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Abstract

For the solution of the linear system Ax = b, where A is block p-cvefic. the block SOR iterative method is to be
considered. Suppose that the block Jacobi itcration matrix B. associated with 4. has eigenvalues whose pth powers are all
real of the same sign. The problem of the determination of the precise convergence domains of the SOR method in case
A is also consistently ordered was solved by Hadjidimos. Li and Varga by using the Schur—Cohn algorithm. The same
convergence domains werce later recovered by other approaches too: specifically, Wild and Niethammer and also Noutsos,
independently. used hypocycloidal curves. In this manuscript it is assumed that A is n01 consistently ordered but 4" is. By
using the Schur—Cohn algorithm we successfully determine, not only: (i) the precise SOR convergence domains, but also
(i1} intervals for p(B). the spectral radius of B. that directly imply that the optimal value of the SOR rclaxation factor
o is equal to 1. In this work new results are obtained. some well-known ones are recovered or confirmed and a number
of theoretical examples arc investigated further. It is worth noting that among the new results, we derived something
not quite expected: specifically. in many cases there cxist pairs (p(B).) for which the SOR methed associated with the
matrix 4 we consider converges while the corresponding SOR for the p-cyclic consistently ordered matrix 4" does nor!

Kevwords: Iterative method: Successive overrelaxation (SOR) method: p-cyelic matrix: Schur-Cohn algorithm
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1. Introduction and preliminaries

For the solution of the nonsingular linear system
Ax = b, (1.1)

where 4 € C™" and x, he ", the block successive overrelaxation (SOR) method is considered.
Suppose that 4 is partitioned in the p x p block form

A=D(—-L-U), (1.2)
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where D is a p x p block diagonal nonsingular matrix and L and U are block strictly lower and
strictly upper triangular matrices, respectively. As is known for the solution of the system (1.1)~(1.2)
the block SOR method is defined by

A = £ X" ol —wl)'D b, m=0.1,2,...,
L= (I —wL) '[(1 = o) + ol (1.3)

In (1.3), " is the mth approximation to the solution of (1.1), with x'"’€ C" arbitrary, w # 0
the relaxation factor and £, the SOR iteration matrix. From Kahan’s work [6] it is known that a
necessary condition for (1.3) to converge to the solution of (1.1)=(1.2) is |® — 1| <1 which, if
we restrict to real values of , is equivalent to 0 < @ < 2. Moreover, a necessary and sufficient
condition for (1.3) to converge is p(L,,) < 1, with p(-) denoting spectral radius (see [1, 14], or [18]).

For the study of the convergence properties of the SOR method (1.3), one usually considers the
block Jacobi iteration matrix associated with A in (1.2), namely

B:=L+ U (1.4)

This is because information about the spectrum of B, denoted by o(B), is necessary in order to
enable one to answer the following two questions:

(i) for what pairs (p(B),®) does (1.3) converge? and

(ii) for a given p(B), for which convergence of (1.3) is guaranteed, what is the (optimal) value of
« that minimizes p(£,,) and makes therefore (1.3) converge (asymptotically) in the fastest possible
way”?

Complete answers to questions (i) and (ii) above have only been given for particular classes
of matrices A4 in case certain information regarding 6(B) is available. For example, many results
have been obtained in the case where 4 belongs to the class of block p-cyclic consistently ordered
matrices (cf. [14]) or, more generally, to the class of block generalized consistently ordered ( p—g,q)-
matrices (or (p — ¢.¢q)-GCO matrices) (cf. [18]). It is noted that the former class of consistently
ordered matrices is a subclass of the latter one corresponding to ¢ = p — 1.

In case 4 belongs to the class of p-cyclic matrices the analysis and study of the SOR convergence
may be accomplished. This is mainly due to the fact that the sets of eigenvalues p€o(B) and
/. €a(L,) are connected by means of the functional equation

(Z4+o—=1)F=u"wn’ (L.5)

first given by Varga [14] and then by Verner and Bernal [15]. Eq. (1.5) generalizes the famous
cquations by Young and Varga which correspond to (p.g) = (2.1) and (p.q) = (p. p — 1), respec-
tively.

The analysis of the SOR convergence is facilitated further if one assumes that besides 4 being
p-cyclic the eigenvalue spectra of B” are real of the same sign. The reader is referred to some of the
basic works in which optimal values for the parameter «» were determined when ¢(B7) is nonnegative
(e.g.. [8, 13, 17]), as well as when o(B”) is nonpositive (e.g., [2, 3, 7, 10, 9, 16]). In all of the
works just mentioned, except [8, 3], 4 is assumed to be a p-cyclic consistently ordered matrix. The
very first works concerned with the determination of the convergence domains of the SOR method
were those by Young [17], Kredell [7] and Niethammer [9], for p = 2, by Niethammer et al. [10],
for p = 3, and by Hadjidimos, et al. [4], for any p > 2, in both the nonnegative and nonpositive
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cases. It should be mentioned that all of the works on the domains of convergence were concerned
with p-cyclic consistently ordered matrices only. Also that the results in [4] were recovered by Wild
and Niethammer [16] and, independently, by Noutsos [11], who obtained parametric expressions for
all the boundary curves involved.

The main motivation for the present work is to extend the study of the convergence domains of
the SOR method in [4] to the case where 4 in (1.1) is p-cyclic but not consistently ordered.

