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Abstract

Natural Language Processing (NLP) is presently among the hottest sci-
entific fields with an enormous growth rate of the relevant research.
Sentiment analysis is a popular NLP problem that aims at the auto-
matic identification of the polarity in user reviews, tweets, blog posts,
comments, forum discussions and so on. Unfortunately, the natural
sparseness of text, along with its intimate high dimensionality renders
the direct application of machine/deep learning models problematic. For
this reason, the relevant literature contains a wealth of state-of-the-
art dimensionality reduction methods that confront these issues. In this
paper, we conduct an experimental study on the effects of dimensional-
ity reduction in the area of sentiment classification. More specifically, we
consider multiple feature selection and feature extraction techniques and
we investigate their impact on the effectiveness and the efficiency of seven
state-of-the-art classifiers. The experimental evaluation includes accu-
racy and execution time measurements on four benchmark datasets with
various degrees of reduction aggressiveness. The results indicate that,
in most cases, dimensionality reduction has indeed a beneficial impact
on the running times, whereas the accuracy sacrifices are usually small.
However, we also indicate several exceptions where this observation is
not valid. These exceptions are appropriately highlighted and discussed.

Keywords: sentiment analysis, opinion mining, sentiment classification, text
classification, dimensionality reduction, feature selection, feature extraction
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1 Introduction

The growing requirement for accurately identifying the polarity of an opinion
in an excerpt of text led to the establishment of the sentiment analysis research
field. Powered by effective Natural Language Processing (NLP) algorithms,
the sentiment analysis models are now playing a crucial role in a vast number
of knowledge discovery tasks. Examples include blogs [1, 2], microblogs [3, 4],
social networks [5, 6], e-Commerce reviews [7, 8], and so on.

In the vast majority of cases, sentiment analysis is treated as a text classi-
fication problem [9, 10]. If the involved text polarity is binary (i.e., positive or
negative, good or bad), then binary text classification models are trained by
utilizing two class labels. On the other hand, in case the polarity falls into a
closed score range (e.g., 1–5, 1–10, etc.), then each individual score is treated
as a separate class label and multi-class classification approaches are applied.

Text classification is one of the most well-studied machine learning prob-
lems, and numerous state-of-the-art models exist for almost every NLP-related
application. Examples of such models are the Convolutional Neural Net-
works (CNNs) [11], the Recurrent Neural Networks/Long Short-Term Memory
(RNNs/LSTMs) [12, 13], the attention-based Transformers [14], and many
others. Due to their design, these deep learning models can identify the seman-
tics of text either at word level [15, 16], or at sentence level [14, 17]. Apart
from them, the classical machine learning methods are still of great useful-
ness because they are fast to train and they combine simplicity with decent
accuracy [18].

When large document collections are involved, the underlying text is usu-
ally composed of a vast number of terms (words, n-grams, word combinations,
dates, model numbers etc.), rendering its modelling hard. The traditional Vec-
tor Space Model (VSM) and the Bag-of-Words (BOW) technique have been
quite popular solutions for some time. However, their difficulty in capturing
the semantics of text and the usage of high dimensional vector representations
introduced the requirement for more robust approaches.

Nowadays, there is a huge amount of research towards the introduction of
semantically meaningful text representations, and low dimensionality is among
the key requirements [16, 19]. Otherwise, feeding an algorithm (e.g., a classifier)
with high-dimensional data is simply not feasible due to the extreme size of
the input matrix and side the effects of the curse of dimensionality [20, 21].

Motivated by the importance of these problems, the aforementioned chal-
lenges and the limited number of similar studies in the relevant literature, this
article presents an empirical study on the effect of dimensionality reduction in
various sentiment analysis models. For this purpose, multiple feature selection
(FS) and feature extraction (FE) techniques are examined.

The former select a subset of the most representative input variables from
the original data so that the classification accuracy is not affected much [22].
The filter-based FS methods first compute the value of a statistical measure
(e.g., mutual information, chi-squared, etc.) and then, they filter the features
based on that value. On the other hand, the Wrapper-based FS methods
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quantify the feature importance by considering the estimates produced by a
classifier. In the sequel, they greedily append (or eliminate) the most (or the
least) important of them to (from) the selected features set [23].

Feature extraction is another family of dimensionality reduction meth-
ods that generate informative and non-redundant features with the aim of
producing better text representations [24, 25]. A portion of them construct
a low-dimensional vector space, and then they project the original high-
dimensional data onto that space. Indicatively, we refer Principal Component
Analysis (PCA), Non-Negative Matrix Factorization (NMF) [26], and Singu-
lar Value Decomposition (SVD) [27], which are dominant approaches to this
problem. The Autoencoders (AE) and the Variational Autoencoders (VAE)
constitute an attractive alternative FE approach due to their ability to capture
non-linear relationships between the input variables [15, 28].

This work studies the impact of the aforementioned FS and FE methods
on the performance of various text classification models in sentiment analysis
NLP tasks. Our contributions include:

� We conduct a quantitative study on how dimensionality reduction affects the
effectiveness and the efficiency of multiple well-established text classifiers.
The study focuses particularly on sentiment analysis applications. Therefore,
a significant number of relevant datasets is employed.

� In contrast to most similar studies, we include both feature selection and
feature extraction methods in our analysis.

� The analysis itself has a twin goal: to evaluate the performance of the
involved algorithms in terms of both accuracy and running times.

� We verify that, in most cases, dimensionality reduction enhances the training
times by making acceptable sacrifices in accuracy. However, we also highlight
particular occasions where either the training times are not improved, or
the effectiveness is degraded by a large margin.

The rest of this paper is organized as follows: In Section 2, we refer to the
most significant works from the research fields of text classification, sentiment
analysis, and dimensionality reduction. In the sequel, we present some prelim-
inary elements and the basic notation in Section 3. Section 4 provides some
brief descriptions of the dimensionality reduction algorithms that participate
in this article. The experimental results of the study are presented and dis-
cussed in Sections 5 and 6, respectively. Finally, the conclusions of this work
are summarized in Section 7.

