbalanced training data.

4 Technique-based Organization

In the previous section, we presented the most important research articles on data
imbalance from an application-wise perspective. Of course, the literature also con-
tains a significant number of works that examine the generic version of the problem.
That is, without considering any particular application field. This section organizes
both the generic and the application-specific studies on data imbalance according
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Fig. 3 Categorization of methods for handling data imbalance.

to the techniques that they introduce to address the problem. Since the latter have
already been discussed, here we provide descriptions only for the generic papers.

The proposed methods are typically divided into four categories:

• Data Preprocessing: The methods of this category augment the imbalanced data
either by appending artificial samples to the minority class (oversampling), or
by removing samples from the majority class (undersampling). A third category
includes hybrid sampling approaches that apply both oversampling and under-
sampling to render the data balanced. Moreover, augmentation can be achieved
by applying either feature selection or feature extraction techniques, with the aim
of identifying or generating meaningful features.

• Algorithm Centered Approaches: This family includes the algorithmic approaches
to imbalanced data handling. Oversampling with Boosting or GANs and under-
sampling with clustering or feature selection/extraction are indicative representa-
tives of such algorithms. We examine them together with the data preprocessing
techniques in Subsection 4.1.

• Cost-Sensitive Methods: Here, we encounter techniques that directly modify a
learning algorithm in order to decrease its bias towards the majority class. In
particular, the cost-sensitive methods take into consideration the error of the
misclassified samples. The literature includes methods for enhancing the most
popular models including the SVMs, Neural Networks, Decision Trees, etc.

• Hybrid Methods: Several strategies adopt a hybrid approach that both modifies
a classification algorithm and applies data preprocessing techniques to mitigate
the effects of class imbalance. A portion of these methods may also apply novel
learning strategies like active, or few-shot learning.

Figure 3 illustrates the aforementioned categorization. Table 2 will be our driver
throughout this section. It displays a taxonomy of the relevant articles, according to
the technique they introduce or apply to confront the problem of data imbalance. The
horizontal lines are used to discriminate methods belonging to different categories.
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Table 2 Data imbalance solutions categorized by application field.
Technique Papers
Oversampling – Random [3], [9], [11], [15], [30], [62], [75], [80], [85],

[114], [120]
Oversampling – SMOTE [6], [10], [11], [16], [18], [19], [22], [25], [35],

[44], [64], [77], [80], [83], [85], [94], [109],
[118], [123]

Oversampling – Borderline SMOTE [24], [46], [67], [77], [91]
Oversampling – Safe-level SMOTE [17], [27]
Oversampling – Adaptive SMOTE, Gaussian [81]
Oversampling – SMOTE-SVM [4], [77], [80]
Oversampling – MWMOTE [14], [107], [108]
Oversampling – SNOCC [124]
Oversampling – ADASYN [6], [11], [37], [48], [77], [83], [85]
Oversampling – w/ Boosting [23], [95]
Oversampling – w/ Bagging [105]
Oversampling – w/ Attention [102]
Oversampling – with GANs [8], [28], [31], [63], [66], [74], [111]
Undersampling – Random [3], [10], [11], [15], [29], [30], [42], [47], [85],

[94], [109], [114]
Undersampling – ENN [10], [110]
Undersampling – 𝑘NN [28]
Undersampling - Wilson’s Editing [13], [88]
Undersampling – w/ Boosting [40], [58], [95], [114]
Undersampling – w/ Clustering [68], [115], [118]
Undersampling – w/ Feature Selection [69], [70], [71], [79], [104]
Undersampling – w/ Feature Extraction [93], [113], [116]
Subsampling – Random [3]
Pseudo-negative sampling [121]
Hybrid sampling [11], [18], [26], [28], [33], [82], [88], [103],

[110], [118]
Cost-sensitive Learning – C4.5, Decision Tree [12], [25], [30], [34], [59], [69], [86], [98]
Cost-sensitive Learning – SVM [25], [34], [56], [64], [77], [101]
Cost-sensitive Learning – MLP, DNN [20], [34], [122], [125]
Cost-sensitive Learning – CNN [38], [54], [92], [119]
Cost-sensitive Learning – Deep Belief Net [117]
Few-shot Learning [112]
Sequence Modeling – BERT [76]
Hybrid – resampling + cost-sensitive [26], [28], [42], [77]

