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Short Text Clustering

• A problem that focuses on the unsupervised 
grouping of similar short text documents, or entitled 
entities.

• Specialization of the general text clustering problem 
which in turn is a specialization of the generic data 
clustering problem.

• Quite popular. Important applications include cluster 
creation from:
– microblogs,
– entitled entities (e.g. news headlines, product titles, etc.),
– FAQs,
– search result snippets,
– etc.
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Short-Texts: 2 difficult problems

• Short texts suffer from 2 challenging issues:

• Data sparseness: it concerns the absence of 
important features (terms) from a portion of 
the input records.
– It blurs the similarities among the involved entities.

• High dimensionality: originates from the 
usage of a huge number of features (terms, 
n-grams, skip grams etc.) in short texts.
– It is the source of the “Curse of Dimensionality”.
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Clustering algorithms: Primary goals

• A clustering algorithm must group its input 
records by fulfilling (at least) two goals:

• Homogeneity: inclusion of only similar 
elements within a cluster, and

• Completeness: all similar elements are 
grouped into the same cluster.
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VEPHC
• A two stage short text clustering algorithm.
• Stage 1 (VEP part) projects the original feature vectors 

onto a lower dimensional space by generating all the 
feature combinations of the initial text vectors.

• A feature combination corresponds to a projection vector 
and is treated as a candidate cluster label.

• Each projection vector is assigned a score which favors 
completeness and the homogeneity.

• All documents whose feature vectors are projected onto 
the same space are grouped into the same cluster.

• Stage 2 (HC part) consists of a post-processing algorithm 
that enhances the homogeneity and the completeness of 
the clusters that were generated by the previous stage.
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VEPHC Part 1: Feature combinations as 
vector projections

• An integer hyper-parameter 𝐾 is initially set.

• For each input vector 𝐱𝑖 we construct a set 𝐗𝑖
′

containing all the possible projections of 𝐱𝑖
with a dimensionality of 1, 2,…𝐾 elements.

• In other words, 𝐗𝑖
′ contains all the {1, 2, …𝐾}

combinations of the components of 𝐱𝑖.

• If 𝐱𝑖 = 𝑥1, 𝑥2, 𝑥3 , then 𝐗𝑖
′ = { 𝑥1 , 𝑥2 ,

𝑥3 , 𝑥1𝑥2 , 𝑥1𝑥3 , 𝑥2𝑥3 }.
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Scoring the vector projections

• For each input document, each projection  
vector 𝐱𝑖𝑗

′ in 𝐗𝑖
′ is assigned a score: 

• Where 𝑙𝐱𝑖𝑗
′ is the length of 𝐱𝑖𝑗

′

• 𝑓𝐱𝑖𝑗
′ is the global frequency of 𝐱𝑖𝑗

′ .

• 𝑥𝑖𝑗: a component of 𝐱𝑖𝑗
′ .
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Scoring the vector projections (2)

• If the original feature vectors have been 
created with tf-idf: 

• Where 𝑛 is the number of the input records.

• 𝑓𝑗 is the freq of the 𝑗–th component of 𝐱𝑖𝑗
′ .

• The highest-scoring projection of 𝐱𝑖 is 
declared as the dominant cluster label 𝐱𝑖

∗.

• The input is clustered in 𝐱𝑖
∗. 
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Example of clustering

• 𝐱1 = 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5
• 𝐱2 = 0, 𝑥2, 𝑥3, 𝑥4, 0

• If 𝐱1
∗ = 𝐱2

∗ = {𝑥2, 𝑥4}

• Then 𝐱1 and 𝐱2 will be placed inside the 
same cluster.
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Consequences

• The higher the dimensionality of the 
dominant vector, the more similar documents 
the corresponding cluster contains.

• The documents included in that cluster will 
have more words in common.

• High/Low dimensional dominant projection 
vectors lead to:
– More/Lesser homogeneous clusters.

– Lesser/More complete clusters.
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VEPHC Part 2: Cluster refinement stage

• At this point, the dominant projections of the 
input short text documents have been 
computed.

• The input documents have been clustered in 
the corresponding cluster labels.

• The second part introduces a refinement 
algorithm which was designed to further 
improve homogeneity and completeness.
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VEPHC Part 2 – Stage 1

• Split the existing clusters 
& create new clusters.

• In short:

• Compute the clustroid
point of each cluster.

– i.e. the point that has max 
sim with the rest of the 
elements of the cluster.
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VEPHC Part 2 – Stage 1

• For each cluster:

• Evict the cluster elements 
that are too far away 
from the clustroid.

• Evicted elements may be:

– inserted into another, 
more similar cluster, OR

– placed into a new, empty 
cluster.
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VEPHC Part 2 – Stage 2

• Cluster merging stage.

• For each cluster:

• Search for other, highly 
similar clusters.

• If the similarity with the 
most similar cluster 
exceeds a threshold, 
then we merge the two 
clusters.
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Experiments

• We attested VEPHC by using two datasets:

–A dataset of product titles from Pricerunner.

–A dataset of news titles (headlines).

• Versus 4 generic data clustering + 3 short text 
clustering methods.

• In terms of both clustering quality (P, R, F1, 
NMI) and execution times.
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Dependence from the hyper-parameters
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Clustering performance
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Conclusions

• We introduced VEPHC, a two-stage clustering 
algorithm for short text documents.

• Designed to limit the native sparseness and high 
dimensionality of short texts.

• Key elements:
– Projection of the feature vectors onto a lower dimensional space 

by the construction and scoring of feature combinations.

– A feature combination can be viewed as a projection vector.

– Identify the dominant (i.e., the highest scoring) projection 
vector.

– Two or inputs having the same projection vector are grouped 
into the same cluster.
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Conclusions

• Key elements (continued):
– Post processing stage: Split the initial clusters by removing the 

most distant items.

– Place the evicted items into other clusters, or create new ones.

– Merge the most similar clusters.

• Experiments conducted with two test datasets.

• The results showed significant performance 
improvements over the current state-of-the-art 
methods.

• In terms of both effectiveness and efficiency.
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Thank you

Any questions?
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