
s2a_fm

A Scratch 2.0 and Snap! 4.0 Hardware Extension for
Arduino Micro-Controllers

Copyright © 2013-14 Alan Yorinks. All rights reserved.

This manual is distributed WITHOUT ANY WARRANTY, without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

March 21, 2014
s2a_fm Version 1.4

Version 1.4 Changes
Chinese Translations for Snap! and Scratch have been provided courtesy of Professor
 Yuf Fangjun
French Translations for Snap! and Scratch have been provided courtesy of Sebastien Canet

Bug fix for duration field of Sound block. Duration now works properly.

Version 1.3 Changes

 1. Support for the Snap!Mobile project has been added.
 2. Spanish Translations for Snap! And Scratch have been provided courtesy of Professor
 José Manuel Ruiz

Version 1.2 Changes:

1. Support for Snap! 4.0 has been added.
2. Support for HC-SR04 type Ping devices has been added.
3. Translation of Scratch Block Text into Dutch has been provided.
4. Facility to translate Scratch/Snap Block Text to any language is included.

Version 1.1 Changes:

1. When enabling a digital pin, the pin is verified to support the requested mode.

2. Added debugging feature

Table of Contents
 1.Introduction..1
 2.What is s2a_fm?...1
 3.Installing s2a_fm..2

 3.1.Python and Python Files...2
 3.2.Arduino Sketch...2

 4.Running s2a_fm...2
 4.1.Starting a Scratch Project...3
 4.2.Starting a Snap! Project..4

 5.The Extension Blocks..4
 5.1.Set Digital Pin Mode..4

 5.1.1.Enable...5
 5.1.2.Disable..5
 5.1.3.Pin Number...5
 5.1.4.Digital Mode...6

 5.2.Set Analog Pin Input Mode..6
 5.2.1.Enable...6
 5.2.2.Disable..6
 5.2.3.Pin Number...7

 5.3.Digital Write...7
 5.3.1.Pin Number...7
 5.3.2.Pin Output Value...7

 5.4.Analog (PWM) Write...7
 5.4.1.Pin Number...7
 5.4.2.PWM Value...7

 5.5.Play Tone..8
 5.5.1.Pin Number...8
 5.5.2.Frequency (HZ)..8
 5.5.3.Duration (ms)..8

 5.6.Turn Tone Off...8
 5.6.1.Pin Number...8

 5.7.Move Servo..9
 5.7.1.Pin Number...9
 5.7.2.Position (Deg)...9

 5.8.Read Digital Pin...9
 5.9.Read Analog Pin...9
 5.10.Sonar...9
 5.11.Debugger..10
 5.12.The Red Stop Button..10

 6.Log File..10
 7.Example Programs...11

 7.1.A Scratch/Snap! Program to Turn On an LED using Digital Pin 6..11
 7.2. Scratch/Snap Program to Read A Potentiometer on Pin A2 and Spin the Scratch Cat...............11

 8.Scratch/Snap! Block Translation for Dutch, Spanish and Chinese..12
 8.1.Translating to Other Languages...12

 9.Windows .bat and Linux .sh Files for Easier Program Startup..13
 10.Project Directory Tree..13

 11.References..15
 12.Questions, Comments, Bug Reports..15

 1. Introduction
Arduino users! Would you like to configure and control your Arduino micro-controller without having
to write a single line of Arduino sketch code and at the same time have access to a graphical user
interface?

Scratch and Snap! programmers! Would you like to control and communicate with an Arduino board?
Imagine, using Scratch or Snap! to control physical devices such as LEDs, motors, and relays while
monitoring devices, such as temperature sensors, potentiometers, and light sensors. What would you
create?

Look no further, s2a_fm is here!

 2. What is s2a_fm?

s2a_fm is a Scratch hardware extension written in Python allowing Scratch and an Arduino
micro-controller to communicate seamlessly.

 Figure 1 – s2a_fm Architecture

s2a_fm is comprised of three main software components:

1. An HTTP server that communicates with Scratch. The standard Python BaseHTTPServer is
used for simplicity and compatibility.