4.1 Data Preprocessing and Algorithm Centered approaches

One of the first approaches to the problem dictates the augmentation of the initial
data with the aim of limiting its intrinsic imbalance. The methods that belong to this
category can be further organized into three fields: oversampling, undersampling,
and hybrid sampling. Here, we choose to present the algorithm centered methods
along with the pure data preprocessing techniques because, in most of them, the
ultimate goal is to either enrich the minority class or compress the majority class.
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4.1.1 Oversampling

Oversampling refers to pre-processing strategies that enrich the minority classes
with artificial samples, aiming at alleviating the problem of class imbalance. This
simplistic definition includes a surprising number of oversampling approaches, such
as typical data mining algorithms and heuristics, boosting, bagging, deep generative
models, and so on. Figure 4 depicts a deeper categorization into two major groups:
traditional synthetic sampling and algorithm centered techniques.

Random oversampling is perhaps the simplest data enrichment method: it repeat-
edly appends samples to the minority classes in a random fashion. The Random
Walk Over-Sampling approach (RWO-Sampling) is a more sophisticated solution
proposed by Zhang and Li [120]. RWO-Sampling is based on the proof that, under
special circumstances, the expected average and standard deviation of the synthetic
data can become equal to those of the original minority class samples. The method
includes a mechanism that expands the minority class boundary after the creation of
the synthetic samples. The authors have experimentally shown that RWO-Sampling
significantly outperforms other methods when common classifiers are used.

In 2002 Chawla et al. introduced one of the most successful preprocessing meth-
ods, called Synthetic Minority Oversampling Technique (SMOTE) [22]. For each
sample of the minority class, SMOTE initially identifies its 𝑘 nearest neighbors
(Chawla et al. suggested 𝑘 = 5). Then, new synthetic samples are generated between
each sample and its 𝑘 nearest neighbors, until the dataset becomes balanced. In this
way, SMOTE confronts the problem of overfitting and improves the generalization
capabilities of a classifier.
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SMOTE has been extensively studied and utilized in numerous researches involv-
ing imbalanced data [21, 43]. In addition, a huge number of extensions for it have
been proposed in the literature. A detailed list of SMOTE extensions up to 2018 is
provided in [35]. We will not reproduce this list here, but we will focus on the two
most well-studied properties of SMOTE: i) the selection of the data points that will
be oversampled, and ii) the creation of the synthetic samples (i.e., the interpolation
type).

Regarding the initial samples selection, Han et al. introduced Borderline-SMOTE,
a technique that creates synthetic samples only for those instances that lie close to
the decision boundary between two classes [46]. In other words, Borderline-SMOTE
does not operate on all the examples of the minority class, but it focuses only on
those that are considered important for the output of a classifier. On the other hand,
Safe-Level SMOTE computes a weight degree by taking into account the number
of nearest neighbors of a minority sample [17]. This degree, called the safe level,
determines the area where the synthetic samples will be created. Despite that more
than a decade has passed since their introduction, both Borderline and Safe-level
SMOTE are still being used to mitigate class imbalance in various applications
[24, 27, 67, 91].

The interpolation type is the second property that is most studied in the literature.
SMOTE and its two aforementioned variants randomly synthesize samples on the
line that connects a minority sample with its nearest neighbor (linear interpolation).
However, other approaches may create samples that are closer to an instance than its
neighbors by employing feature weighting schemes [50], or topologies of different
shapes (e.g., ellipses [2]).

One year after the introduction of SMOTE, Chawla et al. enhanced their technique
with a Boosting mechanism called SMOTEBoost [23]. The method is a modification
of the AdaBoost.M2 procedure for converting weak classifiers into strong ones. After
SMOTE is applied to the original imbalanced data, an iterative process repeatedly
trains a weak classifier by assigning higher weights to the misclassified samples.

Apart from boosting, bagging has also been employed to develop ensemble-based
algorithms. For instance, Wang and Yao proposed SMOTEBagging, a SMOTE
enhancement for effectively learning multi-class imbalanced datasets [105]. The
review paper of Galar et al. studied multiple ensemble-based techniques, including
boosting, bagging and hybrid methods [89].