For the reasons that are explained and become clear in [3], in this manuscript we study the case
where 4" is p-cyclic consistently ordered or, equivalently, when in Eq. (1.5), ¢ = 1. In such a case
the block Jacobi matrix associated with 4 has the following block form:

[0 B 0...0 0

0 0B ...0 0
B:=|: . (1.6)
000..0B,,

(B, 0 0..0 0

with its diagonal blocks being square. In this work we completely determine the regions of conver-
gence by a recursive algorithm in both the nonpositive and the nonnegative cases. To accomplish it
we use the Schur-Cohn algorithm [5] as this was done in [4] but now the analysis is much more
complicated, due to the nature of the problem, and also more complete. In Section 2 the exact SOR
convergence domains are derived in the general case p > 3 and the corresponding domains for the
cases p = 3.4 and 5 are completely studied and determined. An astonishing result obtained is that
in the nonpositive case and for p odd there exist pairs (p(B),w) for which the SOR method, in the
nonconsistently ordered case of 4 we examine, converges while the SOR, in the consistently ordered
case, corresponding to A" does nor (see Theorem 2.10). In Section 3 the Schur—Cohn algorithm is
applied again to determine when the optimal value of the parameter « is equal to 1 or, if it is not,
to determine an interval in which the optimal o lies. To the best of our knowledge, this method of
obtaining information about the optimal « by means of the Schur-Cohn algorithm is done for the
first time in the literature.

2. Domains of convergence
2.1. The Schur-Cohn alyorithm

One of the main tools in our analysis is the Schur—Cohn algorithm (see [5]) which is presented
below. For this let

Pyi=ay"+a, 2"+ da, n=0, (2.1)

be a polynomial of degree n with ;€ C, j = 0(1)n, and «; # 0 for at least one j. The reciprocal
polynomial P*(z) is defined by

P*(:):: ﬁ():"ﬁ—ﬁﬁ”*] +~-~+E,,, (22)



66 A. Hadjidimos et al. | Journal of Computational und Applied Mathematics 72 «1996) 63 83

where @, is the complex conjugate of a;, j = 0(1)n, and satisfies
P (z) :=z"P(1/3). 2.3)
We introduce the polynomial 7P(z) (or simply 7P) of degree n — 1 defined by

n—1

TP(Z) = EUP(Z) - aNP*(:) — Z(a()ak - anan-r»/\ )ZA (24)

k=0

which is called the Schur transform of P(z). The iterated Schur transforms 7P, T°P,... T"P are
defined by induction. We set now

o= TP0), k = 1(1)n, (2.5)

and give the Schur Theorem (see [5]).

Theorem 2.1. Let P := P(z) be a polynomial of degree n with P % 0. All zeros of P lie outside
the closed unit disk, D, if and only if

v >0, k= 1(1)n. (2.6)
2.2. The nonpositive case

Let all the eigenvalues u of the block Jacobi matrix B in (1.6) satisfy
u” <0, uea(B). (2.7)
Then the eigenvalues ~ of the associated SOR matrix £, will satisfy (1.5) with ¢ = 1, namely
(2 +w0—=1) =0 (2.8)

As was considered in [3] and for the reasons explained there, let v be any fixed but otherwise
arbitrary number in the interval [0, p(B)]. For each such v € [0, p(B)] we will determine the interval,
in terms of ), in the (v, w)-plane for which all the roots /;, j = 1(1)p, of (2.8) belong to the open
unit disk, Dy, in the complex plane. Then we will determine the domain of convergence of the SOR
method by considering the set of all possible values of v € [0, p(B)].

For v = 0, (2.8) gives ~ = | — w implying |~| <1 for all € (0.2). It is then obvious, using
continuity arguments, that for v = ¢ — 07, there will be an interval for ), subinterval of (0,2), for
which 7;, j = 1(1)n, of (2.8) will satisfy |4;; < 1. For a certain v (0, p(B)], (2.8) will become

(#+0—1)Y = —="w’,. (2.9)
We set /. = |/]e'”, extract pth roots of both members of (2.9) to obtain

e’ + @ — 1= vl reltH=Dmdre e — 01y p — 1. (2.10)
and put

- = ‘/|1 /)e(l(:,\’]):"(ﬁ) ” (2] ])
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to produce
vz + 1 —m=0. (2.12)

Hence, all the roots of the polynomial equation (2.12) must lie in the open unit disk D, or, equiva-
lently, the zeros of the corresponding reciprocal polynomial must lie outside D,. From the discussion
so far it is evident that one can apply the Schur Theorem with

P(z):=(1 — o)z + vzl + 1 (2.13)
and

P(zy=z"+voz+1— . (2.14)
Using (2.4) one readily obtains that

TP(z) := vor"' — (1 — ooz + o2 — o). (2.15)

At this point we observe that =€ (0,2) is a common factor in all three terms in (2.15). So. without
loss of generality, and in order to simplify the analysis, instead of (2.15) we consider

TP(z) :=vz""" — (1 —wnz+2 — . (2.16)

(Note: In fact, (2.16) could have been obtained if instead of (2.13) we had considered (1//w)P(z).)
By successive applications of the Schur transform to (2.16) we finally obtain

T/P(:) = B(j/'):/)f/- + B(l”: _}_BE]/). / _ ](l)})* 1,

1142 1) 1142 (2 l 7)