2 Related Work

This paper involves two different research areas: text classification (in the
context of sentiment analysis) and dimensionality reduction. Both areas have
been explored extensively by the research community in the previous years,
and numerous state-of-the-art algorithms have been published in the relevant
literature. This section briefly presents the most remarkable among them.
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2.1 Text Classification and Sentiment Analysis

As a scientific field, sentiment analysis was born and evolved together with
social networks. The relevant literature includes a wide variety of opinion
mining methods that apply to blogs, instant messengers, microblogs, product
reviews, forum discussions, and so on. The first works were simple applications
of traditional machine learning classifiers on small datasets. Indicatively, the
study of [8] covered several linear, probabilistic, and rule-based classifiers, as
long as a family of lexicon-based approaches.

The recent explosion of research on deep learning led to significantly more
accurate models. One of the first works in the area applied the Word2Vec
embeddings [15] to derive a semantically meaningful vector representation for
each word. In the sequel, the word embeddings were used to train a deep
Convolutional Neural Network (CNN) with the aim of identifying the polarity
of an opinion [11]. The experimental evaluation of this model demonstrated its
superior performance against Recursive Neural Networks (RNNs). Similarly,
in [29] the authors applied a simple CNN model to predict user satisfaction
from a collection of product reviews.

Long Short-Term Memory (LSTM) networks constitute another remarkable
text classification technique. Originally introduced to model non-linearities in
sequential data (e.g., time series), this model has been proved quite effective
in sentiment analysis applications. For example, the authors of [13] employed
an LSTM-based architecture to discover topics and conduct sentiment analysis
in forum discussions about COVID-19. In addition, several researchers inte-
grated powerful attention-based mechanisms into the LSTM models to further
improve classification performance [12, 30].

Another portion of works injected stacks of convolutional layers into LSTM
architectures to produce effective CNN/LSTM hybrid models. Specifically,
Co-LSTM (Convolutional LSTM) is a recent hybrid approach that achieves
domain-independent sentiment analysis of consumer reviews [31]. In a sim-
ilar spirit, [32] introduced another combination of CNNs with Bidirectional
LSTM (BiLSTM). The proposed model works with Doc2Vec embeddings and
exhibited good performance in the task of opinion mining in long documents.

Some recent papers on sentiment classification highlighted the usefulness
of Transformers in effectively identifying the polarity of an opinion. These
models are applied to sequential data like RNNs, but they also include an
attention module that is able to capture the text semantics in any position
[14]. In [33], the authors introduced BMT-Net, a broad multitask Transformer
network that exploits both feature-based and fine-tuning methods for applying
pretrained language models to sentiment recognition tasks. Furthermore, the
experimental study of [34] evaluated several pre-trained Transformer-based
models and found them superior to five popular sentiment analysis tools.

Apparently, the scientific literature on the subject is very rich. For more
information, the interested reader may also refer to the surveys of Zhang et
al. [35] and Hussein [36]. The former reviewed multiple deep text classification
models for document-level, sentence-level, and aspect-level sentiment analysis
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tasks. On the other hand, the latter investigated the most important challenges
in opinion mining and sentiment analysis.

2.2 Dimensionality Reduction for Text Data

Although the classification models of the previous subsection exhibit signif-
icant differences in their design and logic, they still require low-dimensional
representations to operate efficiently. Some of them build these representations
internally, whereas others require the input to be vectorized in advance. In this
section, we briefly refer to some inspiring works in dimensionality reduction.
However, more details are provided in Section 4.

The dimensionality reduction approaches are mainly divided into two cate-
gories: feature selection (FS) and feature extraction (FE). The former construct
and preserve a subset of the most important features and discard the rest of
them [22]. The removal of multiple components from the input vectors even-
tually leads to representations of lower dimensionality. A recent review on the
most important FS algorithms was conducted in [37].

Regarding feature extraction, the area is governed by well-established
matrix factorization and decomposition techniques, such as PCA, NMF [26],
SVD [27], and others. In the context of sentiment analysis, we also encounter
the works of [38] and [39]. The first constructs a Laplacian eigenmap (SS-LE)
that quantifies the feature importance from the errors in sentiment classifi-
cation. On the other hand, the second considers the structural information
of text by applying a semi-supervised technique for assigning weights to the
features of the input vectors.

3 Preliminary Elements

Let D = {d1, d2, . . . , dn} be a collection of n documents in raw text format. As
mentioned earlier, in most cases, sentiment analysis is treated as a classification
task. In order to feed D into a classifier, each document di must be transformed
(vectorized) into a numerical vector of the form x(i). A common technique
for vectorizing a document is the Bag-of-Words (BOW) model, that replaces
each term in the document by a numerical value. Notice that we use the word
term instead of word to refer to additional text constructs such as bi-grams,
tri-grams, word combinations, dates, or mixed strings that include both digits
and characters.

One of the most important problems of BOW is that it is dictionary-based,
and, as such, it generates very long and sparse vector representations. More
specifically, a dictionary L that includes all the distinct terms in the collection
D is initially constructed. If m is the size of L, then BOW dictates that a
document di ∈ D is transformed into an m-dimensional vector x(i) as follows:
Initially, each element x

(i)
j ∈ x(i) is mapped to the j-th entry of L. If di includes

the term lj , then x
(i)
j > 0, otherwise, we set x

(i)
j = 0. Obviously, since the

number m of terms in the dictionary is very large and each document includes
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only a small fraction of them, the produced vectors will contain a large number
of zero elements.

One of the most popular BOW methods for determining the elements of
x(i) is the tf-idf model that applies the following formula:

x
(i)
j =

{
0 lj /∈ Di

tf
(i)
j · idfj lj ∈ Di

(1)

where tf
(i)
j is the frequency of lj in the document Di, and idfj = log(n/fj) is the

inverse document frequency of lj , where fj is the total number of documents
that contain lj .

The relevant literature includes a significant number of variants to tf-idf.
For example, tf is a simplified variant that does not take into consideration
the inverse document frequency, whereas tp-idf incorporates the position of
a term in a document leading to semantically better representations. In this
paper, we examine only the standard tf-idf. Nevertheless, the conclusions of
this study apply to these variants too.

The embeddings are an alternative strategy for achieving text vectoriza-
tion. One of the pioneering works in the area was Word2Vec [40], a group of
unsupervised learning techniques that convert a word into a low-dimensional
vector representation. Apart from their low dimensionality, the Word2Vec vec-
tors are semantically meaningful, in a sense that similar words are represented
by similar vectors. Other popular models for generating text vectors are Glove
[16], BERT [19], and so forth.