In [14], the authors introduced a two-stage clustering-based approach called
MWMOTE (Majority Weighted Minority Oversampling TEchnique). During the
first stage, MWMOTE locates the nearest neighbours of the samples belonging to
the minority class and assigns distance-based weights to them. In the sequel, it
employs a clustering algorithm to generate synthetic data, under the restriction that
the artificial data lie inside some minority class cluster. Wei et al. introduced a
noise-resistant variant of the algorithm, called NI-MWMOTE [108]. Their method
is based on an estimator that tries to predict whether a suspected noise is true by
examining the neighborhood density. In the same year, the same group presented
Cluster-MWMOTE that combined agglomerative clustering with MWMOTE [107].
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Zheng et al. recognized two significant disadvantages in SMOTE: First, its linear
interpolation property eventually produces data points that do not represent the
original data distribution. And, second, simply searching for the 𝑘 nearest neighbors
of a minority sample may lead to the problem of overlapping between classes.
For these reasons, they introduced an oversampling method called SNOCC (Sigma
Nearest Oversampling based on Convex Combination) with the aim of curating the
weaknesses of SMOTE [124]. In SNOCC, the samples to be created are determined
by a convex combination function of its nearest neighbors. The authors demonstrate
that their approach can reproduce the distribution of original data more accurately,
even if the distribution is irregular.

Another family of approaches applied SMOTE only to the support vectors of
a class. Initially, an SVM classifier is trained on the original data. Then, SMOTE
creates synthetic samples by taking into consideration only the computed support
vectors. This method, called SMOTE-SVM, cannot balance the dataset completely.
However, it appropriately adjusts the decision boundary between two classes [4, 80].

In [81], Pan et al. introduced two oversampling techniques, Adaptive SMOTE and
Gaussian oversampling. The former synthesizes a new minority class by adaptively
selecting instances from the original minority class, with the aim of enhancing the
distributional data characteristics. The latter, establishes a Gaussian distribution by
sampling the strong characteristics of the majority class and by applying dimension-
ality reduction on the original imbalanced data. The authors evaluated both methods
by using 15 datasets and proved their usefulness against other traditional techniques.

He et al. introduced a novel oversampling method, named ADASYN (Adaptive
Synthetic Sampling), that produces more synthetic examples for the input samples
that are harder to learn [48]. To achieve this goal, ADASYN assigns different weights
to the samples by enumerating their 𝑘 nearest neighbors that belong to the majority
class. In this way, ADASYN adaptively moves the decision boundary towards the
difficult examples, thus decreasing the classification bias.

The great capability of the recent state-of-the-art generative models to synthesize
samples that represent the probability distribution of the original data, rendered
them particularly attractive for oversampling purposes. As already mentioned, the
Generative Adversarial Networks (GANs) have been effectively applied in intrusion
detection systems [28, 63] and image classification applications [74, 78]. In [8],
the authors introduced MFC-GAN, a model that integrates not one, but multiple
fake classes to ensure better data generation. Yan and Zhou initialized the training
process of their IDA-GAN model by exploiting a Variational Autoencoder to learn
the majority and the minority class distributions [111]. Wei et al. proposed EID-GAN
as a remedy to the BAGAN’s weakness in synthesizing tiny outliers [66]. Finally,
Engelmann and Lessmann used a conditional Wasserstein GAN with the aim of
modeling tabular datasets with numerical and categorical variables [31].
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4.1.2 Undersampling

Undersampling is the preprocessing technique that brings balance to a dataset via
sample removal from the majority class. On an early work, Drumond and Holte
compared the impact of undersampling and oversampling on the performance of
a C4.5 decision tree classifier [30]. Their analysis indicated that oversampling is
inferior, because the performance discrepancies are usually infinitesimal when the
misclassification costs are changed. However, note that the undersampling techniques
run the risk of breaking the majority class distribution by discarding important
samples from it.

Similarly to the oversampling case, random undersampling removes instances
from the majority class in a random fashion. Hasanin and Khoshgoftaar studied the
effects of random undersampling on classification performance by using five large-
scale datasets and the Random Forest classifier of the Apache Spark framework [47].
They inferred that performance can be enhanced by randomly increasing the minority
class percentages from 0.1% to 1.0% and partially undersampling the majority class,
without balancing the data to a 50:50 ratio.

Wilson’s Editing is a simple method introduced by Barandela et al. in 2004 [13]. It
is based on a lazy 𝑘NN classifier, with 𝑘 = 3, that prunes all the misclassified majority
samples. On the other hand, RUSBoost is one of the most popular undersampling
techniques [89]. It combines random undersampling with AdaBoost to mitigate
class imbalance, and it often performs better than SMOTE and SMOTEBoost. It
is also a simpler and faster method. Galar et al. also capitalized on Boosting and
proposed EUSBoost, an evolutionary undersampling approach that was subsequently
combined with AdaBoost.M2 applied at C4.5 classifiers [40].
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Clustering is another effective way for undersampling the majority class on imbal-
anced datasets. The idea is that these algorithms construct homogeneous, complete
clusters that group together similar data points. Therefore, an entire cluster of el-
ements can be effectively replaced by a single representative element, e.g., cluster
center, centroid, clustroid, etc. This key concept renders clustering an attractive ap-
proach to undersampling, because it enables the replacement of entire sample groups
by a single, representative data point.