T'P(z) =[BT — (B + BV VL.
The coefficient sequences in (2.17) are derived from the recurrence relationships

B(:/‘]) _ _B;/’B(i”» B(I/~Il — B(lj)Bi]”- B:‘j*l) — [B(()/'i]l _ [B(z,/)]lq / _ 1(1 )p ’ 2., (218)
with initial values

B =v. B =(w—1n B =2-0. (2.19)
The values 7, of the Schur Theorem, which must be positive, are then given by

. By, j=1p—1.
v = T/P(0) = { “”),,',/, o ),ff,,, e (2.20)
(B, 1 =B +B . j=p

Therefore, the SOR convergence domain we are seeking will be given by

Q, = {(pB)rwy;, >0, j=1(1)p. Vve[0.p(B)]}. (2.21)
As in {4], we introduce the quantities

»’7/ = [Bl)l*l)]z _ [Bllf -1y + B(Ql*l)]z’ ] — 2(1 )I)« (222)

which will be very useful in the sequel.

Since for «» = 1 direct conclusions can be drawn from (2.12) in what follows we may distinguish
the cases 0 < w < 1 and | < < 2. Below, a number of statements in the form of lemmas and
theorems are given and proved which, eventually, lead us to the determination of the regions £2, in
(2.21).
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Lemma 2.2. For o <1, if », >0 for all j = 1(1)p — 1, then BY >0 and B <0 for all j =
1(1)p— 1. On the other hand, for » > 1 if 7, >0 for all j = 1(1)p— 1, then B = (~1)"~"|BY"|
and B\ >0 for all j = 1(1)p — 1.

Proof. For w < I, from (2.19) we have that B,"’ > 0 and B\"" < 0 while for w > 1 it is B > 0 and

B\" > 0. In both cases our assertions can be very easily proved by induction using the relationships
in (2.18). C

Lemma 2.3. For all j = I(1)p — 1, 3, >0 if and only if (iff ) By ™" +BY" >0 and B/ —
B/~ >0

Proof. (2.20) and (2.18) imply that
y=1By "+ BT By - BY ). (2.23)

Let 7, >0, j = 1(1)p — 1. Since By "' =7, > 0, we have from Lemma 2.2 that one of the two
factors in (2.23) must be positive and so must be the other one. The converse holds in view of
(2.23). It is noted that the proof just given does not cover the case j = 1. However, if one uses
(2.13) and considers that BY = 1 — w, B\’ = v, B)") = 1, then obviously By + B’ =2 —w >0
and B)" — B’ = w > 0. Therefore, our statement holds for all j’s. [

Lemma 2.4. For o <1, if y; >0 for all j = 1(1)p — 1, then 7, > 0 for all j =2(1)p.

Proof. From (2.22) and (2.18) and for any j = 3(1)p it can be obtained that
5 [B})/* B(/*’)] [3(1*7) +B({172) +B(/’z)]2

ij- 1'/
x[BY "V + BY T =BV BT - BY Y BV (2.24)

By virtue of Lemmas 2.2 and 2.3 neither of the first two factors on the right-hand side of (2.24)
can be zero while both last factors are positive. So is then the product 7, ; 7. By induction, it is
readily seen that if 7, > 0 for precisely one j, then 7, > 0 for all j = 2(1) p. However, 7, > 72(> 0)
as is easily checked Wh]Ch completes the proof. D

Lemma 2. 5 For o> 1,1f 7, >0 for all j = I(1)p— 1, then for j odd it is 7

3> 0 while for j
even it is 7, > 0 iff 7, > 0.

Proof. From (2.22) and (2.18) it can be obtained that
:‘j/_ — [B:)./‘Z) . B(z/fl)]l [B =2 B(lfu) B(],lfz)] [B(()/"«Q) + Blzl"fZ) + B( /*2)]. (225)

In view of Lemmas 2.2 and 2.3 it is obvious that sign(7) = sign(B) > + BY ™" — BY/™") =

sign(BY/ ) — BY ' — BV, Similarly, sngn( ,) = mgn(BB’ B B — BV Therefore, by
induction, it is concluded that for j odd, 7, > 0 1ﬁ 7y > 0 while for j even, 7, > 0 iff 7, > 0. Using

(2.19) and (2.22) it can be checked that 7, > 0 which completes the proof. [

Based on the results obtained so far one can give the following equivalent definitions for the
convergence domains £, in (2.21). This is done in the theorem below.
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Theorem 2.6. The convergence domain Q, in (2.21) can be equivalently given by

Q, = {(p(B).)

>0 j=1p—1. Wwe[0,p(B)]}. p odd. (2.26)
and

Q,={(pB)w) ;>0 j=Up-1. and

5 (2.27)
me(0,1] U {(l 1 ; ) iff v < I}~ Vyel0.p(B)]}. p even.
N
Proof. The conditions that define 2, in (2.21) are equivalent to
>0 j=HKhp—1. and 7 >0 (2.28)
For odd p, 7, > 0 in view of Lemmas 2.4 and 2.5. This proves (2.26). By virtue of the two previous

5

lemmas for even p, 7, > 0 in (2.28) is equivalent to 7, > 0. However, the latter inequality is always
true for « < 1 while for «» > 1 it is equivalent to » < 2:(1+v), which holds iff v < 1. This proves
(2.27). [