Word2Vec comprises two model architectures: continuous bag-of-words
(CBOW) and skip-gram. In both cases, the algorithm applies a fix-sized win-
dow that slides over the individual words of the documents. The difference
between these two architectures is that CBOW predicts the current word from
the window of surrounding context words, whereas skip-gram uses the current
word to predict the surrounding window of context words. Word2Vec has been
used heavily in many NLP applications. Current experience indicates that
CBOW is faster, whereas skip-gram is more effective when treating rare words.

4 Dimensionality Reduction

The analysis begins with an n × m matrix X = [x(1),x(2), · · · ,x(n)]T that
stores n m-dimensional input vectors. We consider that n and m are quite
large, so X cannot be processed efficiently by a machine learning algorithm.
In dimensionality reduction, the goal is to generate an n× d matrix Z so that:
i) d ≪ m, and ii) Z represents the properties of X as accurately as possible.

As mentioned earlier, there are mainly two kinds of methods that achieve
this twin goal: the feature selection (FS) and feature extraction (FE). In the
first category, only the d most representative columns of X are preserved with
regards to some criteria and the rest m − d columns are discarded. In con-
trast, the feature extraction methods derive Z by applying a function, or a
mathematical process to X.
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Fig. 1 Hierarchical categorization of dimensionality reduction algorithms.

In the following subsections, we describe the current state-of-the-art
algorithms from both categories. An indicative hierarchy is illustrated in
Figure 1.

4.1 Feature Selection

In feature selection, also known as variable selection, we are interested in
preserving only the d most representative columns of X.

4.1.1 Filter-based Feature Selection

These methods are applicable to supervised learning problems like the senti-
ment analysis task that is studied here. They select the d best components
from the vectors of X, based on the results of univariate statistical tests. The
purpose of these tests is to quantify the correlation of each feature with the
class labels and, eventually, determine how a single feature affects the class
label. In this context, multiple types of tests can be performed, including the
Analysis of Variance (ANOVA) F -value, information gain, mutual informa-
tion, chi-squared (for non-negative features), Pearson correlation coefficient,
Kendall’s τ , and so on.

Compared to the Wrapper-based FS approaches, the Filter-based tech-
niques do not require training a classifier. For this reason, they are significantly
faster, whereas they are also considered less prone to overfitting.

4.1.2 Wrapper-based Feature Selection

The methods of this family are based on model-generated estimates of the
importance of each input variable. More specifically, a classifier is trained by
using different subsets of features, while it simultaneously computes the value
of an importance metric [22]. For example, if the classifier is a linear model,
such as Logistic Regression or Support Vector Machines (SVM), the impor-
tance can be represented by the value of its respective co-efficient in the model’s
equation. In the tree-based classifiers, like Decision Trees (DT) and Random
Forests (RF), other measures can be applied, such as the Gini impurity, the
Mean Decrease Accuracy, the Entropy, etc [41].

The recursive feature elimination algorithms initially train a classifier on
the original set of features X, and then acquire the importance of each feature
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by considering one of the aforementioned model-generated estimates [42]. Next,
the least important features are recursively removed from the feature set, until
a d-dimensional set Z is eventually formed.

Contrary to recursive elimination, the sequential selection methods adopt
a greedy approach [43]. The Forward-Sequential methods begin with an empty
set of selected features (Z = ∅), and greedily add new features to Z [44]. Ini-
tially, a classifier is trained by using all features and the most important among
them, say x, is added to Z. The classifier is trained again on the remaining set of
features (i.e., after removing x), indicating a new feature to be added to Z. The
process terminates after d iterations, namely, when the set Z accommodates d
elements.

On the other hand, the Backward-Sequential techniques operate on the
reverse: they begin by filling Z with all m features of X (i.e., Z = X), and
they greedily remove the least important among them [45]. The process stops
when Z is left with d elements, and that happens after m− d iterations.

Notice that Forward- and Backward-Sequential selection do not produce
equivalent results. Since the requirement d ≪ m holds in text mining appli-
cations, then d ≪ (m − d) also holds. Therefore, the Forward-Sequential
methods are considerably faster. Nonetheless, the Wrapper-based methods are
in general much more computationally expensive than the Filter-based ones.
Moreover, since the Wrapper-based methods train a machine learning model
by using different sets of features, the probability of overfitting is high.

4.2 Feature Extraction

4.2.1 Matrix Factorization/Decomposition

The algorithms of this category achieve reduction by projecting the m-
dimensional input vectors onto a d-dimensional space. Simultaneously, the
computation of the d basis vectors of the latent space is performed, in such a
way, so that one or more criteria is optimized.

In this spirit, Principal Component Analysis (PCA) considers that the
best features are the ones that exhibit the highest degrees of variance. To
prevent the input variables with large values —therefore, with large absolute
variances— from dominating over the ones with small values, the original
features are initially standardized (i.e., centered around 0).

In the sequel, the covariance between each pair of (standardized) features
is computed, forming a m×m square covariance matrix C. C is subsequently
decomposed, and the d eigenvectors with the highest eigenvalues are used to
fill the columns of a m × d projection matrix W. The multiplication of the
initial n×m matrix X with the m× d projection matrix W yields the n× d
target matrix Z; namely, Z = XW.

The application of the original PCA is problematic in applications that
involve highly dimensional sparse vectors due to the standardization process.
Hence, subtracting the mean value from the zero-valued vector components
turns them into non-zero, rendering method computationally expensive. The
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Fig. 2 A typical Autoencoder with 3 hidden layers.

approach that is considered more appropriate in this case is Singular Value
Decomposition [27], and, particularly, a variant called Truncated SVD [46].

SVD is an algebraic process that decomposes an n × m matrix X into a
square n×n matrix U, a diagonal n×m matrix Σ, and a m×m square matrix
V, so that X = UΣV∗. Although it adopts a different logic, it yields results
that are equivalent to those of PCA without standardization.

Non-Negative Matrix Factorization (NMF) is another technique that incor-
porates the additional constraint of non-negativity [26]. The goal is to
decompose X into a n×d basis matrix Z and a non-negative d×m matrix V,
so that X ≈ ZV. NMF computes Z and V by minimizing the error function,
using the Frobenius norm ∥X − ZV∥F , subject to Z ≥ 0 and V ≥ 0. Apart
from dimensionality reduction, NMF has native clustering capabilities, as it
groups together the columns of the input matrix X. Therefore, it is occasionally
utilized in text clustering applications.

