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Short Text Clustering

* A problem that focuses on the unsupervised

grouping of similar short text documents, or entitled
entities.

* Specialization of the general text clustering problem
which in turn is a specialization of the generic data
clustering problem.

* Quite popular. Important applications include cluster
creation from:
— microblogs,
— entitled entities (e.g. news headlines, product titles, etc.),
— FAQs,
— search result snippets,
— etc.



Short-Texts: 2 difficult problems

* Short texts suffer from 2 challenging issues:

e Data sparseness: it concerns the absence of
important features (terms) from a portion of
the input records.

— It blurs the similarities among the involved entities.

* High dimensionality: originates from the
usage of a huge number of features (termes,
n-grams, skip grams etc.) in short texts.

— It is the source of the “Curse of Dimensionality”.




Clustering algorithms: Primary goals

* A clustering algorithm must group its input
records by fulfilling (at least) two goals:

* Homogeneity: inclusion of only similar
elements within a cluster, and

* Completeness: all similar elements are
grouped into the same cluster.



VEPHC

A two stage short text clustering algorithm.

Stage 1 (VEP part) projects the original feature vectors
onto a lower dimensional space by generating all the
feature combinations of the initial text vectors.

A feature combination corresponds to a projection vector
and is treated as a candidate cluster label.

Each projection vector is assigned a score which favors
completeness and the homogeneity.

All documents whose feature vectors are projected onto
the same space are grouped into the same cluster.

Stage 2 (HC part) consists of a post-processing algorithm
that enhances the homogeneity and the completeness of
the clusters that were generated by the previous stage.



VEPHC Part 1: Feature combinations as

vector projections
An integer hyper-parameter K is initially set.

For each input vector X; we construct a set X
containing all the possible projections of x;
with a dimensionality of 1, 2, ... K elements.

In other words, X; contains all the {1, 2, ... K}
combinations of the components of Xx;.

If X; = {x1, %2, x3}, then X; = {{x1}, {x;},
(s A1} {x x5}, {xax3 b



Scoring the vector projections

* For each input document, each projection
vector X;: in X is assigned a score:
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. fx{] is the global frequency of x;;.

* x;j: a component of X; .



Scoring the vector projections (2)

* |f the original feature vectors have been
created with tf-idf:
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* Where n is the number of the input records.

K

* fjis the freq of the j—th component of x;;.

* The highest-scoring projection of X; is
declared as the dominant cluster label x;.

* The input is clustered in x;.



Example of clustering

X1 = {x11x21x31x41 XS}
X)) = {O, X2,X3, X4, 0 }
If X; — X; — {xz,X4}

Then X7 and X, will be placed inside the
same cluster.



Consequences

* The higher the dimensionality of the
dominant vector, the more similar documents
the corresponding cluster contains.

e The documents included in that cluster will
have more words in common.

* High/Low dimensional dominant projection
vectors lead to:

— More/Lesser homogeneous clusters.
— Lesser/More complete clusters.



VEPHC Part 2: Cluster refinement stage

* At this point, the dominant projections of the
input short text documents have been
computed.

* The input documents have been clustered in
the corresponding cluster labels.

* The second part introduces a refinement
algorithm which was desighed to further
improve homogeneity and completeness.



VEPHC Part 2 — Stage 1

* Split the existing clusters
& create new clusters.

* |n short:

 Compute the clustroid
point of each cluster.

—i.e. the point that has max
sim with the rest of the
elements of the cluster.

Algorithm 1: HC Part, Phase 1: Element Transfer and
Creation of New Clusters

1 initialize an empty cluster C;
2 for each cluster ¢ € C do

3 | u. < clustroid of ¢:

4 end

s for each cluster ¢ = C do

6 for each element x € ¢ do

7 Tx u, + similarity between x and u,;
8 if Ty . < T} then

9 remove X from e;

10 Trax + 0, ¢* + NULL;

11 for each cluster ¢/ = C do
12 T w4 similarity between x and u;
13 if Ty w > Tinax then
14 Tluzlu-c — Tx.u:i.'e

15 o

16 end

17 end

18 if T, = 1. then

19 | ¢« c"u{x}:

20 else

21 | ¢+ cCcuix}:

22 end

23 end

24 end

25 end

26 Cpew 0

27 for each element x € C do

28 remove X from C;

29 Tinax, ¢+ perform steps 11-17 on C),.,,;

30 if T = T then

31 | U {x};

R else

3 create and initialize new cluster cpew — 0
34 Cnew + Cnew U {X}, Ug,,, + X5

35 C+CuU {Cneu'}~ (—?n ew (—?n ew U {cm:'u' }:
36 end

37 end




Algorithm 1: HC Part, Phase 1: Element Transfer and
Creation of New Clusters

VE P H C Pa rt 2 —— Sta e 1 I initialize an empty cluster C;
2 for each cluster ¢ € C do