The following two statements enable us to determine orderings of the domains €,

Lemma 2.7. The “right” houndaries ¢Q, of the domains Q, defined in (2.26) and (2.27) are given
by the “leftmost™ of the curves c,. where

¢, = {0 )

oo =0, 0e(0.2)} podd. (2.29)

and

2

Cpi= {(\'.m)|;',, 1 =0. 0e(0.1] for v=1and o= for v < 1}. p even. (2.30)

-+

Proof. From (2.26) and (2.27) it is seen that the curves 7, =0, j = I(1)p — 1, are right boundary
curves for the domain Q,. However, (2.18) gives

o= - BT (231)

Let (v.®) be any point such that 7;(v.®m) = 0. From (2.31), 7, (V,@) < 0. Therefore, the curve
71 = 0 1s a “better” bound than ;; = 0. Use of induction completes the proof. [J

Theorem 2.8. For the ordering of the domains Q, of Theorem 2.6 there hold
Q,.CQ, p=234... (2.32)

and

Q,,CQ, p=357... (2.33)
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Proof. From Theorem 2.6 it is obvious that
Q,,CQ, p=23.4... (2.34)

To prove the validity of (2.32) it suffices to show that the curves 3, = 0 and ;;,., = 0 for j =
1(1)p — 2 are not identically the same or, equivalently, in view of (2.31), BY' # 0. However, by
induction, using (2.18) we have

By =By BT BT -8)"T B (2.35)

Since B{)“ = >0, k=1(1)—2, B(l” = (w—1T) and B‘zl’ =y we have from (2.35) that B’ =0
holds iff « = 1 or v = 0. Consequently, B5”’ # 0 and (2.32) is proved. From the definitions (2.26)
and (2.27) of Theorem 2.6 we readily obtain that

Q,,CQ, p=357... (2.36)

That strict inclusion holds in (2.36) follows by the same reasoning as in the proof of (2.32) since
the two curves ;,_; =0 and 7, = 0 for « € (0.1] do not coincide. =

From the analysis so far it becomes clear that the right boundary curve ¢, can always be
expressed as a single-valued function of o, v = v (), ©€(0.2). ¢€2, can also be expressed as a
single-valued function of v, w = @,(v), v€[0.p(B)], if it is strictly decreasing. As will be seen in
the sequel this is the case for p = 3,4 and 5. where explicit expressions for ¢, are derived. For
p > 5 this issue requires further investigation.

(1) p=3: From 7> = 0 and relationships (2.18) and (2.19) we have that

=2 —o—v)2-o+rv)=0

or, equivalently, 2 —»m —yv = 0 implying «=» = 2 —v. Since this equality must hold for all v & [0, p(8)]
it is readily concluded that

oy i=o3(V)=2—-v, v=pB)<2. (2.37)

The convergence domain €; is illustrated in Fig. I.

Note: It is interesting to note that for v (0.1) there are more pairs (v,w) for which the SOR
considered in the present paper converges than in the corresponding case where 4 is p-cyclic con-
sistently ordered. These are all the pairs (v,®), v€ (0, 1), between the dotted line (included) and the
solid line (excluded) in Fig. 1. This conclusion constitutes a very special case of a more general
one (see Theorem 2.10).

(i) p=4: From 73 = 0 and relationships (2.18) and (2.19) we obtain

[(2—o—=—v)2—-m+v)+(] - m)\'z] [(2—o—v)Y2—m+v)—(1— (1))\*2] =0

The fact that ;; > 0 together with 0 < o < | imply that the first factor in the previous product is
positive. Therefore, (2 — @ — v)(2 — @ +v) — (1 — wn* = 0 or, equivalently, &» = 2 — v, For this
equation to hold for all v € [0, p(B)] we must have

my = my(v) =2 =1, v =p(B)< V2. 0<om <. (2.38)
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Fig. 1. Nonpositive casc p = 3.

For 1 < < 2 we already have « = 2/(1 <+ v) and for all 0 < v < p(B).

5
y=pB)<l o<
1+‘,‘ AB) 0

[ 3]

)y = my(v) = (2.39)
The union of the two curves (2.38) and (2.39) gives the right boundary of ¢Q,. The domain Q; is
illustrated in Fig. 2.

(i1i) p =5: From 74 = 0, (2.18), (2.19), after some simple algebra we have that

fvom) =0+ (Vv =)o+ 4 —2v =7 = 0. (2.40)

—_

If for v < [0.p(B)] there exists a right boundary curve o = ms(v) of s, the ¢ in question will be
obtained as a solution from (2.40). However, from Theorem 2.6, or from Lemma 2.7, it is implied
that ¢»s(v) must be to the “left” (“below™) the curve «~» =2 — v of the case p = 3 and “above” the
v-axis (¢ = 0). It can be readily checked that /(2 —v.v) = —v(v — 1)° <0, for v€ (0, p(B)]\ {1},
while f(+>x.v) = +x > 0. Hencec, one of the two reul roots of (2.40) is not admissible. For
the other one to be admissible f(0.v) = 4 — 2v + v= > 0 must hold. This inequality holds for all
vE [0, —1 4 v/5]. Consequently. m=<(v) exists and is given by the smaller zero of (2.40), namely

v =t = -y =) =442y )
2

4
ws(v) = L0< v < — 1+ V5 (2.41)
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/