Lin et al. proposed two clustering strategies for undersampling, both based on the
well-known 𝑘-Means algorithm [68]. In the first strategy, the number of clusters to be
constructed is determined by the population of the minority samples. The centroids
of the generated clusters are subsequently utilized to replace the entire majority
class, rendering the dataset perfectly balanced. The second strategy is very similar
to the first one, except that we do not use the centroids as representative points, but
their nearest neighbor. To demonstrate the effectiveness of their methods, the authors
employed 44 small and 2 large datasets to train 5 different classifiers.

In contrast, the work of Lin et al., the clustering approaches of Yen and Lee are
applied to the entire dataset, leading to mixed clusters that contain samples from both
the minority and majority classes [115]. In the sequel, the representative majority
class samples are selected by adopting a variety of different criteria, e.g., the most
proximal or the farthest points to the minority class samples.

Several researchers have introduced methods that combine undersampling with
feature selection techniques. These techniques have been proved valuable in many
studies because a careful selection of features can improve the accuracy of the
minority class prediction.

More specifically, the authors of [71] introduced an ensemble learner that com-
bines evolutionary under-sampling with feature selection. The selection is performed
by using the multiobjective ant colony optimization algorithm that maximizes F1
and G-Mean. Maldonado et al. investigated feature selection from the perspective
of dimensionality reduction in imbalanced datasets [73]. They introduced a feature
elimination technique by repeatedly training an SVM classifier on a feature set that
was progressively refined. The non-important input variables were removed from
the feature set on each iteration. However, to improve the performance of the SVM
predictor, the algorithm performed oversampling on the minority class samples by
using SMOTE.

The feature selection method of Liu et al. utilized a Decision Tree classifier
and used its splitting criterion to identify the most informative features [69]. The
authors proposed a Weighted Gini index, with the aim of increasing the bias towards
the minority class. Consequently, the method of [69] can be also considered as a
cost-sensitive approach, and that explains why this paper appears twice in Table 2.

4.1.3 Hybrid Sampling

In the two previous subsections, we mentioned that, in several cases, oversampling
has infinitesimal impact on the performance of a classifier, whereas it can also
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distort the probability distribution of the minority classes. On the other hand, the
undersampling methods can be detrimental, as they may discard important samples
from the majority class. To overcome these issues, several scholars proposed the
usage of hybrid sampling techniques to mitigate class imbalance.

The method of Cao and Zhai was based on a combination of SMOTE (for over-
sampling) and random undersampling [18]. The experimental evaluation, with a
binary SVM classifier trained on five datasets, demonstrated the superiority of this
simple method over the cases that employ solely either random underampling or
SMOTE. In [110], the authors presented the RFMSE hybrid sampling algorithm
that combines Misclassification-Oriented SMOTE and the Edited Nearest Neighbor
(ENN) method for noise removal. RFMSE was tested on 10 UCI imbalanced datasets
and outperformed 9 sampling algorithms in 9 cases.

Zhu et al. [126] based their work on the concept that the instances that are close
to the decision boundary (overlapping region) play a greater role in classification
effectiveness than the more distant ones. They presented an Evolutionary Hybrid
Sampling technique (EHSO) that attempts to “strengthen” the decision boundary
by dropping the non-informative samples of the majority class. The CHC genetic
algorithm is applied for this reason [32], whereas random oversampling is applied
to synthesize new minority samples.

The hybrid method of [103] initially trained an SVM classifier by using the orig-
inal imbalanced dataset. Then, it performed undersampling, by removing majority
class samples according to their distance from the decision boundary determined by
the SVM classifier. The most distant samples were removed, until the imbalance ratio
became the half of the one of the original dataset. In the sequel, the new dataset was
divided into 𝑘 parts, and one of them was randomly chosen. SMOTE was applied to
it, and a new SVM classifier was trained on that balanced dataset. This process was
repeated for the rest 𝑘 − 1 splits.

