28th ACM Symposium on Applied Computing Coimbra, Portugal, 18-22 March 2013

A Supervised Machine Learning Algorithm for Research Articles

Leonidas Akritidis, Panayiotis Bozanis

Dept. of Computer & Communication Engineering, University of Thessaly, Greece

Research Article Classification

- We study the problem of categorizing research articles (papers).
- In contrast to regular documents, the research articles have their own features (authors, co-authors, references, publishing journal/conference, etc)
- Therefore, the classification of research articles poses some unique challenges.

Problem Importance

- Allows users search only a specific portion of the document collection.
- Digital libraries organize their content
- Helps users find similar items
- Facilitates the creation of robust search tools
 - □ Recommendation
 - □ Query expansion, etc

Existing Approaches (1)

- Keyword extraction algorithms
 - The identify repeated textual patterns and extract the most important terms
 - □ In the sequel, they employ traditional classification approaches such as kNN.
- Machine learning (ML) approaches
 - □ Support Vector Machines (SVM)
 - □ AdaBoost.MH

Existing Approaches (2)

- Citation Analysis Algorithms
 - □ They exploit linkage information (e.g. multiple articles cited together by a group of papers)

Our Approach

- Employs a set of labels C and a set of preclassified research papers - training set T.
- It trains a model based on C and T.
- The training phase takes into account the particular features of the problem including
 - □ The authors history
 - □ Co-authorship information
 - □ Keywords selection
 - □ The previous publications

Preliminaries

- Our analysis involves four sets:
 - $\square K$: The set of all keywords ($k \in K$)
 - $\square A$: The set of all authors (a $\in A$)
 - \Box *J*: The set of all journals ($j \in J$)
 - \square C: The set of all labels ($c \in C$)
- Multiple subsets, i.e.:
 - $\square K^p$: The subset of keywords of an article p.
- And multiple frequency values i.e.:
 - $\Box |P^k|$: The number of articles containing k.

University of Thessaly

Training Phase

- During the training process we build three relevance description vectors (RDV):
 - $\square \mathcal{K}$: Denotes how frequently each keyword k has been correlated with each field c.
 - □ A: Denotes how frequently each author a has been correlated with each field c.
 - □ J: Denotes how frequently each journal j has been correlated with each field c.
- Zero freqs are pruned from the vectors.

Model Training (Phase 1)

- In this phase we populate the \mathcal{K} RDV.
- Initially we extract all keywords and labels of the paper (3-4).

```
Algorithm 1 Model training
         initialize \mathcal{K}, \mathcal{A}, \mathcal{J}
  2.
         for each paper p \in \mathcal{T}
  3.
              C^p \leftarrow \text{ExtractResearchAreas}(p)
              Phase 1: Processing of the keywords
              K^p \leftarrow \text{ExtractKeywords}(p)
  4.
  5.
              for each keyword k \in K^p
                   |P^k| \leftarrow |P^k| + 1
                   for each research area c \in \mathbb{C}^p
                        Create pair (k, c)
                        if K.search(k, c) =false
  10.
                              \mathcal{K}.insert(k, c)
 12.
                        else
 13.
                              |P^{k,c}| \leftarrow |P^{k,c}| + 1
```

- for each pair (k,c) we search within \mathcal{K}
 - ☐ If the (keyword, label) is not found, we set the corresponding frequency equal to 1 (10-11).
 - Otherwise, we increase the frequency by 1 (13).

Model Training (Phase 2)

- In this phase we populate the \mathcal{A} RDV.
- We work similarly to the previous case, but we take into account co-authorship data.

```
Phase 2: Processing of the authors
             A^p \leftarrow \text{ExtractAuthors}(p)
14.
15.
             for each author a \in A^p
16.
                  |P^a| \leftarrow |P^a| + 1
17.
                 for each research area c \in \mathbb{C}^p
18.
                      Create pair (a, c)
19.
                      if A.AP.search(a, c) =false
20.
                            A.AP.insert(a, c)
21.
22.
                      |P_{AP}^{a,c}| \leftarrow |P_{AP}^{a,c}| + 1 for each author a' \in A^p
23.
24.
25.
                            Create tuple (a, a', c)
26.
                            if A.AA.search(a, a', c) =false
27.
                                \mathcal{A}.AA.insert(a, a', c)
28.
29.
                            else
30.
```

Apart from (author, label) pairs, we also store (author, co-author, label) triples.