0 0 01 0!2 03 04 05 06 07 08 09 1 91/3 A8
Fig. 2. Nonpositive case p = 4.
For ve[0,p(B)] C[0,—1 + V'5) we differentiate (2.41) to obtain
) dow _ .
sign (dT) =sign( — [ ~v =4+ 1) +4(r+ 1))
3V D0 v 4) 4402 + 20 - 4)), (2.42)

Now, if K = (V¥ + v —4)3v + 1)+ 4(v + 1) = v(v — 1)(3v +3v? + 7v — 5) > 0 which is true for
ve [0ovgyu(l, =1+ V'5) where v, = 0.530, the unique positive root of 3v* + 312 + 7y — 5 = 0, then
from (2.41), dow/dy < 0. If, on the other hand, v € [vy, 1] then K < 0 and (2.42) can be equivalently
written as

: d([) 2 2 2 3 R k) 3
sign | = (K" =3+ 1)[(v +v—4) +4(v 4+ 2v —4)])
= sign ((v — 1)7(=3v" — 18v 4+ 3)).

However, as is readily checked, —3v> — 18v+5 < 0 for v e [%(—9+4\/6), ) 2[ve, 1], with equality
holding for v = 1. Thus again dw/dv < 0 and the function ws(v) in (2.41) is a strictly decreasing
function of v. Therefore, the right boundary of Qs is given by

4—vy—v — /O3 +v—4)yY +4(2 +2v—4)
7

L

Sv=pB)< — 14+ V5 (243)

s = (V) =
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0 01 02 03 04 05 0.6 0.7 0.8 09 1 L5172

Fig. 3. Nonpositive case p — 3.

Fig. 3 depicts the domain Qs, where the same note as in the case p = 3 can be made.

In Theorem 2.8 orderings of the domains 2, were determined. A question that may arise is
whether the sequence {€,}; converges to a limit and in case of convergence whether the limit
in question can be found. That both subsequences {Q,}, 35, and {Q,} p—s6s.. converge is ob-
vious from (2.32). From (2.33), however, it is also obvious that for their limits there will hold
lim,_ ,,.,Clim,_. Q,, . In fact, the following statement (Theorem 2.9) similar to the corre-
sponding one in [4] can be proved.

Theorem 2.9. For the region

2
Q= {(\',(u) 0<v<l. 0<w< l - } (2.44)

+v

depicted in Fiy. 4, there holds

ec”

p=

22 S L (2.45)

Proof. The inclusion on the right of (2.45) follows from the previous discussion and the strictly
decreasing character of the two subsequences. For the inclusion on the left it suffices to prove that all
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Fig. 4. Nonnegative case p = 3.5.7.....
the zeros of the polynomial (2.13) lie outside D,. Consider the polynomials QO(z) and R(z) defined by
O(:):= (1 —w)". R(z):i= —vez’ ' — 1, (2.46)

so that their difference gives the polynomial P(z) in (2.13). For v =0 and m & (0.2)" {1} the zeros
of P(z) = Q(z)—R(z) are given by z = {/1/(«» — 1), hence |z| > 1, and the zeros of P(z) lie outside
Dy. For v=0and w = 1, P(z) has z = 0 as a pole of multiplicity p. For v # 0 the zeros of R(z)
lie on the circle with radius ”\/1/(vw). Since ¢ < 2/(1 +v) < 1/v the radius in question is greater
than 1. Suppose now that z € ¢D; (unit circle). Then it will be = = x + iy, . vER, x* +* = 1.
For v # 1 we successively obtain

0 =1 —m <[l —ov| =1 —ov[z]”" <1+ oz = |R()]. (2.47)

where the strict inequality on the left holds because m<2/(1 + v). In view of (2.47), the previous
analysis and the fact that all the zeros of R(z) lie outside D,, Rouché’s Theorem (see [5] or [12])
implies that so do all the zeros of P(z). The only case that has not been examined so far is that
when v = 1. For v = 1, w < | and the inequality on the left of (2.47) becomes equality. Then,

however, P(z) = 0 gives 2”7 '({1 — w)z + m) = —1 from which 1 = |[(1 — w)z + »|. This implies
that, [(I —o)x+iv)+om| =1 or, equivalently, (1 —w)(1—x)=0. Thus, x =1 (and y = 0) so that
z = 1. But the number z = 1 is not a zero of P(z) as is readily checked, meaning that the particular

case we have been examining cannot happen. This completes the proof. O
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Theorem 2.10. Ler Q2,0 p = 3.5.7..... he the region of convergence of the p-cyclic consistently
ordered SOR method corresponding to AV and let T be the open rectangle with vertices in the
(v,w)-plane (0,0),(1.0),(1,2).(0,2). There exists a nonempty region ¥,, p = 3.5.7,..., defined
by

W, =QNT\Q,. p=357... (2.48)

such that for any (v,w)e ¥, the SOR method for the matrix A studied so far converges while the
corresponding SOR for the consistently ordered matrix A" diverges.