2. The protocol translator translates data between the HTTP and Firmata protocols. This is all done
seamlessly and it allows your Scratch/Snap!/Arduino projects to look and work just like any
other Scratch or Snap! project.

3. PyMata, a Python library that communicates with the Arduino using the Arduino Standard
Firmata protocol. This makes for fast, efficient and consistent communications. PyMata handles
all of the Firmata protocol details.

To start a new Scratch project, just upload the s2a_fm_base.sb2 script file supplied with this release. To
start a new Snap! project, import s2a_fm_Snap_base.xml. These files contain all of the extension
blocks ready to go. After loading the project for your platform, you will find the Scratch extension
blocks in the More Blocks tab of the Scratch Project editor ready for use. For Snap! The blocks may be
found in the Motion, Sound and Sensor tabs of the blocks palette.

1

HTTP
 Server

Protocol
Translator

PyMata

HTTP
Over

TCP/IP

Firmata
Protocol

s2a_fm

 3. Installing s2a_fm

 3.1.Python and Python Files

Before installing s2a_fm, you must have the following Python components installed on your computer:

Python version 2.7 or greater. You can download Python from: (http://python.org/)

PySerial (http://pyserial.sourceforge.net/)

PyMata (https://github.com/MrYsLab/PyMata)

To install PySerial and PyMata, you may use the “pip' installation program
(http://www.pip-installer.org/en/latest/) if you have it installed on your computer. To use it, open a
command window and type: pip install package_name.

Alternatively, you can download the packages using the links above, and for both the PySerial and
PyMata packages type:

python setup.py install.

Note: you may need administrative privileges to perform the install.

 3.2.Arduino Sketch

Load Standard Firmata into the Arduino from the examples directory of the Firmata library included
with the Arduino IDE.

If you wish to use the Tone and/or SONAR (ping) functionality provided in S2a_fm, you should load
the FirmataPlus sketch included with PyMata.

Make sure that you are using PyMata 1.54 or later with this sketch.

You will need to add the NewPing library to Arduino to successfully compile this sketch. It may be
downloaded at: https://code.google.com/p/arduino-new-ping/downloads/detail?
name=NewPing_v1.5.zip

NOTE: After installing NewPing, you will need to modify one of its files. Follow the directions
provided in this link:
https://code.google.com/p/arduino-new-ping/wiki/HELP_Error_Vector_7_When_Compiling

NotSoStandardFirmata has been replaced by FirmataPlus, but is still provided as part of the distribution
for those that wish to use it.

It is recommended that you use Arduino IDE version 1.5.5 or greater. Using an earlier version my result
in compile errors.

 4. Running s2a_fm
Plug your Arduino into a USB port on your computer.

2

https://code.google.com/p/arduino-new-ping/wiki/HELP_Error_Vector_7_When_Compiling
https://code.google.com/p/arduino-new-ping/downloads/detail?name=NewPing_v1.5.zip
https://code.google.com/p/arduino-new-ping/downloads/detail?name=NewPing_v1.5.zip
http://www.pip-installer.org/en/latest/
https://github.com/MrYsLab/PyMata
http://pyserial.sourceforge.net/
http://python.org/

Go to the directory where you installed the s2a_fm package and type:

python s2a_fm.py COM_PORT_ID

where COM_PORT_ID is the name of the serial port that is used to communicate with the Arduino. It
will have the same name as the one used when you use the Arduino IDE. For example, for Windows, it
might be COM3, for linux, it might be /dev/ttyACM0.

After executing the command, you should see something like the following appear in the terminal
window:

s2a_fm version 1.2 Copyright(C) 2013-2014 Alan Yorinks All Rights Reserved

Opening Arduino Serial port /dev/ttyACM0
Please wait while Arduino is being detected. This can take up to 30 seconds ...
Board initialized in 1 seconds
Total Number of Pins Detected = 20
Total Number of Analog Pins Detected = 6
Please wait for Total Arduino Pin Discovery to complete. This can take up to 30
additional seconds.
Arduino Total Pin Discovery completed in 1 seconds
Starting HTTP Server!
Use <Ctrl-C> to exit the extension

Please start Scratch or Snap!

