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The “computable” numbers may be described briefly as the real numbers whose 
expressions as a decimal are calculable by finite means. Although the subject of this 
paper is ostensibly the computable numbers, it is almost equally easy to define and 
investigate computable functions of an integral variable or a real or computable 
variable, computable predicates, and so forth. The fundamental problems involved 
are, however, the same in each case, and I have chosen the computable numbers for 
explicit treatment as involving the least cumbrous technique. I hope shortly to give an 
account of the relations of the computable numbers, functions, and so forth to one 
another. This will include a development of the theory of functions of a real variable 
expressed in terms of computable numbers. According to my definition, a number is 
computable if its decimal can be written down by a machine. 

In §§ 9, 10 I give some arguments with the intention of showing that the computable 
numbers include all numbers which could naturally be regarded as computable. In 
particular, I show that certain large classes of numbers are computable. They include, 
for instance, the real parts of all algebraic numbers, the real parts of the zeros of the 
Bessel functions, the numbers X, e, etc. The computable numbers do not, however, 
include all definable numbers, and an example is given of a definable number which 
is not computable. 

Although the class of computable numbers is so great, and in many ways similar to 
the class of real numbers, it is nevertheless enumerable. In §8 I examine certain 
arguments which would seem to prove the contrary. By the correct application of one 
of these arguments, conclusions are reached which are superficially similar to those of 
Gödel [1] . These results {231} have valuable applications. In particular, it is shown 
(§11) that the Hilbertian Entscheidungsproblem can have no solution. 

In a recent paper Alonzo Church[2]  has introduced an idea of “effective 
calculability”, which is equivalent to my “computability”, but is very differently 
defined. Church also reaches similar conclusions about the Entscheidungsproblem.[3] 
The proof of equivalence between “computability” and “effective calculability” is 
outlined in an appendix to the present paper. 

1. Computing machines. 

We have said that the computable numbers are those whose decimals are calculable 
by finite means. This requires rather more explicit definition. No real attempt will be 
made to justify the definitions given until we reach §9. For the present I shall only say 
that the justification lies in the fact that the human memory is necessarily limited. 

We may compare a man in the process of computing a real number to a machine 
which is only capable of a finite number of conditions q1, q2, ..., qR which will be 
called “m-configurations”. The machine is supplied with a “tape”, (the analogue of 
paper) running through it, and divided into sections (called “squares”) each capable of 



bearing a “symbol”. At any moment there is just one square, say the r-th, bearing the 
symbol S(r) which is “in the machine”. We may call this square the “scanned square”. 
The symbol on the scanned square may be called the “scanned symbol”. The “scanned 
symbol” is the only one of which the machine is, so to speak, “directly aware”. 
However, by altering its m-configuration the machine can effectively remember some 
of the symbols which it has “seen” (scanned) previously. The possible behaviour of 
the machine at any moment is determined by the m-configuration qn and the scanned 
symbol S(r). This pair qn, S(r) will be called the “configuration”: thus the 
configuration determines the possible behaviour of the machine. In some of the 
configurations in which the scanned square is blank (i.e. bears no symbol) the 
machine writes down a new symbol on the scanned square: in other configurations it 
erases the scanned symbol. The machine may also change the square which is being 
scanned, but only by shifting it one place to right or 1eft. In addition to any of these 
operations the m-configuration may be changed. Some of the symbols written down 
{232} will form the sequence of figures which is the decimal of the real number which 
is being computed. The others are just rough notes to “assist the memory”. It will only 
be these rough notes which will be liable to erasure. 

It is my contention that these operations include all those which are used in the 
computation of a number. The defence of this contention will be easier when the 
theory of the machines is familiar to the reader. In the next section I therefore proceed 
with the development of the theory and assume that it is understood what is meant by 
“machine”, “tape”, “scanned”, etc. 

2. Definitions. 

Automatic machines. 