In [88], Seiffert et al. examined three hybrid resampling scenarios on 10 datasets
from different application fields. The first scenario initially applied oversampling
to the minority class by using SMOTE or Borderline SMOTE and, then, it per-
formed random undersampling. The second use case reversed the aforementioned
process, whereas the third procedure applied SMOTE, Borderline SMOTE, random
undersampling, and random oversampling, in combination with Wilson’s Editing.
The experiments verified that hybrid sampling is superior to the individual sampling
techniques. It never performed remarkably worse than the individual methods, and,
in the vast majority of cases, it improved the performance of a C4.5 Decision Tree
predictor.

Estabrooks et al. presented a comparative study of oversampling and undersam-
pling by utilizing the well-established Reuters-21578 text collection [33]. It was
demonstrated that, by combining various resampling techniques, better results can
be obtained.
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4.2 Cost-Sensitive Learning

The typical machine learning models adopt a 0-1 cost assignment approach, that out-
puts 0 for correct predictions and 1 for the incorrect ones. This strategy works well
when the classes are relatively balanced, but it becomes ineffective when the class
distributions are skewed. The cost-sensitive methods introduce a special misclassi-
fication error that strongly penalizes a classifier for mispredicting the minority class
samples. For this reason, they utilize a misclassification matrix 𝐶, whose entries 𝐶𝑖 𝑗

represent the cost of assigning the 𝑗-th class to a sample 𝑥 that originally belongs to
the 𝑖-th class [34]. The definition of the contents of𝐶 is among the greatest challenges
posed by these methods. In some applications, the individual misclassification costs
are manually provided by experts.

The SVMs were among the first models that were enhanced with cost-sensitive
mechanisms. We have already cited the recent works of Obiedat et al. [77] and
Ghosh et al. [44] on sentiment analysis applications. Kim and Sohn introduced NN-
CSSVM, a hybrid model comprised of neural networks and cost-sensitive SVMs
[56]. The authors modified two real-world datasets to create five synthetic ones, by
setting different imbalance ratios. NN-CSSVM outperformed the standalone cost-
sensitive SVM and cost-sensitive Multilayer Perceptron by a significant margin. A
cost sensitive-SVM was also introduced in [64].

Krawczyk et al. introduced an ensemble model, with Decision Trees as base
learners [59]. Initially, the proposed technique randomly divides the original feature
space into subspaces and, then, it trains each individual learner on a different feature
subspace. This strategy improves the diversity of each Decision Tree. An evolutionary
algorithm is subsequently executed to select the base learners by assigning weights
to them. The model was tested on 6 benchmark datasets, and exhibited superior
performance compared to SMOTEBagging, SMOTEBoosting and other methods.
One year earlier, Sahin et al. [86] proposed a similar cost-sensitive Decision Tree for
credit card fraud detection applications.

The work of Bahnsen et al. introduced an example-dependent cost-sensitive de-
cision tree that takes into consideration different costs during node splitting [12].
More specifically, a misclassification cost matrix 𝐶 with 4 elements (True/False-
Positive/Negative cost) is initially employed. Then, the authors propose: i) a cost-
sensitive impurity measure to determine the optimal splitting of a leaf, and ii) a
cost-sensitive pruning policy that removes the tree nodes that do not contribute to
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the minimization of the cost. In an older work, Ting proposed a cost-sensitive method
that assigned weights to the input instances during Decision Tree induction [98].

In the relevant literature, we also encounter researchers who proposed cost-
sensitive modifications of neural networks. In a earlier work (2002), Zhou and
Liu presented an empirical study on how oversampling, undersampling and thresh-
old moving affect the training process of cost-sensitive neural networks [125]. In
their experimental evaluation, the authors employed three misclassification matrices
according to the aforementioned work of Ting [98]. Despite its age, the conclusions
of this paper are noteworthy: i) cost-sensitive learning is considerably more difficult
on multiclass tasks than on two-class tasks, ii) SMOTE and several other resampling
techniques alone are not effective in multiclass tasks, and iii) the ensemble methods
(bagging and boosting) that employ resampling perform significantly better.

Zhao et al. introduced SPFCNN, a cost-sensitive model based on neural networks,
aiming at detecting software defects [122]. The proposed model comprised two
Siamese fully-connected networks, one shallow and one deep, trained with AdamW.
The cost-sensitivity was integrated to the model through the normalized expected cost
of misclassification. The experiments conducted on six test datasets demonstrated
the effectiveness of SPFCNN.