Proof. Having in mind the upper right boundary of the SOR region of convergence in the consis-
tently ordered case, which is given by @ = 2/(1 + v) (see [4]), to prove our assertion it suffices
to prove that the points (v.) = (v.2/(1 + v)), with 0 < v < I, lie strictly within the SOR region
of convergence of the present nonconsistently ordered case for every p = 3.5,7..... For this we
consider as in Theorem 2.9 the polynomial P(z) = Q(z) — R(z). with Q(z) and R(z) being de-
fined in (2.46). The zcros of R(z) lie again on the circle with radius #7\/1/(vw). This time it is
m = 2/(1 +v) < /v and the radius of the circle in question is again greater than 1. For |z| =1 the
notation is similar to but the analysis is different from that in the corresponding part of Theorem
2.9. This time in (2.47) the first strict inequality becomes equality since ¢ = 2/(1 + v). If the
second inequality in (2.47) were equality then equating the second leftmost and rightmost terms of
equalities (2.47) and using the expression for . we would obtain, after some manipulation, that

Re(z"~') = —1. However, since |z| = 1, if z = cos¢ + ising were the polar form of = then from
27t =cos(p—1)p—risin(p—1)p = —1 we would have ¢ = g+ 1)n/(p—1). ¢ =0,1.2..... p—2.
Also it would be z7 = —z = —cos((2g ~ 1)z’ (p — 1)) —isin((2¢ + 1)n/(p — 1)). But then in the

expression for the polynomial P(z) there would be a complex number coming from its first term
with imaginary part Im P(z) = (w — 1)sin((2¢ + L)y (p — 1)) # 0. This 1s because 2¢ + 1 is odd
and p — 1 even and as a result the argument involved in the previous expression cannot become an
integral multiple of 7 making, in turn, possible for Im P(z) to become zero. Consequently, z, with
|| = 1, cannot be a zcro of P(z) which concludes the proof. [

Remarks. (i) The domain Q of Theorem 2.9 is nothing but the domain S associated with the p-
cyclic consistently ordered casc (¢ = p — 1) considered in [4].

(i1) In [4] the corresponding scquence of {Q,} > . was strictly decreasing and had as a limit the
domain € (= S5) of Theorem 2.9.

(i11) The result in (i) previously was obtained in [4] becausc the optimal values for the relaxation
factor v had been available (in the p-cyclic consistently ordered case). This vital information we
lack in the present case since the corresponding optimal values have been found only for p = 3 and
4 (see [3]). However, it is conjectured that the leftmost inclusion in (2.45) is a strict set equality; on
the other hand. in view of Theorem 2.10, it is implied that the rightmost one is a strict set inclusion.

(tv) For ¢» = 0 the maximum admissible values of v (= p(B8)) in the general case we have
been examining are the same as thosc in [4]. To see this let DY, D', and D}’ be the values of
BY(1y=0), B'(=0) and B} () = 0). respectively. It is obtained that D\''=p(B). D\"' = —p(B)
and D' = 2. The corresponding values in [4] are C\"' = —p(B), C!"" = —p(B). and C!"" =2,

respectively. By induction it is easily shown that D)’ = C,'. j = 2. proving our assertion, [J
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2.3. The nonnegative case

Our starting point is again Eq. (2.9). Working in a way similar to the one in the previous case
the following polynomial equation is produced:

¥ —voz+w—1=0. (2.49)
The Schur—Cohn algorithm is applied again with
B = —vo, B\" = (0 — 1o, B = (2 - w), (2.50)
or, simplifying by » as before, with
B =—v, B'=(w-1y, B'=2-w. (2.51)

As in the nonpositive case we give a number of statements some of which are presented without
proof in case their proof is similar to the corresponding one of Section 2.2.

Lemma 2.11. For o <1, if 7, >0 for all j=1(1)p — 1, then By <0 and B\ <0 for al[ j=
1(1)p — 15 while for @ > 1, if v, >0 for all j = 1(1)p — 1 then B = (=1)/|BY"| and B >0
forall j=1(1)p—1.

Proof. Analogous to that of Lemma 2.2. O

Lemma 2.12. For all j = 1(1)p— 1,7, >0 iff B/ " +BY " >0and By " - B/™" > 0.

Proof. Analogous to that of Lemma 2.3. O

Lemma 2.13. For o <1, if 7, >0 for all j = 1(1)p — 1, then 7, >0 for all j =2(1)p iff v<1.

Proof. In a similar way to that in Lemma 2.4 it can be proved that 7, > 0 iff 7, > 0. From (2.51)
and (2.22) it can be readily found out that 7, >0 iff v < 1. O

Lemma 2.14. For o > 1, if 7, >0 for all j = 1(1)p — 1, then for j even it is 7, >0 while for j
odd it is 7, > 0 iff 0 <2/(1 4 v).

Proof. In an analogous way to that in Lemma 2.5 it is proved that 7, > 0 iff 7,_, > 0. By induction
we have that for j even, 7, >0 iff 7, > 0 which is valid since 7, > 7, > 0. For j odd, 7, > 0 iff
75 > 0 which is equivalent to w < 2/(1 +v). 7

Theorem 2.15. The convergence domain Q, in (2.21) can be equivalently given by

2
Q, = {(/)(B),(z))( >0, j=1H)p—-1L o< Ty Yv < p(B) < l}, p odd, (2.52)
v

and

Q,:= {(pB)w)| 7,>0, j=11)p—1, YWw<p(B)<1}, p even. (2.53)
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Proof. The proof is obvious since it is an immediate consequence of Lemmas 2.13 and 2.14. [

Lemma 2.16. The “right” boundaries ¢Q, of the domains Q, defined in (2.52) and (2.53) can be
equivalently given by the “leftmost” curves c, where

2
Cpi= {(\'.w)‘ o1 =0, v=1 for € (0,1], 0= Ty for v < 1}, p odd, (2.54)
N

and
cp = {(v. )| o1 =0, v =1 for we(0, 11}, p even. (2.55)

Proof. The proof is based on the definitions (2.52) and (2.53) and on a reasoning which duplicates
that in the proof of Lemma 2.7. O

Theorem 2.17. Let Q' be defined by
Q =\ {(v,o)|v=1}, (2.56)

where Q is the domain defined in (2.44) of Theorem 2.9. Q' is an SOR convergence domain for
any p = 3.