If at each stage the motion of a machine (in the sense of §1) is completely determined 
by the configuration, we shall call the machine an “automatic machine” (or a-
machine). For some purposes we might use machines (choice machines or c-
machines) whose motion is only partially determined by the configuration (hence the 
use of the word “possible” in §1). When such a machine reaches one of these 
ambiguous configurations, it cannot go on until some arbitrary choice has been made 
by an external operator. This would be the case if we were using machines to deal 
with axiomatic systems. In this paper I deal only with automatic machines, and will 
therefore often omit the prefix a-. 

Computing machines. 

If an a-machine prints two kinds of symbols, of which the first kind (called figures) 
consists entirely of 0 and 1 (the others being called symbols of the second kind), then 
the machine will be called a computing machine. If the machine is supplied with a 
blank tape and set in motion, starting from the correct initial m-configuration, the 
subsequence of the symbols printed by it which are of the first kind will be called the 
sequence computed by the machine. The real number whose expression as a binary 
decimal is obtained by prefacing this sequence by a decimal point is called the 
number computed by the machine. 



At any stage of the motion of the machine, the number of the scanned square, the 
complete sequence of all symbols on the tape, and the m-configuration will be said to 
describe the complete configuration at that stage. The changes of the machine and 
tape between successive complete configurations will be called the moves of the 
machine. 

{233} 
Circular and circle-free machines. 

If a computing machine never writes down more than a finite number of symbols of 
the first kind it will be called circular. Otherwise it is said to be circle-free. 

A machine will be circular if it reaches a configuration from which there is no 
possible move, or if it goes on moving, and possibly printing symbols of the second 
kind, but cannot print any more symbols of the first kind. The significance of the term 
“circular” will be explained in §8.  

Computable sequences and numbers. 

A sequence is said to be computable if it can be computed by a circle-free machine. A 
number is computable if it differs by an integer from the number computed by a 
circle-free machine. 

We shall avoid confusion by speaking more often of computable sequences than of 
computable numbers. 

3.      Examples of computing machines. 

I. A machine can be constructed to compute the sequence 010101.... The machine is 
to have the four m-configurations “ b”, “c”, “z”, “e” and is capable of printing “0”, 
and “1”. The behaviour of the machine is described in the following table in which 
“R” means “the machine moves so that it scans the square immediately on the right of 
the one it was scanning previously”. Similarly for “L”. “E” means the scanned symbol 
is “erased” and “P” stands for “prints”. This table (and all succeeding tables of the 
same kind) is to be understood to mean that for a configuration described in the first 
two columns the operations in the third column are carried out successively, and the 
machine then goes over into the m-configuration described in the last column. When 
the second column is left blank, it is understood that the behaviour of the third and 
fourth columns applies for any symbol and for no symbol. The machine starts in the 
m-configuration b with a blank tape. 

  Configuration  Behaviour  
b  None  P0, R  c  
c  None  R  e  
e  None  P1, R  z  
z  None  R  b  

  {234}If (contrary to the description in §1) we allow the letters L, R to appear more 
than once in the operations column we can simplify the table considerably. 



 

m-
config. symbol operations final m-

config.  
None  P0  b  
0  R, R, P1  b  b  ~ 1  R, R, P0  b  

II. As a slightly more difficult example we can construct a machine to compute the 
sequence 001011011101111011111.... The machine is to be capable of five m-
configurations, viz. “o”, “q”, “p”, “f”, “b” and of printing “e”, “x”, “0”, “1”. The first 
three symbols on the tape will be “ e e 0”; the other figures follow on alternate 
squares. On the intermediate squares we never print anything but “x”. These letters 
serve to “keep the place” for us and are erased when we have finished with them. We 
also arrange that in the sequence of figures on alternate squares there shall be no 
blanks.     