 4.1.Starting a Scratch Project

Now start Scratch 2.0. Create a new project and select File/Upload from your computer and select
s2a_fm_base.sb2 from the ScratchFiles/ScratchProjects directory included with this distribution.

When Scratch is detected the following line is printed to the console:

Scratch detected! Ready to rock and roll...

3

And if you go to the More Blocks tab in Scratch you should see:

The circular indicator next to “ s2a_fm – Scratch to Arduino”
should be green, indicating that the connection has been
successfully established.

 4.2.Starting a Snap! Project

After Snap! is started, go to the File menu and select Import.

Go to the Snap!Files directory and select the “s2a_fm_Snap_base.xml” file. This is a blank project that
will load all the s2a_fm blocks.

 5. The Extension Blocks
The blocks in black and white are the Scratch command and reporter blocks. The blocks in color are the
Snap! Blocks. In Snap!, all of the “s2a_fm” blocks start with s2a_fm as part of the identifier string.

 5.1.Set Digital Pin Mode

4

For Snap! this block is located on the Sensing tab of the block palette.

This block enables or disables an Arduino digital pin as an Input, Output, PWM, Servo or Tone or
SONAR.

 5.1.1. Enable

Before accessing a pin for input or output it must be enabled. To enable, select Enable from the first
drop down menu. If Input mode is chosen (see below), enabling the pin will automatically instruct the
Arduino board to report value changes for the pin.

 5.1.2. Disable

If a pin has been previously been enabled, selecting disable will inactivate the pin from its previously
enabled mode and reporting will cease for an Input mode pin. Normally this choice is not used, but is
provided to give full flexibility in writing Scratch scripts.

 5.1.3. Pin Number

The value entered must be within the range of pin numbers for the board. The number of pins detected
for the Arduino is shown in the console window when the program first starts up and this information is
also placed in the log file (see section 6). If the pin number is outside of the range for the board, an
error message is sent to the console and an error is logged. The command is ignored if an error is
detected.

5

 5.1.4. Digital Mode

There are 6 digital modes supported.

• Input for connection to an input device such as a switch.

• Output for connection to a device such as an LED.

• PWM is an output mode used to control a pin with an AnalogWrite. This can be used to fade
the light level on an LED.

• Servo configures the pin to operate a servo motor.

• Tone configures the pin to call on the Tone library through Firmata.

• SONAR configures the pin to work with the NewPing library. Up to a maximum of 6 devices
can be monitored simultaneously.

NOTE: The HC-SR04 type device is configured to work in single pin mode (trigger and echo
connected together). See the NewPing documentation for details:
https://code.google.com/p/arduino-new-ping/wiki/NewPing_Single_Pin_Sketch.

SPECIAL NOTE: Some Arduino boards provide internal pull-up resistors To enable pull-up mode for
a pin, refer to the Arduino documentation for instruction.

 5.2.Set Analog Pin Input Mode

Analog pins are always input pins and can only be enabled or disabled. They are fixed as inputs.

For Snap! this block is located on the Sensing tab of the block palette.

 5.2.1. Enable

Before accessing an analog pin for input it must be enabled. To enable, select Enable from the first
drop down menu. Enabling the pin will automatically instruct the Arduino board to report changes in
values for the pin.

 5.2.2. Disable

If a pin has been previously enabled, selecting disable will inactivate the pin from its previously
enabled mode. Data will no longer be reported for the pin while it is disabled.

6

https://code.google.com/p/arduino-new-ping/wiki/NewPing_Single_Pin_Sketch

 5.2.3. Pin Number

The value entered must be within the range of analog pin numbers for the board. The number of pins
detected for the board is shown in the console window when the program first starts up. If the pin
number entered is outside of the range of the board, an error message is sent to the console and the
error is logged. If an error is detected, the command is ignored. The pin number usse the Arduino
analog pin number scheme. For example to enable analog pin A3, set the pin number in the block to 3.