Proof. The proof is similar to that of Theorem 2.9, with the only difference being that the polyno-
mials Q and R, defined in (2.46), are now defined by

O):=(w— 1)z, Riz):=vrvoz"'—1. C (2.57)

Theorem 2.18. For the domains Q, of Theorem 2.15 there holds
Q,=9Q, p=23.57... (2.58)
and

Q,..CQ,, p=4,68..... (2.59)

Proof. From (2.52) we have that the curves v = 1, for w < I, and w = 2/(1 + v), for v > 1, are
among those defining the boundaries of Q,, p = 3,5,7...., while at the same time they constitute
boundary curves for Q. Hence, 2, C Q'. However, since €' is a convergence domain of the SOR
method for any p > 3 (see Theorem 2.17) it is implied that @' C €, These two inclusions imply
(2.58). The proof of (2.59) is based on the definitions (2.53), on Theorem 2.17 and on a reasoning
similar to that in the proof of Theorem 2.8. 1

Theorem 2.19. For the domain Q' in (2.56) and the domains Q, in (2.53) there holds

Q) Qo (2.60)

p=1

We simply note that the domains Q,, p = 3.5.7,..., coincide almost with €', that is, they
are those shown in Fig. 4 except for the line segment v = 1, 0 < < 1 which is not included.
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Fig. 5. Nonnegative case p = 4.

To determine each Q, p = 4.6.8,.... onc has to work in a recursive manner. So, the question
arising just after Theorem 2.8 remains an open one in the general case p>6, p even. However, by
following a reasoning similar to that in Theorem 2.10, it can be proved that the upper right part of
the boundary is strictly above the curve ;= 2/(1 +v), 0 < v < 1.

In what follows we find the right boundary curve in the case p = 4.

p = 4: From Lemma 2.16 we have that this boundary is given by the “leftmost” parts of the
curves v = 1 and 7; = 0. From relationships (2.18), (2.20) and (2.51) we have that

5=12 o) =P = [o- D)
Having in mind that 7> > 0 and v < 1 we readily obtain that

Wy 1= (V) 1= 1;(\'3+4—\'\/m)._ 0<r<l, (2.61)
It can be found out that dw,/dv < 0 implying that (2.61), with v = p(B) < 1, will give the “upper”

right boundary of €,. The region Q, is illustrated in Fig. 5. The dotted line shows the curve
m=2/(1+v).
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3. On the optimal values of
3.1 Introduction

The Schur-Cohn algorithm used extensively in Section 2 to derive the convergence domains of
the SOR method can also be used to decide whether the optimal value of the relaxation factor «,
denoted by @, is such that > = 1 or &€ (0.1), or )€ (1,2). In the subsequent analysis we examine
again the nonpositive and the nonnegative cases. As will be seen, some new interesting results are
obtained and some well-known ones are recovered.

3.2, The nonpositive case

We begin our analysis with (2.12) where ¢ = 1, namely,
2wy = 0. (3.1)

Obviously, (3.1) has one root cqual to zero while all its other p — 1 roots are complex and lie on
the circle with radius v! 7 V. If there exists at lcast one value of » # 1 such that all the p roots
of (2.12) have modulus strictly less that v' ‘=" then the corresponding SOR iteration matrix will
have spectral radius strictly less than v' /=!" and the optimal value for m() will be different from
1. So, in what follows, we seek the conditions on ¢ under which all the moduli of the roots of
(2.12) becomc smaller (or greater) than v' (7=".

For our study we make the transformation

ca=at e (3.2)
so that (3.1) becomes
J+(=0 (3.3)

and the images of the roots of (3.1), that laid on the circle with radius v' *”~"" lie now on the unit
circle ¢D,. However, under (3.2), (2.14) becomes

P)(;:) =y (/)—I)‘:p < ({)‘,[H/)—l): ]l =-w=0 (34)
and the associated reciprocal polynomial is
P(g’) = ( 1 — (}));/7 SR (p~l);/)r] 4P (/if|l~ (35)

To examine under what conditions all the zeros of (3.5) lie strictly outside D, the Schur—Cohn

algorithm will be used. This time the associated values of B''", B and B} are given by

| e I _ | (e :
B = ot B = () — Dy 270 B = 20 (] — ) (3.6)

while the values By, B\"' and By'". j = 2(1)p — | are given again by (2.18). Since the signs of the
values B4’ and B\" of (3.6) arc the same as those of the corresponding values of (2.19) and since
B, =, is required to be positive, the theory developed in Section 2.2 holds in general.

First the case » > | is examined when the following theorem can be stated and proved.
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Theorem 3.1. For v = p(B) the minimization of p(L,,) for all w =1 is achieved for w = 1.