Configuration  Behaviour  
m-
config. symbol operations final m-

config. 

b   Pe, R, Pe, R, P0, R, 
R, P0, L, L  o  

o ~ 
1  
0 

R, Px, L, L, L
    

o 
q  

q  ~ 

Any (0 
or 1) 
None  

R, R
P1, L  

q  
p  

p  ~ 

x  
e  
None  

E, R
R  
L, L  

q  
f 
p  

f ~ 
Any  
None  

R, R
P0, L, L  

f  
o  

To illustrate the working of this machine a table is given below of the first few 
complete configurations. These complete configurations are described by writing 
down the sequence of symbols which are on the tape, {235} with the m-configuration 
written below the scanned symbol. The successive complete configurations are 
separated by colons. 

 :  e  e 0        0 :  e  e 0      0 : e e 0     0 : e  e  0     0      : e  e   0       0    1 : 
b        o          q           q             q            p     
e e 0   0   1 : e e 0   0  1 : e e 0  0   1 :  e e 0  0   1  :         
      p          p             f                f               
e e 0   0   1 : e e 0   0  1   : e e 0   0   1   0 :                 
            f                f             o                      



e e 0   0   1 x 0 : ... .                                         
        o                                                      

This table could also be written in the form 

b  : e e o 0      0 :  e e q 0      0 : …,  (C) 

 in which a space has been made on the left of the scanned symbol and the m-
configuration written in this space. This form is less easy to follow, but we shall make 
use of it later for theoretical purposes. 

The convention of writing the figures only on alternate squares is very useful: I shall 
always make use of it. I shall call the one sequence of alternate squares F-squares and 
the other sequence E-squares. The symbols on E-squares will be liable to erasure. The 
symbols on F-squares form a continuous sequence. There are no blanks until the end 
is reached. There is no need to have more than one E-square between each pair of F-
squares: an apparent need of more E-squares can be satisfied by having a sufficiently 
rich variety of symbols capable of being printed on E-squares. If a symbol J- is on an 
F-square S and a symbol I is on the E-square next on the right of S, then S and J will 
be said to be marked with I. The process of printing this I will be called marking J (or 
S) with I. 

4. Abbreviated tables 

There are certain types of process used by nearly all machines, and these, in some 
machines, are used in many connections. These processes include copying down 
sequences of symbols, comparing sequences, erasing all symbols of a given form, etc. 
Where such processes are concerned we can abbreviate the tables for the m-
configurations considerably by the use of “skeleton tables”. In skeleton tables there 
appear capital German letters [4] and small Greek letters. These are of the nature of 
“variables”. By replacing each capital German letter throughout by an m-
configuration {236} and each small Greek letter by a symbol, we obtain the table for 
an m-configuration. 

The skeleton tables are to be regarded as nothing but abbreviations: they are not 
essential. So long as the reader understands how to obtain the complete tables from 
the skeleton tables, there is no need to give any exact definitions in this connection. 

 

 

 

 

 

 



 

 

Let us consider an example: 

m-configuration  Symbol Behaviour Final m-
config.   

f(CYB,I) ~ 
e 
not e 

L 
L  

f1(CYBYI)  
f(CYB,I)  

f1(CYB,I) ~ 

I  
not I 
None  

  
R  
R  

C  
f1(CYB,I)  
f2(C,B,I)  

f2(CYB,I) ~ 

I  
not I 
None  

  
R  
R  

C  
f1(CYB,I)  
B  

From the m-
configuration 
f(CYBYI) the 
machine finds the 
symbol of form I 
which is farthest to 
the left (the “first I”) 
and the m-
configuration then 
becomes C. If there 
is no I then the m-
configuration 
becomes B. 

If we were to replace C  throughout by q (say), B by r, and I by x, we should have a 
complete table for the m-configuration f(qYr, x). f is called an “m-configuration 
function” or “m-function”. 

The only expressions which are admissible for substitution in an m-function are the 
m-configurations and symbols of the machine. Those have to be enumerated more or 
less explicitly: they may include expressions such as p (e, x); indeed they must if there 
are any m-functions used at all. If we did not insist on this explicit enumeration but 
simply stated that the machine had certain m-configurations (enumerated) and all m-
configurations obtainable by substitution of m-configurations in certain m-functions, 
we should usually get an infinity of m-configurations; e.g., we might say that the 
machine was to have the m-configuration q and all m-configurations obtainable by 
substituting an m-configuration for C in p(C). Then it would have qY p(q), 
p(p(q)),p(p(p(q))) ... as m-configurations. 