 5.3.Digital Write

For Snap! this block is located on the Sensing tab of the block palette.

 5.3.1. Pin Number

The pin number must be set to a pin that was previously enabled as Output and is in the range of digital
pin values. If the pin is not enabled as an Output pin or if it is out of range, the request is ignored and
an error message is written to the console and the log file.

 5.3.2. Pin Output Value

If a digital pin has been enabled for output, you can set its output level to either a one or a zero. Select
the value from the drop down list in the block.

 5.4.Analog (PWM) Write

 For

Snap! this block is located on the Sensing tab of the block pallet.

 5.4.1. Pin Number

The pin number must be set to a pin that was previously enabled as PWM and is a PWM digital pin. If
the pin is not enabled as a PWM pin or if it is out of range, the request is ignored and an error message
is written to the console and the log file.

 5.4.2. PWM Value

Set the pin output value to be between 0-255. If the value is out of range an error message is written to

7

the console and the log file. The request will be ignored.

 5.5.Play Tone

This block instructs the Arduino to play a tone on the designated pin.

For Snap! this block is located on the block palette Sound tab.

 5.5.1. Pin Number

The pin number must be for a pin that was previously enabled for Tone and is in the range of digital pin
numbers. If the pin is not enabled as a Tone pin or if it is out of range, the request is ignored and an
error message is written to the console and the log file.

 5.5.2. Frequency (HZ)

The tone will be played at the specified frequency. There is no data validation for this entry.

 5.5.3. Duration (ms)

The number of milliseconds to sustain the tone. If this value set to zero, the tone will be played
indefinitely. It may be turned of my using the Turn Tone Off block.

 5.6.Turn Tone Off

This block will turn the tone off. It is used primarily if the duration for Play Tone was set to zero (a
continuous tone).

For Snap! this block is located on the block palette Sound tab.

 5.6.1. Pin Number

The pin number must be for a pin that was previously enabled for Tone. If the pin is not enabled as a
Tone pin or if it is out of range, the request is ignored and an error message is written to the console
and the log file.

8

 5.7.Move Servo

This block will set a servo position to the desired value.

For Snap! this block is located on the block palette Motion tab.

 5.7.1. Pin Number

The pin number must be for a pin that was previously enabled for Servo and is in the range of digital
pin values. If the pin is not enabled as a Servo pin or if it is out of range, the request is ignored and an
error message is written to the console and the log file.

 5.7.2. Position (Deg)

This sets the motor position expressed in degrees. The range is 0 to 180. A value outside of this will be
ignored and an error message is written to the console and the log file.

 5.8.Read Digital Pin

This block is a “reporter” block for a pin that is enabled as a digital input. It is used to gain access to
the current value for the pin number specified. It returns either a zero or a one.

For Snap! this block is located on the block palette Sensing tab.

 5.9.Read Analog Pin

This block is a “reporter” block for a pin that is enabled as an analog input. It will contain the current
value for the pin number specified in the range of 0-1023. Enter the Arduino analog pin number in the
PIN field. For example to read analog pin A3, set the pin number in the block to 3.

For Snap! this block is located on the block palette Sensing tab.

 5.10. Sonar

9

 5.11. Debugger

Turn debugging On or Off (the default is Off) from the drop down list. If debugging is enabled all
Scratch commands are logged to both the log and console. Each command is time stamped with the
local time. Reporter blocks (sensor information) do not appear as part of the debug report because
Scratch polls for data approximately 30 times per second and this would flood the log.

For Snap! this block is located on the block palette Sensing tab.