The excellent performance of CNNs in the domain of image classification mo-
tivated several research groups to introduce cost-sensitive modifications of CNNs,
with the goal of mitigating class imbalance in image datasets. The CoSen model of
Khan et al. has been already described in Subsection 3.4 [54]. Fuqua and Razzaghi
introduced another cost-sensitive CNN variant, named CSCNN, to address the prob-
lem of control chart pattern recognition [38]. CSCNN is based on the cost-sensitive
function of [61] that penalizes differently the mispredictions of the minority and
majority classes. Similarly to the well-known LeNet 5 model, the architecture in-
cludes sequences of 1D convolutional layers, followed by max pooling and dropout
layers. The authors chose the mean squared propagation (RMSProp) algorithm for
training CSCNN due to its robustness. A similar architecture, also called CSCNN,
was presented in [92].

In [119], Zhang et al. introduced a cost-sensitive Residual CNN, named CS-
ResNet, for the effective detection of cosmetic defects. Similarly to other CNNs, CS-
ResNet contains typical convolutional layers with batch normalization units and max
pooling. However, it also embodies a cost-sensitive adjustment layer for assigning
class-dependent misclassification costs, based on a weighted softmax cross-entropy
loss function.

The authors of [117] recognized that the conventional Deep Belief Networks
(DBN) do not perform well on classification tasks that involve imbalanced data.
So, they introduced an evolutionary cost-sensitive DBN (ECS-DBN) that initially
applies an adaptive differential evolution algorithm to optimize the misclassification
costs. In the sequel, the optimized costs are used to the DBN. The conducted exper-
iments demonstrated that ECS-DBN is superior to resampling (SMOTE, Borderline
SMOTE and SMOTE-SVM) and using a typical DBN for classification.
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Table 3 Data imbalance solutions categorized by the utilized classification models.
Classifier Papers
𝑘NN [14], [19], [52], [68], [79], [99], [108]
Naive Bayes [3], [22], [44], [52], [68], [70], [97], [99], [126]
Logistic Regression [80], [99], [109]
Support Vector Machines (SVM) [5], [16], [18], [25], [42], [44], [52], [56], [64],

[68], [70], [73], [77], [80], [83], [94], [99],
[104], [107], [108]

Decision Trees, C4.5 [12], [14], [22], [25], [30], [33], [40], [52],
[59], [68], [69], [80], [86], [88], [98], [99],
[109], [126]

Random Forests [3], [5], [10], [29], [47], [52], [63], [76], [99],
[108], [109], [110]

Multilayer Perceptrons (MLP),
Deep Neural Networks (DNN)

[3], [6], [11], [14], [16], [20], [28], [56], [68],
[99], [102], [108], [109], [115], [122], [125]

Convolutional Neural Networks (CNN) [5], [8], [9], [15], [36], [37], [38], [54], [62],
[82], [85], [92], [112], [118], [119]

ResNet-18 [74]
Long Short-Term Memory (LSTM),
Bi-directional LSTM (BiLSTM)

[5], [9], [76]

CNN + LSTM Hybrid [9]
DLNID (CNN + BiLSTM Hybrid with attention) [37]
Gated Recurrent Unit (GRU) [5]
Deep Belief Networks (DBN) [16], [117]
Deep Self-Organizing Maps (SOM) [16]
Transformers [5]
Ensemble (Bagging, Boosting, Hybrid) [40], [58], [64], [68], [71], [89], [93], [101],

[105], [113], [114], [116], [123]

5 Classifier-based Organization

As mentioned earlier, the a large part of the research works that are dealing with the
problem of data imbalance primarily focus on classification tasks. More specifically,
these articles either employ or adapt a variety of classification models to examine
how the problem in question affects their performance. To cover this aspect, this
section presents the most important works in the area from the perspective of the
utilized classifiers.

Table 3 summarizes our classifier-based organization. The majority of the in-
cluded articles have already been described in previous sections, so we shall not
discuss them again here. Another portion of them represents survey and review
papers, and their details will be presented in Section 6.

A quick observation of the Table 3 immediately reveals that the relevant research
has been heavily based on traditional machine learning predictors, like Decision
Trees, Random Forests, Naive Bayes, and Support Vector Machines. Despite their
excellent performance and high popularity across numerous diverse application
fields, the deep learning models have not been used extensively in data imbalance
papers. The Convolutional Neural Networks (CNNs) and several deep CNN-based
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architectures are perhaps the only exception to this observation. This is a strong
conclusion, that is also verified by the survey of Johnson & Khoshgoftaar [52] on
deep learning methods. It highlights the necessity of integrating such models in the
techniques that confront data imbalance.