Our interpretation rule then is this. We are given the names of the m-configurations of 
the machine, mostly expressed in terms of m-functions. We are also given skeleton 
tables. All we want is the complete table for the m-configurations of the machine. 
This is obtained by repeated substitution in the skeleton tables. 

 

 

 

 



 

 

{237} Further examples. 

      (In the explanations the symbol “\” is used to signify “the machine goes into the 
m-configuration ...”) 

e(CYBYI)   f(e1(CYBYI)BYI)

e1(CYBYI) E  C  

From  e(CYBYI) 
the first I is 
erased and \C. If 
there is no I\B. 

e(BYI)   e(e(BYI),BYI) From e(B,I) all 
letters I are 
erased and \B 

The last example seems somewhat more difficult to interpret than most. Let us 
suppose that in the list of m-configurations of some machine there appears e(b, x) (= 
q, say). The table is  

   

   

Or, in greater detail:  

  

  

  

In this we could replace e1(qYB, x) by q' and then give the table for f(with the right 
substitutions) and eventually reach a table in which no m-functions appeared. 

pe(C,J)      f(pe1(C,J)C,e) 

pe1(CYJ) ~ 
Any 
None  

R, R 
PJ pe1(C,J) 

From pe(CYJ) the machine 
prints J at the end of the 
sequence of symbols 
and \C. 

l(C)  
r(C)      

L 
R  

C 
C 

From f'(CYB,I) it does the 
same as for f(CYB,I) but 
moves to the left before C. 

f'(CYB,I)        f(l(C),B,I)    

f"(CYB,I)        f(r(C)YB,I)   

e(b, x) e(e(b, x), b, x)  
or q  e(qYb, x).   

q     e(qYb,x)  
e(qYb,x)   f(e1(qYbY x),b,x)  
e1(qYb,x) E  q. 



c(CYB,I) 
c1(C)     

J 
 

f(c1(C)YB,I) 
pe(C,J) 

c(CYB,I). The machine 
writes at the end the first 
symbol marked I and \C. 

{238} The last line stands for the totality of lines obtainable from it by replacing J by 
any symbol which may occur on the tape of the machine concerned. 

ce(CYB,I) 
ce(B,I)    

c(e(CYB,I), B,I) 
ce(ce(B,I), B,I)  

ce(B,I). The machine copies 
down in order at the end all 
symbols marked I and erases 
the letters  I;\B. 

 

 re(CYB,I,J) 
re1(CYB,I,J)  

E,PJ 

f(re1(CYB,I,J) B,I) 
C  

re(C,B,I,J). The machine 
replaces the first I by J 
and \C\B  if there is no I.  

re(B,I,J)    re(re(B,I,J) B,I,J)  re(B,I,J). The machine 
replaces all letters I byJ; \B.  

 cr(CYB,I)  
cr(B,I)  

  

c(re(CYB,I,a) B,I)
cr(cr(B,I), re(B,a,I),I) 

cr(B,I) differs from ce(B,I) 
only in that the letters I are 
not erased. The m-
configuration cr(B,I) is taken 
up when no letters “a” are on 
the tape.  

 

cp(CYU,E,I,J)    f'(cp1YC1YU,J), f(UYE,J),I)  

cp1(CYU,J) O f'(cp2(CYU,J),UYJ)  

cp2(CYUYO) ~ 

O  
not 
O  

C  
U.   