4.2.2 Autoencoders

The Autoencoder (AE) is topologically identical to a standard, fully-connected
feed-forward neural network [47, 48]. Conceptionally, it is an unsupervised
learning model, trained to reproduce its input x as accurately as possible.
Hence, if x̂ is the output of the network, then the autoencoder attempts to
minimize the reconstruction error L(x, x̂) that quantifies the distance between
x and x̂.

Figure 2 illustrates an Autoencoder with one input layer, one output
layer and 3 hidden layers. The left part of this architecture comprises the
Encoder part that transforms the input m-dimensional vectors x ∈ X into
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d-dimensional latent representations z. Then, the bottleneck layer transfers
these representations to the Decoder part, that, in turn, outputs a reconstruc-
tion x̂ of the initial vectors x, so that L(x, x̂) is minimized. In most cases, the
architecture of the Decoder is a mirror of that of the Encoder.

In practice, the loss functions optimized by an Autoencoder are usually
linear combinations of the reconstruction error L(x, x̂) and a regularization
parameter ϵ. This parameter is used to prevent the model, also known as
Contractive Autoencoder, from simply memorizing the input, thus limiting
the risk of overfitting. After the model has been trained, the Decoder part is
discarded, and the Encoder is used to transform a m-dimensional input into a
d-dimensional latent representation.

Although both the traditional matrix factorization techniques, like PCA
and SVD, and the Autoencoders generate low-dimensional latent representa-
tions, the latter is capable of discovering non-linear relationships among the
input variables. From this perspective, the Autoencoders learn non-linear man-
ifolds, in contrast to PCA that projects the original data onto low-dimensional
hyperplanes.

4.2.3 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a recent
family of innovative language models that generate powerful vectorial text
representations in an unsupervised manner [19]. One of the most remarkable
features of BERT is that large models, that have been pre-trained with a
variety of Web-scale text collections (e.g., Wikipedia), can be fine-tuned with
respect to a particular application (e.g., question and answer datasets). This is
achieved by simply appending an additional output layer after the pre-trained
model, allowing the introduction of highly effective models.

In accordance to its name, BERT trains a Transformer on a bidirectional
fashion [14, 49]. Transformers are deep learning Encoder-Decoder models that
employ multi-head attention mechanisms with the aim of mapping a query and
a set of key-value pairs to an output. In other words, the attention mechanism
captures the semantic correlations between the words of a text. The experi-
mental results on the relevant literature demonstrated that the bidirectional
training of a Transformer can better capture the language context, compared to
the single-directional models that adopt a left-to-right or right-to-left strategy.

The training process of BERT involves two key strategies: Masked Lan-
guage Modeling (MLM) and Next Sentence Prediction (NSP). During training,
the loss functions of MLM and NSP are optimized together in order to mini-
mize the combined loss of the two strategies. The following list briefly outlines
the basic elements of MLM and NSP.

� Masked Language Modeling (MLM): Given a sequence of words to be fed
to BERT, this strategy replaces a percentage, say 15%, of the words with a
mask token. In the sequel, the model tries to predict the masked words by
analyzing the content of the adjacent, non-masked words. This is achieved
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by passing the output of the Transformer encoder to a classification layer
(Figure 3). The output vectors are then multiplied by the embedding matrix
and the probability of each word in the dictionary is computed by using the
softmax function.

� Next Sentence Prediction (NSP): The input of this task is a pair of sentences.
Given the first sentence in the pair, the goal of NSP is to predict whether
the second sentence is subsequent to the first one inside a document. During
training, only half of the input pairs contain sentences that are really sub-
sequent in a document. The other half contain random sentences from the
corpus.
Before it is fed to the model, special tokens are injected into the text to
indicate its beginning and the separation of the sentences. Then, each token
is assigned an embedding that consists of 3 parts: the word, sentence, and
positional embeddings. NSP predicts whether the second sentence is subse-
quent of the first one by firstly feeding the input to the Transformer. Then,
a probability that reflects the connection of the two sentences is computed
by applying softmax to the output of a simple classification layer.

As of May 2023, there are at least 24 pre-trained BERT models of different
sizes, according to the number of their stacked hidden layers and the dimen-
sionality of the vector representations1 [50]. In addition, a significant number
of alternatives have been proposed. RoBERTa is a popular BERT alterna-
tive that embodies several straightforward changes and carefully optimizes the
training hyperparameters [51]. Its performance is considered superior to that
of BERT. On the other hand, ALBERT [52] and DistilBERT [53] have been
created to improve the training durations of BERT, while they yield only small
performance sacrifices.

1https://github.com/google-research/bert
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Table 1 Dataset characteristics

Dataset Instances d Classes

IMDb Movie Reviews 50000 77026 2

Twitter US Airline Sentiment (TUSA) 14640 9849 3

Financial Tweets Sentiment (FTS) 28437 12138 3

Amazon Reviews 76295 26185 5

5 Experiments

This section describes the experimental part of our study. It is organized as
follows: Subsections 5.1, 5.2, and 5.3 contain brief descriptions of the utilized
datasets, the sentiment classification algorithms, and the dimensionality reduc-
tion methods that took part in the evaluation process. Next, the effectiveness
and efficiency measurements are presented in Subsections 5.5 and 5.6, whereas
a summarized analysis of the results is subsequently provided in the discussion
of Section 6.

All the experiments were conducted on a commodity workstation with
32GB of RAM and an Intel CoreI7 12700K CPU. The system was also equipped
with an NVIDIA GTX 3060 GPU that was used to accelerate the training of
several deep learning models.

The code that we developed has been uploaded to a public GitHub
repository2 and it is free to modify, reproduce, and redistribute.

5.1 Datasets

The effects of dimensionality reduction in sentiment analysis applications were
examined by using four popular, publicly available datasets. All of them were
processed according to the methodology described in Section 3 to derive the
tf-idf vectors and the CBOW embeddings. Additional filters were also applied
including case-folding, punctuation removal, and stop word elimination. The
number of documents in each dataset, the dimensionality of the input tf-idf
vectors, and the number of the involved classes (i.e., opinion polarities) are
shown in columns 2, 3, and 4 of Table 1, respectively.