Proof. For p > 3 and from (2.18) and (3.6) we have
y = [\,2/)([}*1) . (] _ U))Z]Z _ (Uzv‘lpﬂ(ﬂ—”. (37)
It is readily seen that

-1, w>1,

Slgn(fz) — S]gn((l - m)(‘,zp«/;fl) —}—(I)Vp(h»” 4w — l)) = {0 W — 1

and the proof is complete. [
For @ < 1 the two statements given in the sequel can be stated and proved.

Lemma 3.2. The domain Q p» defined in a way quite analogous to (2.26)~(2.27), for which all the
zeros of the polynomial (3.5) lie outside D\, can be given by

Q, = {(p(B).®)| 7,-1>0, Yve[0,p(B)]}. (3.8)
Proof. From the definition of Q, we have

Qp = {(p(B),w)|7; >0, j=1(Dp—1.7 >0, Vvel0,p(B)]}. (3.9)

i I)
From the proof of Lemma 2.7 it is implied that },_, >0 gives a subdomain of the domains given
by 7, >0, j = 1(1)p — 2. So, the intersection of all these domains is the subdomain defined by

7p—1 > 0. On the other hand, from the proof of Lemma 2.4, we have that 7 p > 0 iff 7, > 0. However,
it can be checked that

sign(7,) = sign(By ' + By + B"') = sign(;1).
which completes the proof. O

Theorem 3.3. For o < 1, if (v,w)€ Q,,OQ,, Jfor v [0, p(B)] then the smallest p(L,,) corresponds
to an optimal o, & < 1, otherwise it corresponds to w = 1.

Proof. If (v,w)€ Q ,» then our assertion holds by virtue of Lemma 3.2. Moreover, for convergence
to be achieved there must be (v,w)€ Q, and the proof is complete. 7

Remarks. (i) For p = 2, our theory is trivially verified and the well-known result obtained by
Kredell [7] and Niethammer [2], namely & < 1, is confirmed by our analysis. Of course, in [7, 2],
an analytic expression for @, namely & = 2/(1 + (1 + p?(B))' ), was also obtained.

(ii) For p = 3,4 analogous results for > obtained in [3] are confirmed by the present analysis.
Again we comment that analytic expressions for @ were given in [3].

(ii1) For the special case p =5, equation 7y = 0 gives

Y

(V=0 = )PP — oV — (1 — 0Py — (1 - o) V[V -1 -w)]=0. (3.10)
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Fig. 6. Nonpositive case p = 5. Domain of optimal « for p(B) > (1 2y 3.

As is readily checked, curve (3.10) passes through the points (v,w) = (1,0) and ((§)*°,1). (The
domain of Theorem 3.3 is illustrated in Fig. 6 by the shaded region.) Therefore, from our analysis
there follows that if p(B) < (1)*°, & = 1.

(iv) Based on the previous remark we may obtain a more general result. Specifically, we can find
out that for all p > 6 the curve 7, = 0 is given by

{[‘,2,)(/)—1) * (] o w)l]l o (1)2\,4/)1,0—11}2 o (l _ ({))2(94\‘6/)1/)...1)
—(1 — )P () )], (3.11)

This curve passes through (1,0) and ((3)'#7" 7. 1) as is readily checked. This means that at least
for all p(B) < (5)'7~" 7?7 there will be & = 1. Note that this upper bound for p(B) decreases with

p and tends to 1/v/2 as p — x.

3.3. The nonnegative case

This time the equation that corresponds to (3.4) is

P"(C) = y7 (/kl):[} . (1)‘,[7(1771);’ +w—1= 0 (312)
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while its reciprocal polynomial is

P() = (w0 — 1) — oy? r=Dge=1 poyrto=h), (3.13)
Hence,
BEH — 7(,)‘,1[J l/)fl)’ B(]l) _ ((I) _ l)(‘,)\,p(/)»fl). Bt)ll — \‘2/) (p—1y _ ((.') _ 1)2’ (314)

while B, BY", B\, j = 2(1)p— | are given again by (2.18). Note that the signs of 8" and B} in
(3.14) are the same as those of the corresponding quantities in (2.50) while BE,” = is required to
be positive. So, the theory of Section 2.3 holds in general. The main result of this section is given
in the theorem below.

Theorem 3.4. For p =3 and for p(B) < 1, the smallest p(L.,) is achieved for ¢ = 1.

Proof. For =» > 1 and from (3.14) we have that 7, > 0 equivalently gives v/ """ —w+1 > 0. For
the quantity ;- it can be found out that

sign(;2) = sign((1 — o) """ 40— 1)) = —1.

For @ < 1, sign(;y) =sign(v/"~" 4+ w — 1) while for 7, it is

sign(7,) = sign((1 — w)(»” = _ 1y = —1.

So in both cases we are led to the conclusion that @ = 1. [

Remarks. (i) The present theorem treats a particular case ot that in [8] and therefore is in agreement
with the well-known result ) = | obtained there.

(ii) For p = 2 the second part of the theorem holds true. For = > 1, 7, = 0 is equivalent to
@ < | +v*. So, from the inequality just obtained and (2.52)(2.53) it is concluded that there exists
an optimal value of o, » > 1, satisfying

<O <14 p(B). p(B) < I.

This result is in agreement with the classical one obtained in [17], where, however, in [17] the
analytic expression for ), namely & = 2/(1 + (1 — p*(B))' %), was also obtained.
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