The first symbol marked I and the first marked J are compared. If there is neither I 
nor J \E. If there are both and the symbols are alike, \C. Otherwise \U. 

cpe(CYUYEYI,J) cp(e(e(CYCYJ)CYI),UYEYI,J) 

cpe(CYUYEYI,J) differs from cp(CYUYEYI,J) in that in the case when there is 
similarity the first I and J are erased. 

cpe(UYEYI,J)  cpe(cpe(UYEYI,J),UYEYI,J). 

cpe(UYEYI,J). The sequence of symbols marked I is compared with the sequence 
marked J.  \E  if they are similar. Otherwise U. Some of the symbols Iand Jare erased. 
{239}  

q(C) ~ 

Any 
None 

R 
R 

q(C) 
q1(C) 

q(C,I). The machine finds the 
last symbol of form I. \C. 



q1(C) ~ 
Any 
None 

R 
  

q(C) 
C   

q(C,I)       q(q1(CYI))  

q1(C,I) ~ 
I 
not I 

  
L 

C 
q1(CYI)   

pe2(CYI,J)       pe(pe(CYJ),I)  pe2(pe(CYI,J). The machine 
prints I J at the end. 

ce2(BYI,J)       ce(ce(BYJ),I) 
ce3(BYI,J,O)

      

ce(ce2(BYJ,O),I) 
ce3(BYI,J,O). The machine 
copies down at the end first 
the symbols marked I, then 
those marked J, and finally 
those marked O; it erases the 
symbols I,J,O. 

e(C) ~ 

e 
Not 
e 

R 
L 

e1(C) 
e(C) 

From e(C) the marks are 
erased from all marked 
symbols.  \C.   

e1(C) ~ 
Any 
None 

R, 
E, 
R 
   

e1(C) 
C   

 

5.      Enumeration of computable sequences. 

A computable sequence O is determined by a description of a machine which 
computes O. Thus the sequence 001011011101111... is determined by the table on 
p.234, and, in fact, any computable sequence is capable of being described in terms of 
such a table. 

It will be useful to put these tables into a kind of standard form. In the first place let us 
suppose that the table is given in the same form as the first table, for example, I on 
p.233. That is to say, that the entry in the operations column is always of one of the 
forms E : E, R : E, L : Pa : Pa, R : Pa, L : R : L : or no entry at all. The table can 
always be put into this form by introducing more m-configurations. Now let us give 
numbers to the m-configurations, calling them q1 , ..., qR, as in § 1. The initial m-
configuration is always to be called q1. We also give numbers to the symbols S1, …, 
Sm{240}and, in particular, blank = S0, 0 = S1 , l = S2. The lines of the table are now of 
form  

m-config.  symbol  operations  final m-config.   
qi  Sj  PSk, L  qm  (N1)  
qi  Sj  PSk, R  qm  (N2)  
qi  Sj  PSk  qm  (N3)  



Lines such as  

qi  Sj  E, R  qm    

Are to be written as  

qi  Sj  PS0, R  qm    

And lines such as  

qi  Sj  R  qm    

To be written as  

qi  Sj  PSj, R  qm    

In this way we reduce each line of the table to a line of one of the forms (N1), (N2), 
(N3). 

From each line of form (N1) let us form an expression qi Sj Sk L qm; from each line 
of form (N2) we form an expression qi Si Sk R qm; and from each line of form (N3) 
we form an expression qi Sj Sk Nqm. Let us write down all expressions so formed 
from the table for the machine and separate them by semi-colons. In this way we 
obtain a complete description of the machine. In this description we shall replace qi 
by the letter “D” followed by the letter “A” repeated i times, and Sj by “D” followed 
by “C” repeated  j times. This new description of the machine may be called the 
standard description (S.D). It is made up entirely from the letters “A”, “C”, “D”, “L”, 
“R”, “N”, and from “;”. 

If finally we replace “A” by “1”, “C” by “2”, “D” by “3”, “L” by “4”, “R” by “5”, “N” 
by “6”, and “;” by “7” we shall have a description of the machine in the form of an 
arabic numeral. The integer represented by this numeral may be called a description 
number (D.N) of the machine. The D.N determine the S.D and the structure of the 
{241} machine uniquely. The machine whose D.N is n may be described as M(n).  

To each computable sequence there corresponds at least one description number, 
while to no description number does there correspond more than one computable 
sequence. The computable sequences and numbers arc therefore enumerable. 