Here is a sample of the debug log:

DEBUG: 2013-12-19 14:19:06.733833: debugger On
DEBUG: 2013-12-19 14:19:06.768232: digital_pin_mode Enable 48 Output
DEBUG: 2013-12-19 14:19:06.800449: digital_pin_mode Enable 51 Output
DEBUG: 2013-12-19 14:19:06.849955: digital_write 48 1
DEBUG: 2013-12-19 14:19:06.872217: digital_write 51 1
DEBUG: 2013-12-19 14:19:06.906062: digital_write 48 0

 5.12. The Red Stop Button

Pressing the red stop button on the Scratch player will send a reset command to the Arduino and will
reset all internal data structures to their initial values.

 6. Log File
A new log file is created each time s2a_fm is started, and the previous log file is discarded. The name
of the log file is“s2a_fm_debugging.log” and is located in a directory called “log” (see the Project
Directory Tree in section 10). The log file contains “info” records which are considered part of normal
operation and it may contain debug records which will help in debugging a Scratch program accessing
an Ardunio board.

Here is part of a typical log:

INFO:root:s2a_fm version 1.2 Copyright(C) 2013-2014 Alan Yorinks All Rights
Reserved
INFO:root:com port = /dev/ttyACM0
INFO:root:20 Total Pins and 6 Analog Pins Found
INFO:root:Scratch detected! Ready to rock and roll...
DEBUG:root:digital_pin_mode: The pin number must be set to a numerical value
DEBUG:root:analog_write: The value field must be set to a numerical value

In this example, the INFO records indicate normal behavior and provide informational data, and the
DEBUG records indicate a problem. In the first DEBUG line, the pin number was not entered properly
when setting a digital pin mode, and the second DEBUG indicates that the VAL field needs to be
properly entered when executing an analog write block.

10

 7. Example Programs
These Scratch .sb2 program files for these examples can be found in ScratchFiles/ScratchProjects
directory and the Snap!Files/Snap!Projects directory (see the Project Directory Tree in section 10).
Note: the screenshots below show the Scratch blocks.

 7.1.A Scratch/Snap! Program to Turn On an LED using Digital Pin 6

 7.2. Scratch/Snap Program to Read A Potentiometer on Pin A2 and Spin
the Scratch Cat

11

 8. Scratch/Snap! Block Translation for Dutch, Spanish and
Chinese

Thanks to the generosity of our users, block translations have been provided for the Dutch, Spanish and
Chinese languages.

Thanks to Sjoerd Dirk Meijer, a generalized translation mechanism has been provided. He also
provided translation to Dutch. A blank Scratch project, called s2a_fm_base_nl.sb2 is contained in the
ScratchFiles/ScratchProjects directory.

In addition, Sjoerd Dirk has kindly provided a JSON extension specification for Scratch also translated
to Dutch. This file is called s2a_fm_NL.s2e and can be found in the ScratchFiles/ExtensionDescriptors
directory.

For Snap!, just load the “s2a_fm_Snap_base_dutch.xml” file as described in section 4.2.

And thanks to Professor José Manuel Ruiz, who has graciously provided translations for the blocks and
examples in the Spanish language for both Snap! and Scratch. The block translations for Snap! may be
found in s2a_fm_Snap_base_Es.xml and for Scratch in s2a_fm_Es.s2e. Translated projects may be
found in in the extensions directories SnapFiles/Español. In addition he created a Spanish language
tutorial, “s2a_fm_Espanish_tutorial.pdf”, that can be found in the documentation/Español directory.

Professor Yu Fangjun has generously provided block translations for the Chinese language. The block
translations for Snap! may be found in s2a_fm_Snap_base_zh_cn.xml and for Scratch in
s2a_fm_zh_cn.s2e. Thank you Professor Yu Fangjun!

 8.1.Translating to Other Languages.

If you wish to translate the text to an additional language, two files will need to be modified. The first
file is the extensions descriptor file. The other file is called xlate.cfg.

To understand what needs to change in the extension descriptor file, compare the English and one of
other versions provided in this distribution to identify the strings that need to be changed. Then you
must add the translation to the xlate.cfg file. For each new keyword, add an entry for your additions.
Make sure that there is no space after the comma.