The IMDb dataset3 is a collection of 50000 movie reviews that serves as
a benchmark dataset in numerous NLP tasks. It comprises two classes (posi-
tive or negative opinion); therefore, it is suitable for binary text classification
problems. The tf-idf input vectors included approximately 77 thousand com-
ponents, causing the curse-of-dimensionality to appear immediately: the input
matrix contains about 3.85 billion values.

Since matrices of such sizes are overwhelming for a typical workstation, we
applied another filter by limiting the vocabulary size to 15000 words. The filter
initially performed stopword removal and, then, the 15000 most frequent words
across the corpus were preserved. This approach rendered the executions of
the involved algorithms feasible, while it yielded infinitesimal accuracy losses.

2https://github.com/lakritidis/SentimentAnalysis
3https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
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The Amazon Reviews (AR) dataset4 is another case of high-dimensional
input. It comprises roughly 76 thousand product reviews, accompanied by
numerical user opinions in the range [1, 5]. Each value in this range represents
a different class. The produced tf-idf vectors contained about 26 thousand
elements.

Twitter is a valuable data source for studying opinion mining problems.
Hence, Twitter US Airline (TUSA)5, includes more than 14 thousand tweets
with ternary user opinions (positive/negative/neutral) on five major US air-
lines. Moreover, Financial Tweets Sentiment (FTS) is a crawl of about 28
thousand tweets6 with ternary opinions on publicly traded companies. Each
of these opinions (positive/negative/neutral) represent the three classes of the
dataset.

5.2 Sentiment Classification Models

Although the deep learning text classifiers have been proved quite accurate in
sentiment analysis tasks, for completeness reasons, we also included a number
of classical machine learning algorithms in our tests. Specifically, the models
that we employed are:

� Logistic Regression (LR): We used the LBFGS (Limited-memory BFGS)
optimization algorithm with L2 regularization. LBFGS is memory-
efficient approximation of the Broyden–Fletcher–Goldfarb–Shanno algo-
rithm (BFGS) [54]. The maximum number of iterations was set to 300.

� Support Vector Machines (SVM): The Radial basis Function (RBF) kernel
with L2 regularization was used for fitting. The regularization parameter
and the kernel coefficient were set equal to C = 1.0 and γ = 1/(d · σ(X)),
where σ(X) is the variance of the training example.

� Decision Trees (DT): The model was trained without setting a restriction
to the maximum depth of the structure. So, we continued splitting the tree
nodes until all leaves became pure. The Gini impurity measure was used
to quantify the quality of each split. We also set the minimum number of
samples required to split an internal node equal to 2.

� Random Forests (RF): The number of trees in the forest was set equal
to 100. Each estimator was trained on the entire dataset by applying the
same hyper-parameters as for DTs. The training process was performed in
8 parallel threads.

� Feed-Forward Neural Network (FFNN): This is a typical Multilayer Per-
ceptron model with two fully-connected hidden layers including 50 and 300
neurons, respectively. We selected the Rectified Linear Unit (ReLU) function
to compute neuron activations [55].

� Long Short-Term Memory RNN (LSTM): This model comprises 2 LSTM
layers each one followed by a Dropout layer to prevent overfitting [56]. The
Dropout rate was set equal to 0.2. The number of units in each LSTM layer

4https://jmcauley.ucsd.edu/data/amazon/
5https://www.kaggle.com/crowdflower/twitter-airline-sentiment
6https://www.kaggle.com/vivekrathi055/sentiment-analysis-on-financial-tweets
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was set equal to the dimensionality of the latent output space Z, whereas
their activation function was ReLU. We experimented with three such latent
spaces with d = 200, d = 500, d = 1000 dimensions, so the number of units
in each LSTM layer was 200, 500, and 1000, respectively. The output of the
two LSTM layers was fed into two fully-connected layers with a Dropout
layer (Dropout rate=0.2) between them.
The logistic function was selected as the activation of the output layer for
binary classification, whereas softmax was used for multi-class classification.
Regarding the initializers, we used Glorot [57], Orthogonal, and Zeroes ini-
tialization for the kernel weight matrix, the recurrent weight matrix and
the biases, respectively. The training phase was conducted in batches of 256
items, through 20 epochs, that were accelerated by the underlying GPU.

� Recurrent Neural Network with bidirectional LSTM units (BiLSTM): The
architecture consists of a single Bidirectional LSTM layer with identical
hyper-parameters as those of the previous LSTM model. The output of
BiLSTM was passed through a Dropout layer with a rate equal to 0.3,
that, in turn, was connected to a single fully-connected layer. The activation
functions were selected in the same spirit; namely, logistic and softmax for
binary and multi-class tasks, respectively. Similarly to the LSTM model,
BiLSTM was trained in 20 GPU-accelerated epochs and in batches of 256
samples.

The aforementioned hyperparameters have been applied uniformly in both
binary (the IMDb dataset) and multi-class classification problems (the rest
3 datasets). All classes were considered of equal importance, so they were
assigned a weight equal to 1. We used the binary cross-entropy loss function
for the binary LR, FFNN, LSTM, and BiLSTM and the categorical cross-
entropy loss function for the respective multi-class models. Regarding the SVM
classifier, we applied the standard squared hinge loss function.

5.3 Dimensionality Reduction Methods

Each classifier of the previous subsection was trained on all four benchmark
datasets. For each dataset, the following dimensional spaces were formed:

� Original: the feature space where the initial tf-idf vectors reside into.
� d = 200, d = 500, d = 1000: Three spaces with different numbers of basis

vectors were formed by applying i) Truncated SVD, ii) NMF, and iii) an
Autoencoder model to the initial tf-idf vectors. Regarding the Autoencoder
model, we implemented the simple architecture of Figure 2.

� d = 200, d = 500, d = 1000: Three additional spaces with different numbers
of basis vectors were created by applying the Continuous Bag of Words
(CBOW) architecture of Word2Vec.

� d = 200, d = 500, d = 1000: Three spaces with different numbers of basis
vectors were formed by applying the d-best feature selection (FS) method on
the original data. The best features were identified by computing the mutual
information (MI) between each input variable and the target variable. Then,
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Figure 1: Comparative bar plots of the execution times of various dimensionality reduction methods.
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Fig. 4 Comparative bar plots of the execution times of various dimensionality reduction
methods on the four datasets of Table 1.

the d variables with the highest MI scores were selected, whereas the rest of
them were simply discarded from the dataset.