6 Surveys and Overviews

The vast number of research works that deal with the problem of classification
with imbalanced data established the necessity for conducting comparative surveys
in order to cover the most recent advances in the area. During our research, we
discovered at least 22 such qualitative overviews, with the oldest being 16 years
old. Table 4 contains a comparative summary of these surveys, ordered in ascending
chronological order. The third column provides an impression of each work’s length,
whereas the last column contains descriptive snippets. The table itself reveals that,
since 2007, there is at least one major survey paper about the research field of data
imbalance.

All survey papers describe the current state-of-the-art solutions, the most signif-
icant challenges of the problem and the involved applications. Therefore, we shall
not describe all of them here, because, more or less, they all approach the problem
from a similar point of view. In contrast, we do focus on experimental surveys. That
is, works that, apart from algorithm descriptions, also provide useful conclusions
based on real-world applications and experiments.

The experimental survey of Galar et al. focused on the evaluation of multiple bag-
ging and boosting algorithms on 44 binary-class imbalanced datasets [89]. In Section
D, a very informative discussion of the conclusions is provided. In summary, the
survey inferred that: i) SMOTEBagging, RUSBoost, and UnderBagging achieved the
best performance among other ensemble learning methods, ii) the complex bagging
and boosting methods do not lead to better results than the simpler ones, and iii) the
bagging techniques are powerful, albeit difficult to implement. Another comparative
study on the resampling techniques was conducted on 2007 by Van Hulse et al. [99].
The authors employed 35 datasets and several traditional machine learning models
(see Table 3). The experiments revealed multiple high-performing combinations,
such as Random Undersampling with C4.5 Decision Trees and Random Forests, and
Random Oversampling with Logistic Regression.

The paper of Yap et al. investigated how oversampling, undersampling, bagging
and boosting can improve classification performance on a cardiac surgery dataset
with 4976 samples and an imbalance ratio of about 4:96 [114]. By using a Decision
Tree classifier, the authors inferred that the resampling techniques worked signifi-
cantly better than bagging and boosting. On the other hand, the work of Khoshgoftaar
et al. studied how Random Forests (RF) can be fine-tuned to classify imbalanced data
[55]. The experiments were conducted on 10 datasets of different sizes, imbalance
ratios, and dimensionality. The authors used various values for two key RF attributes,
the number of estimators in the forest and the number of features to be used during
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Table 4 A comparative summary of overview, survey, and review papers on data imbalance.
Survey Year Number of

papers
Summary

[99] 2007 18 Experimental; sampling methods and classifiers.
[55] 2007 24 Experimental; a Random Forest was fined-tuned on 10 datasets.
[96] 2009 92 Application fields; classification challenges; state-of-the-art solu-

tions; evaluation measures.
[49] 2009 145 Application fields; classification challenges; state-of-the-art solu-

tions; evaluation measures.
[94] 2009 37 Experimental; 10 sampling methods were evaluated with an SVM

classifier on 3 text datasets; the results were negative.
[21] 2010 70 Sampling techniques and evaluation measures.
[39] 2011 112 Experimental survey on bagging, boosting, and hybrid state-of-the-

art algorithms.
[41] 2012 30 Brief overview of several data preprocessing techniques and

algorithm-based methods.
[1] 2013 67 State-of-the-art solutions.
[114] 2013 23 Experimental evaluation of oversampling, undersampling, bagging

and boosting on a cardiac surgery dataset.
[84] 2014 57 Classification challenges; state-of-the-art solutions; evaluation

measures.
[57] 2016 69 Application fields and challenges of learning from imbalanced data.
[45] 2017 337 Application fields; classification challenges; state-of-the-art solu-

tions; Rare event detection.
[10] 2017 74 Experimental study on numerous oversampling and undersampling

techniques in the field of osteoporosis prediction.
[90] 2017 13 Brief descriptions of several sampling techniques.
[35] 2018 238 This paper marked the 15-year anniversary of SMOTE. It discussed

numerous SMOTE extensions and variants, as well as future in-
sights for using SMOTE in Big Data applications.

[65] 2018 77 State-of-the-art solutions between 2010 and 2018 for extremely
imbalanced datasets (ratios ranging from 100:1 to 10000:1).

[15] 2018 65 Experimental; exploration of oversampling, undersampling, two-
phase training, and thresholding in image classification tasks.

[52] 2019 131 Deep learning models with imbalanced data; implementation de-
tails; experimental results.