Vector \mathcal{A}

- The authors usually publish articles in more research fields.
- The produced RDV \mathcal{A} stores information which demonstrates:
 - □ How frequently each author a has been correlated with each label c.
 - □ How frequently each author a has been correlated with each label c when co-authored articles with a'.

Co-authorship in Vector \mathcal{A}

- For instance, when an arbitrary author *A* co-operates with *B*, s/he publishes articles related to IR, whereas when co-operates with *C*, publishes articles related to DM.
- Consequently, when we classify an unlabeled article authored by A and B, we know that probably the article discusses an IR topic.

Model Training (Phase 3)

- In this phase we populate the J RDV.
- There is only one journal j, hence, the process is simpler.

```
Phase 3: Processing of the journals
31.
             j \leftarrow \text{ExtractJournal}(p)
              |P^j| \leftarrow |P^j| + 1
32.
33.
              for each research area c \in \mathbb{C}^p
34.
                   Create pair (j, c)
35.
                   if \mathcal{J}.search(j, c) =false
36.
                        \mathcal{J}.\mathrm{insert}(j,c)
37.
38.
                   else
                         |P^{j,c}| \leftarrow |P^{j,c}| + 1
39.
```

- for each pair (j,c) we search within \mathcal{J}
 - □ If the (journal, label) is not found, we set the corresponding frequency equal to 1 (36-37).
 - □ Otherwise, we increase the frequency by 1 (39).

Classification Process

- The three relevance description vectors \mathcal{K} , \mathcal{A} , and \mathcal{J} are now used to label to the unclassified articles.
- For each article, each label is assigned three partial scores according to the article's keywords, authors, journals, and the contents of \mathcal{K} , \mathcal{A} , and \mathcal{J} .
- The final score is a linear combination of the three partial scores.

Articles Classification (Phase 1)

In the first phase we extract the keywords of the unlabeled item

```
    for each unlabeled article p
        Phase 1: Keyword-based classification
    K<sup>p</sup> ← ExtractKeywords(p)
    for each keyword k ∈ K<sup>p</sup>
    if k ∈ K
    for each (k, c) ∈ K
    S<sup>c</sup><sub>k</sub> ← F<sub>k</sub>(P<sup>k</sup>, P<sup>k,c</sup>)
```

- For each keyword k we do a search in \mathcal{K} .
- If $k \in \mathcal{K}$, we retrieve the list of the correlated labels and for each label c we compute its partial score S_k^c by using:
 - \Box The frequencies $|P^k|$, $|P^{k,c}|$.
 - \square A scoring function F_k (i.e. IDF, $\log |P^{k,c}|/|P^k|$).

Articles Classification (Ph. 2-a)

- In this phase we use the authors vector \mathcal{A} .
- Initially, we check if each paper author a has co-operated with the other authors.

```
Phase 2: Author-based classification
           A^p \leftarrow \text{ExtractAuthors}(p)
           for each author a \in A^p
                coauthor \leftarrow false
10.
                for each author a' \in A^p
                     if (a, a') \in A.AA
11.
12.
                          coauthor \leftarrow true
13.
                          for each (a, a', c) \in A.AA
                              S_a^c \leftarrow F_a(P_{AA}^a, P_{AA}^{a,c})
14.
15.
                if coauthor = false
16.
                     if a \in A.AP
17.
                         for each (a, c) \in A.AP
18.
```

■ In case a pair $(a,a') \in \mathcal{A}$ we compute the partial score S_a^c of each label c by retrieving the corresponding co-authorship frequencies

Articles Classification (Ph. 2-b)

- Co-Authorship Frequencies
 - $\square |P^{aa'}|$: The articles coauthored by a and a'.
 - $\square |P^{aa'c}|$: » » which are labeled as c.
- In the opposite case where a has not cooperated with any of the other authors, we compute the label score S_a^c by using the plain author frequencies:
 - $\square |P^a|$: The number of articles authored by a.
 - $\square |P^{a,c}|$: » » which are labeled as c.