Example:

ln_INPUT = Input,ingang,Entrada, ,MY_NEW_TRANSLATION����

In the example above, we translations for English, Dutch, Spanish and Chinese plus a new translation
string, “MY_NEW_TRANSLATION”.

Once both files have been modified, load the extension descriptor file into Scratch by selecting holding

12

the Shift Key and selecting File from the Scratch Menu (this only functions with the offline version of
Scratch) and then select “Import Experimental Extension” and if the file was modified appropriately,
the translated blocks should appear in the More Blocks Section.

If nothing appears, check your modifications in the a JSON lint checker (http://jsonlint.com/) and
make any corrections that are necessary.

 9. Windows .bat and Linux .sh Files for Easier Program Startup
The “extra goodies” directory contains a sample Windows .bat file (s2a_fm.bat) and a linux .sh
(s2a_fm.sh) file to make starting s2a_fm easier.

Each file contains directions for their use.

 10. Project Directory Tree
s2a_fm
├── ArduinoFiles
│ ├── README.TXT
│ └── READM.TXT~
├── documentation
│ ├── Español
│ │ └── s2a_fm_Espanish_tutorial.pdf
│ ├── LED_EXAMPLE.png
│ ├── pot1.png
│ ├── s2a_fm_reference.pdf
│ ├── scratch_blocks.png
│ └── snap_blocks.png
├── extra_goodies
│ ├── linux
│ │ └── s2a_fm.sh
│ └── windows
│ └── s2a_fm.bat
├── log
│ └── s2a_fm_debugging.log
├── ScratchFiles
│ ├── ExtensionDescriptors
│ │ ├── s2a_fm_Es.s2e
│ │ ├── s2a_fm_Fr.s2e
│ │ ├── s2a_fm_NL.s2e
│ │ ├── s2a_fm.s2e
│ │ └── s2a_fm_zh_cn.s2e
│ └── ScratchProjects
│ ├── s2a_fm_base_Es.sb2
│ ├── s2a_fm_base_Fr.sb2
│ ├── s2a_fm_base_nl.sb2
│ ├── s2a_fm_base.sb2
│ ├── s2a_fm_base_zh_cn.sb2
│ ├── sonarTest.sb2
│ ├── spinning_cat.sb2
│ └── Turn On LED On Pin 6.sb2
├── Snap!Files
│ ├── Español
│ │ ├── blink_tiempo_variable.xml

13

http://jsonlint.com/

│ │ ├── blink.xml
│ │ ├── boton_con_imagen.xml
│ │ ├── boton.xml
│ │ ├── contador1.xml
│ │ ├── contador2.xml
│ │ ├── s2a_fm_Snap_base_Es.xml
│ │ ├── semaforo_tiempo_variable.xml
│ │ ├── servo1.xml
│ │ └── servo2.xml
│ ├── Snap!Mobile
│ │ ├── arduino
│ │ │ ├── log
│ │ │ │ └── s2a_fm_debugging.log
│ │ │ ├── PyMata
│ │ │ │ ├── __init__.py
│ │ │ │ ├── pymata_command_handler.py
│ │ │ │ ├── pymata.py
│ │ │ │ └── pymata_serial.py
│ │ │ ├── serial
│ │ │ │ ├── tools
│ │ │ │ │ ├── __init__.py
│ │ │ │ │ ├── list_ports_linux.py
│ │ │ │ │ ├── list_ports_osx.py
│ │ │ │ │ ├── list_ports_posix.py
│ │ │ │ │ ├── list_ports.py
│ │ │ │ │ ├── list_ports_windows.py
│ │ │ │ │ └── miniterm.py
│ │ │ │ ├── urlhandler
│ │ │ │ │ ├── __init__.py
│ │ │ │ │ ├── protocol_hwgrep.py
│ │ │ │ │ ├── protocol_loop.py
│ │ │ │ │ ├── protocol_rfc2217.py
│ │ │ │ │ └── protocol_socket.py
│ │ │ │ ├── __init__.py
│ │ │ │ ├── rfc2217.py
│ │ │ │ ├── serialcli.py
│ │ │ │ ├── serialjava.py
│ │ │ │ ├── serialposix.py
│ │ │ │ ├── serialutil.py
│ │ │ │ ├── serialwin32.py
│ │ │ │ ├── sermsdos.py
│ │ │ │ └── win32.py
│ │ │ ├── s2a_fm.py
│ │ │ ├── scratch_command_handlers.py
│ │ │ ├── scratch_http_server.py
│ │ │ └── xlate.cfg
│ │ ├── StandardFirmataYun
│ │ │ └── StandardFirmataYun
│ │ │ └── StandardFirmataYun.ino
│ │ ├── wiredMotorTest.xml
│ │ ├── yun_blink.xml
│ │ ├── yun_motor_control.xml
│ │ └── yun_motor_control.xml~
│ ├── blink.xml
│ ├── s2a_fm_Snap_base_dutch.xml