Figure 4 illustrates the running times of the aforementioned methods on
the four datasets of Table 1. Each diagram concerns target spaces of different
dimensionalities, namely d = 200, d = 500, and d = 1000. The vertical axes
are plotted in logarithmic scale.

The results are unambiguous: in all cases, TSVD was, by far, the most
efficient method. It outperformed all the adversary methods by one or more
orders of magnitude, and this performance renders it an attractive approach
for reducing data dimensionality. The second place was shared between the
Autoencoder model and CBOW. In particular, on the IMDb and Amazon
datasets, the former was faster than the latter, whereas the situation was
reversed on the other two datasets.

On the other hand, FS was the slowest method on the 200-dimensional
space. This is a rather expected observation, as the pairwise computations
of mutual information are a computationally expensive process, and the cost
increases linearly to the number of features. On the positive side, the running
times of FS are unaffected by the size of the target space. Therefore, it takes
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about the same amount of time to identify the 200, 500, or 1000 best features
from a pool of tens of thousands of features.

In contrast, the running times of NMF are largely affected by the size
of the target space due to the increased size of the output matrix. For this
reason, NMF becomes the slowest method in the other two dimensional spaces
(d = 500 and d = 1000).

5.4 Model Training

Before applying dimensionality reduction, each input dataset was split into
a training and a test set with stratified sampling. Stratification guarantees
approximately equal distributions of the target variable across the different
splits. 70% of the input dataset was used for training the classifiers, whereas the
rest 30% was reserved for testing their performance. The 5-fold cross validation
technique was employed for validation.

To ensure reliable measurements, and to avoid the effect of “leakage” of the
training set into the test set, each subset was preprocessed individually. In this
context, the aforementioned preprocessing techniques (punctuation removal,
case-folding, vectorization, etc.) were performed separately in the training and
the test set. The same applies to the selected dimensionality reduction method.

5.5 Accuracy Measurements

Next, we proceed to the presentation of how dimensionality reduction affects
the performance of text classification in sentiment analysis tasks. In this sub-
section, we focus on the accuracy measurements, while the running times of
the classifiers are presented in the next subsection.

Figures 5, 6, 7, and 8 illustrate the accuracy achieved by each classi-
fier in the IMDb, TUSA, Twitter Financial, and Amazon Reviews datasets,
respectively. Each figure includes three diagrams that depict the algorithm per-
formances on dimensional spaces of d = 200, d = 500, and d = 1000 features,
top-to-bottom.

There are definitely a lot of numbers in these diagrams. Instead of describ-
ing them all, we will attempt to systematically derive the most important
conclusions by grouping the measurements into three categories:

� Conclusions (C): include the phenomena that are consistently observed in
all 4 datasets, and in at least 2 out of 3 dimensional spaces.

� Indications (I): are majority observations that are repeated in at least 3 out
of 4 datasets, and in at least 2 out of 3 dimensional spaces.

� Noticeables (N): include the observations that are repeated in at least 2 out
of 4 datasets, and in at least 2 out of 3 dimensional spaces.

Non-Negative Matrix Factorization does not work well with Logistic
Regression, SVMs, and the deep learning models LSTM and BiLSTM. More
specifically, the accuracy degradation is particularly large in the linear mod-
els LR and SVM (C ) and in the deep learning classifiers of the FTS dataset.
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Figure 1: Comparative bar plots of the accuracy of various classifiers on three low-dimensional feature
spaces of the IMDB dataset. The top, middle and bottom diagrams concern spaces of 200, 500, and
1000 dimensions respectively, generated by the 5 algorithms of the legend.

2

Fig. 5 Comparative bar plots of the accuracy of various classifiers on three low-dimensional
feature spaces of the IMDb dataset. The top, middle and bottom diagrams concern spaces of
200, 500, and 1000 dimensions, respectively, generated by the 5 algorithms of the legend.

In contrast, NMF is of some usefulness when tree-based learners are employed
(C ).

In contrast, Truncated Singular Value Decomposition co-operates effec-
tively with the linear and the deep learning models (C ). This is especially
true in the 1000-dimensional spaces: when linear models are used, the classi-
fication accuracy is very close to the accuracy that is achieved in the original
dimensional spaces (C ). Remarkably, the deep learning classifiers are greatly
benefited by TSVD, since the overall accuracy is improved in the reduced
dimensional spaces over the original spaces (I ).
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Figure 2: Comparative bar plots of the accuracy of various classifiers on three low-dimensional feature
spaces of the Twitter US Airline dataset. The top, middle and bottom diagrams concern spaces of
200, 500, and 1000 dimensions respectively, generated by the 5 algorithms of the legend.

3

Fig. 6 Comparative bar plots of the accuracy of various classifiers on three low-dimensional
feature spaces of the Twitter US Airline dataset. The top, middle and bottom diagrams concern
spaces of 200, 500, and 1000 dimensions, respectively, generated by the 5 algorithms of the
legend.

Despite its simplicity, d-best feature selection (FS) was highly beneficial
when deep learning models were employed. The results demonstrated that
the performance of LSTM and BiLSTM was actually improved on the lower
dimensional spaces, compared to the original input spaces (C ). This means
that, when the noisy features are removed from the data, these architectures
can learn more effective models. With the exception of the IMDb dataset, FS
was the most effective dimensionality reduction technique when working with
LSTMs and BiLSTMs (I ). Regarding the linear classifiers, FS was again among
the most accurate methods (N ). In particular, it outperformed all the other
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Figure 3: Comparative bar plots of the accuracy of various classifiers on three low-dimensional feature
spaces of the Financial Tweets Sentiment dataset. The top, middle and bottom diagrams concern
spaces of 200, 500, and 1000 dimensions respectively, generated by the 5 algorithms of the legend.

4

Fig. 7 Comparative bar plots of the accuracy of various classifiers on three low-dimensional
feature spaces of the Financial Tweets Sentiment dataset. The top, middle and bottom diagrams
concern spaces of 200, 500, and 1000 dimensions, respectively, generated by the 5 algorithms of
the legend.

methods on FTS and the Amazon Reviews dataset. As mentioned earlier, the
most robust method on the IMDb and FTS datasets was TSVD. In most cases,
FS was also effective when used in combination with tree-based learners (I ).