Articles Classification (Phase 3)

- Finally, we exploit the history of the article's publishing journal.
- Phase 3: Journal-based classification

 19. $j \leftarrow \text{ExtractJournal}(p)$ 20. if $j \in \mathcal{J}$ 21. for each $(j,c) \in \mathcal{J}$ 22. $\mathcal{S}_{j}^{c} \leftarrow F_{j}(P^{j},P^{j,c})$
- The score is computed by using the frequencies stored in the JRDV:
 - $\square |P^{j}|$: The number of articles published by j.
 - $\square |P^{j,c}|$: » » which are labeled as c.

Label scores

The label score is computed as a linear combination of the three partial scores:

$$S^c = w_k S_k^c + w_a S_a^c + w_j S_j^c$$

• w_k , w_a , w_j are constants used to tune the contribution of keywords, authors, journals

$$w_k + w_a + w_j = 1$$

Experimental Setup

- We used CiteSeerX dataset, a collection comprised of 1.8 million research papers.
- We used three sets of labels, all based on the IEEE/ACM taxonomy:
 - □ C11: A set of the 11 top-level categories.
 - □ C81: A set of 81 mid-level categories.
 - □ C276: A set of 276 third-level categories.
- IEEE/ACM labeled articles: 1.1 million

Experiments

- We compared our algorithm against the state-of-the-art ML methods: SVM and AdaBoost.MH.
- We created three training sets of 10,000 100,000 and 1.1 million articles.
- Statistics for the "large" training set:

Vector	Records	Most Frequent	Articles
κ	475,308	system	144,295
\mathcal{A}	497,604	Philip S. Yu	654
\mathcal{J}	3,915	Theor. Computer Science	13,295

Table 3: Trained Model Statistics

Evaluation

- We split the training set in three equally sized parts.
- We used the first two thirds to build \mathcal{K} , \mathcal{A} , and \mathcal{J} .
- The last third was used for evaluation.
- We checked all the possible combinations for w_k , w_a , w_i .

Accuracy

- Our approach outperformed the adversary generic ML algorithms.
- Our method: 81%-96%
- SVM: 78%-94%.
- ADA: 80%-88%
 - □ Some experiments did not finish!

$ \mathcal{T} $	C	$\{w_k, w_a, w_j\}$	Acc.	SVM	Ada
10,000	C11	$\{0.3, 0.1, 0.6\}$	94.0%	88.2%	88.8%
	C81	$\{0.2, 0.1, 0.7\}$	87.5%	82.9%	83.4%
	C276	$\{0.2, 0.1, 0.7\}$	80.7%	78.4%	80.1%
100,000	C11	$\{0.3, 0.2, 0.5\}$	95.1%	89.6%	-
	C81	$\{0.3, 0.1, 0.6\}$	88.2%	84.3%	-
	C276	$\{0.2, 0.2, 0.6\}$	80.9%	79.0%	-
	C11	$\{0.3, 0.2, 0.5\}$	95.9%	94.1%	-
1,159,634	C81	$\{0.3, 0.2, 0.5\}$	89.0%	87.9%	-
	C276	$\{0.3, 0.1, 0.6\}$	81.3%	80.8%	-

Table 2: Optimal tuning of the w_k, w_a , and w_j parameters for the three employed taxonomy structures and for training sets of different sizes.

Conclusions

- We presented a supervised machine learning approach for classifying research articles.
- Our algorithm takes into consideration the specific aspects of this particular problem.
- It outperforms the adversary approaches:
 - □ Better performance by about 6%, whereas AdaBoost fails to complete in large datasets.

Thank you for watching

Any questions?