14

│ ├── s2a_fm_Snap_base_Es.xml
│ ├── s2a_fm_Snap_base_FR.xml
│ ├── s2a_fm_Snap_base.xml
│ ├── s2a_fm_Snap_base_zh_cn.xml
│ ├── spinning_sprite.xml
│ └── Turn On LED On Pin 6.xml
├── license.txt
├── README.md
├── s2a_fm.py
├── scratch_command_handlers.py
├── scratch_command_handlers.pyc
├── scratch_http_server.py
├── scratch_http_server.pyc
└── xlate.cfg

 11. References
Arduino http://arduino.cc/

Snap! http://snap.berkeley.edu/

Scratch http://scratch.mit.edu/

Arduino Standard Firmata http://playground.arduino.cc/Interfacing/Firmata

PyMata https://github.com/MrYsLab/PyMata

NewPing Arduino Library https://code.google.com/p/arduino-new-ping/

 12. Questions, Comments, Bug Reports
Please contact us at MisterYsLab@gmail.com

15

https://code.google.com/p/arduino-new-ping/
https://github.com/MrYsLab/PyMata
http://playground.arduino.cc/Interfacing/Firmata
http://scratch.mit.edu/
http://snap.berkeley.edu/
http://arduino.cc/

	1. Introduction
	2. What is s2a_fm?
	3. Installing s2a_fm
	3.1. Python and Python Files
	3.2. Arduino Sketch

	4. Running s2a_fm
	4.1. Starting a Scratch Project
	4.2. Starting a Snap! Project

	5. The Extension Blocks
	5.1. Set Digital Pin Mode
	5.1.1. Enable
	5.1.2. Disable
	5.1.3. Pin Number
	5.1.4. Digital Mode

	5.2. Set Analog Pin Input Mode
	5.2.1. Enable
	5.2.2. Disable
	5.2.3. Pin Number

	5.3. Digital Write
	5.3.1. Pin Number
	5.3.2. Pin Output Value

	5.4. Analog (PWM) Write
	5.4.1. Pin Number
	5.4.2. PWM Value

	5.5. Play Tone
	5.5.1. Pin Number
	5.5.2. Frequency (HZ)
	5.5.3. Duration (ms)

	5.6. Turn Tone Off
	5.6.1. Pin Number

	5.7. Move Servo
	5.7.1. Pin Number
	5.7.2. Position (Deg)

	5.8. Read Digital Pin
	5.9. Read Analog Pin
	5.10. Sonar
	5.11. Debugger
	5.12. The Red Stop Button

	6. Log File
	7. Example Programs
	7.1. A Scratch/Snap! Program to Turn On an LED using Digital Pin 6
	7.2. Scratch/Snap Program to Read A Potentiometer on Pin A2 and Spin the Scratch Cat

	8. Scratch/Snap! Block Translation for Dutch, Spanish and Chinese
	8.1. Translating to Other Languages.

	9. Windows .bat and Linux .sh Files for Easier Program Startup
	10. Project Directory Tree
	11. References
	12. Questions, Comments, Bug Reports