3 | u. < clustroid of ¢:
4 end
s for each cluster ¢ € C do

' for h el xeed
¢ FO r e a C h C u Ste r : ; i ;i:“ e:”:;‘?::iIZI'E}Fbc?wccn x and u,;
8 if Ty . < T} then
. 9 remove X from ¢; _
* Evict the cluster elements | | | Lot io5.
12 T w4 similarity between x and u;
13 if Ty w > Tinax then
that are too far away y A
° :: endc o
from the clustroid. o |
18 if T, = 1. then
19 | ¢« c"u{x}:
° 20 else
* Evicted elements may be: | | | Teocow
2 end
23 end

—inserted into another, 4 | end

. . 26 (-?m:'u' — 0
rr I rrl | | O R 27 for each element x € C do
O re S I I a r C u Ste r’ 28 remove X from C;
20 Tinax, ¢+ perform steps 11-17 on C),.,,;
30) if T = T then

—placed into a new, empty | EosUw

R else
I t 3 create and initialize new cluster cpew — 0
C u S e r- 34 Cnew + Cnew U {X}, Ug,,, + X5
35 C«Cu {Cneu'}~ Crew + Crew U {cm:'u' }:
36 end

37 end




Algorithm 2: HC Part, Phase 2: Cluster Merging

VEPHC Part 2 — Stage 2 o o e
send |

sim_array[#| « 0, msc_array[*] «+ —1;
5 for each cluster c € C' do

* Cluster merging stage. -
msc_array|c 1— ".“:'*?‘ s!rr{ila_ll' clust;r .{MSC}
° FO r eac h CI u Ste r 3 Eml&am_army[e_ + similarity with MSC;

9 while merge do

* Search for other, highly | mere —saies

11 ¢ «NULL, ¢ «+NULL:

1 1 12 for each cluster ¢ = C do
similar clusters. gach clus
14 if sim_arrayc] > T\,., then

* If the similarity with the = e = simn_array[c;

'+ ¢, ' +— msc_array|c]:

most similar cluster 7| | end
19 if T\ > T then
exceeds a threshold, I et
21 d—c e
the n We me rge the tWO 22 u.. + clustroid of ¢';
23 msc_array[c’] + MSC;
CI U Ste IS. 24 sim_array|c'] < similarity with MSC;
25 C+—C—-{};
26 update msc_array, sim_array;
27 end
28 end
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Experiments

* We attested VEPHC by using two datasets:

— A dataset of product titles from Pricerunner.
— A dataset of news titles (headlines).

* Versus 4 generic data clustering + 3 short text
clustering methods.

* |[n terms of both clustering quality (P, R, F1,
NMI) and execution times.

EXPERIMENTAL DATASETS

T |r—"‘| |!TI.:||.:-'|_\C F-é ve
PriceRunner (PRUN) 35311 13233 41 8.23
UCI News Aggregator (UNA) 50138 823 15 7.05




Dependence from the hyper-parameters
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Fig. 1. Performance fluctuation of VEPHC (without the verification stage) against varying values of the hyper parameter K, on the PriceRunner (left), and
UCI News Aggregator (right) datasets.
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Clustering performance

PERFORMANCE EVALUATION OF VARIOUS CLUSTERING ALGORITHMS ON THE PRICERUNNER AND UCI NEWS AGGREGATOR DATASETS

: . Price Runner UCI News Aggregator
Method Setup F1  NMI _ Time F1 NMI _ Time
VEPHC Ki=6K; =2 0.385 0.946 305.1 0.471 0.851 10.2
k-Means k=|C|,I=10 0.048 0.399 4942 0.028 0.697 104.3
Agglomerative — 0.314 0935 1667 0.454 0.835 24928
Leader Clustering  — 0.306 0.934 17.2 0.284 0.778 17.1
DBSCAN minPoints = 2 0.055 0.425 58.4 0.256  0.790 130.5
GSDMM-1 a=F=01k=15.|C] 0.002 0.404 3246.2 0.171  0.753 3904
GSDMM-2 a=0001,=001.k=15-|C| 0008 0631 3317.3 0.424 0.820 4539
Spherical k-Means k= |C|,I =10 0.226 0.903 426.1 0.335 0.757 1196
vk-Means k=|C|,I=10 0.220 0.900 4844 0.154 0.614 1047
Cosine similarity tf —idf weights 0.248 - 31.3 (0.388 - 75.2
Jaccard Index tf —idf weights 0.237 — 315 0.388 — 74.9
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Conclusions

 We introduced VEPHC, a two-stage clustering
algorithm for short text documents.

* Designed to limit the native sparseness and high
dimensionality of short texts.

* Key elements:

— Projection of the feature vectors onto a lower dimensional space
by the construction and scoring of feature combinations.

— A feature combination can be viewed as a projection vector.

— ldentify the dominant (i.e., the highest scoring) projection
vector.

— Two or inputs having the same projection vector are grouped
into the same cluster.



Conclusions

* Key elements (continued):

— Post processing stage: Split the initial clusters by removing the
most distant items.

— Place the evicted items into other clusters, or create new ones.
— Merge the most similar clusters.

* Experiments conducted with two test datasets.

* The results showed significant performance

improvements over the current state-of-the-art
methods.

* |In terms of both effectiveness and efficiency.



Thank you
Any questions?