[53] 2019 168 Application fields; classification challenges; state-of-the-art solu-
tions; evaluation measures.

[97] 2020 48 Experimental; the impact of class imbalance on classification per-
formance.

[87] 2021 236 Oversampling with Generative Adversarial Networks on computer
vision applications.

training. They inferred that the best settings were 100 and ⌊log2 𝑀 +1⌋, respectively,
where 𝑀 is the actual number of features in each dataset.

The survey of Leevy et al. summarized the state-of-the-art works on extreme data
imbalance between 2010 and 2018 [65]. The work focuses on large-scale datasets
that exhibit high majority-to-minority class ratios, between 100:1 and 10000:1. The
large-scale study of Haixiang et al. explored 527 research articles on learning from
imbalanced data, from the perspective of rare event detection [45]. The authors
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introduced a generic data mining model that includes techniques for preprocessing
the imbalanced data, classification and evaluation. Thabthah et al. have recently
explored the relationship between the imbalance degree and the performance of a
Naive Bayes classifier [97].

The brief overview of Ganganwar noticed the transition of data imbalance re-
search toward the hybrid methods [41], whereas Shelke et al. discussed several over-
sampling and undersampling techniques [90]. Moreover, Krawczyk summarized the
most crucial challenges of learning from imbalanced data and provided informative
insights about the future solutions [57]. His work was not limited to classification ap-
plications only, but it also covered additional machine learning problems, including
regression, clustering and big data analytics.

Buda et al. examined how oversampling, undersampling and two-phase training
affect the performance of a CNN on image classification tasks [15]. By using three
benchmark datasets, namely, MNIST, CIFAR-10 and ImageNet, the authors verified
that data imbalance is indeed harmful, and inferred that oversampling: i) was the best-
performing method in all cases, ii) must be fully applied until the dataset becomes
perfectly balanced, and iii) does not cause overfitting to CNNs.

Johnson and Khoshgoftaar published a systematic survey on the research works
that trained deep learning predictors with imbalanced datasets [52]. Interestingly, this
work reports implementation details and experimental results for the most significant
articles that it covers, providing a convenient way of quickly summarizing the key
findings. The investigation concludes that, despite the huge adoption of the deep
learning models, very little work has been done in the context of data imbalance.
Even worse, the characteristics of Big Data are scarcely taken into consideration.

The recent large-scale study of Sampath et al. investigated the current state-of-
the-art methods for oversampling the minority classes in computer vision tasks [87].
Motivated by the great capability of the Generative Adversarial Networks (GANs)
to generate samples that reflect the original data distribution, the survey focused
on oversampling methods that solely use GANs to achieve their goal. Due to their
adversarial training, GANs have been proved particularly successful in generating
synthetic images, and, thus, bringing balance to imbalanced datasets. Specifically,
the study in question categorizes the relevant works according to the imbalance type
they tackle, namely image, object, and pixel imbalance.

7 Conclusions

In this chapter, we presented on overview of the current state-of-the-art techniques
for mitigating the problem of data imbalance in classification tasks. We adopted
a triadic categorization approach for the relevant papers, namely, application-wise,
technique-wise, and classifier-wise. Moreover, a summary of the most qualitative
theoretical and experimental surveys was presented. We particularly emphasized on
the conclusions of each work to assist the research community in quickly deriving
conclusions from the involved methods.



Survey on Learning from Imbalanced Data 25

Among the dozens of conclusion that we inferred from this overview, we mainly
distinguish three key points:
1. Despite their proved effectiveness in multiple research fields, the deep learning

models have not been used extensively in the problem of data imbalance yet.
This inference is largely supported by our classifier-based analysis (Table 3)
and the survey of Johnson & Khoshgoftaar [52]. Isolated exceptions include the
usage/modification of Convolutional Neural Nets in image classification tasks,
and several deep learning models in intrusion detection systems. Nonetheless,
much work is still required to effectively integrate the powerful features of deep
learning to methods that confront data imbalance.

2. The Generative Adversarial Networks (GANs) are quickly gaining the attention of
the research community in oversampling tasks. Multiple such models have been
presented in the literature to augment the minority classes with useful samples.
Many more researchers are still trying to devise novel GAN-based methods for
this purpose.

3. Complex solutions do not necessarily yield better results compared to their simpler
(and older) counterparts. A large number of recent works are still employing
baseline solutions, like SMOTE and its variants, or random undersampling and
its variants, to restore balance in imbalanced datasets.
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