Among all the tests that we conducted, there was not a single case where the
Autoencoder-generated vectors led to remarkable accuracy results. Regarding
LR, SVM, DT, and RF, the accuracy losses were significant in the major-
ity of cases (I ). These losses were somehow limited when neural nets were
employed to conduct sentiment analysis. However, other techniques were more
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Figure 4: Comparative bar plots of the accuracy of various classifiers on three low-dimensional feature
spaces of the Amazon Reviews dataset. The top, middle and bottom diagrams concern spaces of 200,
500, and 1000 dimensions respectively, generated by the 5 algorithms of the legend.

5

Fig. 8 Comparative bar plots of the accuracy of various classifiers on three low-dimensional
feature spaces of the Amazon Reviews dataset. The top, middle and bottom diagrams concern
spaces of 200, 500, and 1000 dimensions respectively, generated by the 5 algorithms of the
legend.

effective. In theory, the Autoencoders are able to capture non-linear rela-
tionships between the features. Nevertheless, this property was not verified
experimentally by the simple architecture of Figure 2.

Finally, the results for CBOW were rather mixed. In the IMDb dataset,
these vector representations performed quite well, especially when used in com-
bination with deep learning models and tree-based classifiers. However, on the
other datasets, the usage of Word2Vec embeddings resulted in accuracy degra-
dations that in some cases were dramatic. Consequently, this method should
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be used carefully, and not before some preliminary validation experiments
indicate its usefulness (C ).

Now, let us make some additional comments from the perspective of the
classification algorithms: For Logistic Regression, Support Vector Machines,
Long Short-Term Memory (LSTM) and Bidirectional LSTM, the best two
dimensionality reduction algorithms were d-best Feature Selection and Trun-
cated Singular Value Decomposition. Regarding the other three classifiers, the
results were not so clear. More specifically, as to the IMDb dataset, CBOW was
the most effective method for Decision Trees (DT), Random Forests (RF) and
the Multilayer Perceptron (FFNN). On the other hand, concerning the Twitter
US Airline and the Financial Sentiment datasets, the methods of choice for RF
and FFNN were Non-Negative Matrix Factorization, and Feature Selection,
respectively.

Finally, although a head-to-head comparison of the classification algorithms
is out of the scope of this study, let us notice the effectiveness of the classi-
cal machine learning algorithms in the task of opinion mining. In the original
feature spaces, these classifiers outperformed the deep learning models FFNN,
LSTM, and BiLSTM. It was only after dimensionality reduction took place
in some cases, where the deep learning architectures achieved superior per-
formance. This indicates the competitiveness of the classical classifiers, and
highlights that deep learning models require a considerable amount of fine
tuning and large training data volumes before they achieve top performance.

5.6 Time Measurements

The improvement of model training times is another crucial reason for applying
dimensionality reduction algorithms at the underlying data. Figures 9, 10,
11, and 12 illustrate these times for the IMDb, TUSA, Twitter Financial,
and Amazon Reviews datasets, respectively. Similarly to the analysis of the
previous subsection, each figure is divided into three diagrams that represent
the training times at spaces including 200, 500, and 1000 dimensions, from top
to bottom. In all diagrams, the vertical axes are in logarithmic scale.

At first, let us explain several observations that initially seem counter-
intuitive. In most cases, the training times of the Random Forest classifier were
lower than those of the Decision Tree. The question “How an ensemble model
with 100 estimators can be trained faster than a single estimator?” has two
answers. The first one is that the single Decision Tree was trained by utilizing
all d features of the reduced dataset, whereas Random Forest was trained by
using

√
d features. The second explanation was mentioned earlier: Random

Forest was trained on 8 parallel threads, partially exploiting the 12 processing
cores and the 20 available threads of our workstation’s CPU.

Another observation that requires clarification concerns the small training
duration of our deep learning models. As mentioned earlier, the learning pro-
cedure of these architectures was massively accelerated by the 3584 CUDA
cores of the installed GPU.
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Figure 5: Comparative bar plots of the execution times of various classifiers on three low-dimensional
feature spaces of the IMDB dataset. The top, middle and bottom diagrams concern spaces of 200,
500, and 1000 dimensions respectively, generated by the 5 algorithms of the legend. The vertical axis
is in logarithmic scale.

6

Fig. 9 Comparative bar plots of the execution times of various classifiers on three low-
dimensional feature spaces of the IMDb dataset. The top, middle and bottom diagrams concern
spaces of 200, 500, and 1000 dimensions, respectively, generated by the 5 algorithms of the
legend. The vertical axis is in logarithmic scale.

The diagrams indicate that, in the vast majority of cases, the application
of a dimensionality reduction technique leads to a significant acceleration of
the training procedure of the attested classifiers. However, we recorded several
exceptions where the training times of some models were counter-intuitively
increased. This is partially explained by the nature of the input data itself.
Recall that the input documents are mostly reviews, comprised of a few tens
of words. Therefore, although the respective tf-idf vector representations are
very long, they include only a few tens of non-zero elements. In contrast, after
dimensionality reduction, each document is represented by a dense vector that
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Figure 6: Comparative bar plots of the execution times of various classifiers on three low-dimensional
feature spaces of the Twitter US Airline dataset. The top, middle and bottom diagrams concern spaces
of 200, 500, and 1000 dimensions respectively, generated by the 5 algorithms of the legend. The vertical
axis is in logarithmic scale.

7

Fig. 10 Comparative bar plots of the execution times of various classifiers on three low-
dimensional feature spaces of the Twitter US Airline dataset. The top, middle and bottom
diagrams concern spaces of 200, 500, and 1000 dimensions, respectively, generated by the 5
algorithms of the legend. The vertical axis is in logarithmic scale.

consists of a few hundreds non-zero elements. Consequently, in several cases,
it may be computationally cheaper to train a model on large sparse vectors
than short dense vectors.

In the discussion that follows, we adopt again the notions of noticeable,
indication and conclusion that were introduced on the previous subsection.
The first conclusion is that the application of dimensionality reduction was
always beneficial for the training times of the BiLSTM model. Regarding the
other two deep learning architectures, only FS, TSVD and CBOW consistently
reduced the training durations of FFNN and LSTM in all four datasets. On
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Figure 7: Comparative bar plots of the accuracy of various classifiers on three low-dimensional feature
spaces of the Financial Tweets Sentiment dataset. The top, middle and bottom diagrams concern
spaces of 200, 500, and 1000 dimensions respectively, generated by the 5 algorithms of the legend. The
vertical axis is in logarithmic scale.

8

Fig. 11 Comparative bar plots of the execution times of various classifiers on three low-
dimensional feature spaces of the Financial Tweets Sentiment dataset. The top, middle and
bottom diagrams concern spaces of 200, 500, and 1000 dimensions, respectively, generated by
the 5 algorithms of the legend. The vertical axis is in logarithmic scale.

the other hand, the Autoencoder-generated vectors led to significant delays in
FFNN and LSTM training, on the 1000-dimensional spaces of IMDb and FTS.
Similarly, NMF had a negative impact on the training time of FFNN in the
Amazon Reviews dataset.

The training process of the Logistic Regression classifiers was in all cases
very fast, as it almost always consumed less than 10 seconds to complete. On
the other hand, SVM with the RBF kernel was considerably slower. Dimen-
sionality Reduction was beneficiary for this classifier only on the smallest
dimensional space (C ). Nevertheless, the situation was reversed on the 500



Springer Nature 2021 LATEX template

Low Dimensional Text Representations for Sentiment Analysis 25

LR SVM DT RF FFNN LSTM BiLSTM

101

102

103

E
x
ec

u
ti

o
n

ti
m

e

Original FS TSVD NMF AutoEncoder CBOW

LR SVM DT RF FFNN LSTM BiLSTM

101

102

103

E
x
ec

u
ti

on
ti

m
e

LR SVM DT RF FFNN LSTM BiLSTM

100

101

102

103

104

E
x
ec

u
ti

on
ti

m
e

Figure 8: Comparative bar plots of the execution times of various classifiers on three low-dimensional
feature spaces of the Amazon Reviews dataset. The top, middle and bottom diagrams concern spaces
of 200, 500, and 1000 dimensions respectively, generated by the 5 algorithms of the legend. The vertical
axis is in logarithmic scale.

9

Fig. 12 Comparative bar plots of the execution times of various classifiers on three low-
dimensional feature spaces of the Amazon Reviews dataset. The top, middle and bottom
diagrams concern spaces of 200, 500, and 1000 dimensions, respectively, generated by the 5
algorithms of the legend. The vertical axis is in logarithmic scale.

and 1000-dimensional spaces, where on three of our four datasets, all meth-
ods decelerated the classifier significantly. The indication here is that, when
SVM is going to be applied, then the target space must include 200, or fewer
dimensions.

Regarding the tree based learners, Feature Selection was the method that
yielded the greatest performance benefits (I ). With the exception of the FTS
dataset (d = 500 and d = 1000), this approach decreased the training times of
both Decision Trees and Random Forests. It is remarkable that all the other
reduction techniques had a negative impact in the training durations of both
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models (C ). A limited number of exceptions can only be found in small feature
spaces that consist of fewer than 200 dimensions.

If we combine this observation with the accuracy measurements of the pre-
vious subsection, a more concrete conclusion derives: dimensionality reduction
is not beneficial for Decision Trees and Random Forests, as, in the majority of
cases, it decreases the prediction accuracy and increases the training times of
these models.

6 Summary

In this section, we organize the key observations of the experimental evaluation
that was described previously. In accordance to the analysis of Subsections 5.5
and 5.6, we group our findings in noticeable observations, indications, and
strong conclusions. This information is summarized by the contents of Table 2.

In this table, the term “effective” reflects the ability of a dimensionality
reduction technique to identify good features. Therefore, a reduction method
is considered effective, when it causes no significant accuracy losses, or, even
better, when it improves the accuracy of text classification.

Moreover, notice that the term “efficient” does not concern the running
times of the reduction technique itself; we already examined this parameter
in Subsection 5.3. In contrast, in Table 2, the “efficiency” of a dimensionality

Table 2 Summary of the findings of the experimental evaluation of Section 5. The terms
“indication (I)”, and “conclusion (C)” concern remarkable behaviors that have been
repeatedly observed in 3 and 4 (out of 4) datasets, respectively.

Observation Strength

FS improves the accuracy of LSTM and BiLSTM on the lower
dimensional spaces, even when compared to the original input
spaces.

C

FS is the most effective technique when deep learning LSTMs and
BiLSTMs are applied.

I

FS and TSVD are the most effective methods when linear models
(LR and SVM) are applied.

C

The simple Autoencoder-generated embeddings lead to significant
accuracy losses.

I

The CBOW embeddings lead to mixed (small to large) accuracy
losses. They should be used after validation.

C

Dimensionality reduction is always beneficial for the training times
of BiLSTM.

C

FS, TSVD and CBOW are always beneficial for the training times
of FFNN and LSTM.

C

AE and NMF are beneficial for the training times of FFNN and
LSTM.

I

Dimensionality Reduction benefits the training times of SVM mod-
els when the target space is small (i.e., fewer than 200 dimensions).

C

With the exception of Feature Selection, dimensionality reduction
has a negative impact on the training times of tree-based learners.

C
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reduction method represents its ability to accelerate the training process of a
sentiment classifier.

7 Conclusion

Sentiment analysis is among the most important applications of Natural Lan-
guage Processing (NLP). It has been studied extensively as a text classification
problem, and numerous researchers introduced various state-of-the-art models
that improved the performance of the existing solutions. One of the greatest
challenges in the area is the natural text sparsity and the high dimensionality
that renders the input data barely manageable. Surprisingly, very few research
works cover the issue of how the sentiment classification models perform with
respect to the dimensionality of the input feature space.

In this paper, we conducted an experimental survey on the accuracy and
the training times of multiple text classifiers in combination with various
dimensionality reduction techniques. This work covers both classical and deep
learning classifiers with respect to feature selection and feature extraction
approaches. The results of our experiments demonstrated that, in the major-
ity of cases, dimensionality reduction is indeed beneficiary for the training
durations, while hurting accuracy by only a small margin. We also identified
interesting cases where the reduced vector spaces render the underlying clas-
sifiers more effective. On the other hand, the tree-based learners, like Decision
Trees and Random Forests, are not benefited, as the reduced spaces not only
degraded their accuracy, but also rendered their training more computationally
expensive.
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