Let us find a description number for the machine I of §3. When we rename the m-
configurations its table becomes: 

q1 S0  PS1, R  q2  
q2 S0 PS0, R  q3  
q3  S0  PS2, R  q4 
q4 S0 PS0, R  q1  

Other tables could be obtained by adding irrelevant lines such as  



q1 S1 PS1, R  q2 

Our first standard form would be  

q1S0S1Rq2; q2S0S0Rq3;  q3S0S0Rq4;  q4S0S2Rq1;. 

The standard description is  

DADDCRDAA; DAADDRDAAA; 
  DAAADDCCRDAAAA; DAAAADDRDA; 

A description number is 

31332531173113353111731113322531111731111335317 

and so is 

31332531173113353111731113322531L1173111133531731323253117 

A number which is a description number of a circle-free machine will be called a 
satisfactory number. In §8 it is shown that there can be no general process for 
determining whether a given number is satisfactory or not. 

6.    The universal computing machine. 

It is possible to invent a single machine which can be used to compute any 
computable sequence. If this machine I is supplied with a tape on the beginning of 
which is written the S.D of some computing machine M, {242} then I will compute the 
same sequence as M. In this section I explain in outline the behavior of the machine. 
The next section is devoted to giving the complete table for I. 

Let us first suppose that we have a machine M' which will write down on the F-
squares the successive complete configurations of M. These might be expressed in the 
same form as on p.235, using the second description, (C), with all symbols on one 
line. Or, better, we could transform this description (as in §5) by replacing each m-
configuration by “D” followed by “A” repeated the appropriate number of times, and 
by replacing each symbol by “D” followed by “C” repeated the appropriate number of 
times. The numbers of letters “A” and “C” are to agree with the numbers chosen in §5, 
so that, in particular, “0” is replaced by “DC”, “1” by “DCC”, and the blanks by “D” . 
These substitutions are to be made after the complete configurations have been put 
together, as in (C). Difficulties arise if we do the substitution first. In each complete 
configuration the blanks would all have to be replaced by “D” , so that the complete 
configuration would not be expressed as a finite sequence of symbols. 

If in the description of the machine II of §3 we replace “o ” by “DAA”, “e” by 
“DCCC ”, “q”by “DAAA”, then the sequence (C) becomes: 

DA : DCCCDCCCDAADCDDC : DCCCDCCCDAAADCDDC : ... (C1) 



(This is the sequence of symbols on F-squares.) 

It is not difficult to see that if M can be constructed, then so can M'. The manner of 
operation of M' could be made to depend on having the rules of operation (i.e., the 
S.D) of it written somewhere within itself (i.e. within M'); each step could be carried 
out by referring to these rules. We have only to regard the rates as being capable of 
being taken out and exchanged or others and we have something very akin to the 
universal machine. 

One thing is lacking: at present the machine M' prints no figures. We may correct this 
by printing between each successive pair of complete configurations the figures which 
appear in the new configuration but not in the old. Then (C1) becomes 

DDA : 0 : 0 : DCCCDCCCDAADCDDC : DCCC.... (C2) 

It is not altogether obvious that the E-squares leave enough room for the necessary 
“rough work”, but this is, in fact, the case. 

The sequences of letters between the colons in expressions such as (C1) may be used 
as standard descriptions of the complete configurations. When the letters are replaced 
by figures, as in §5, we shall have a numerical {243} description of the complete 
configuration, which may be called its description number. 

7.      Detailed description of the universal machine. 

A table is given below of the behaviour of this universal machine. The m-
configurations of which the machine is capable are all those occurring in the first and 
last columns of the table, together with all those which occur when we write out the 
unabbreviated tables of those which appear in the table in the form of m-functions. 
E.g.,  e(anf) appears in the table and is an m-function. Its unabbreviated table is (see p. 
239)  

e(anf) ~ 

e 
 
not e 

R 
 
L 

e1(anf) 
 
e(anf) 

e(anf) ~ 

Any 
 
None 

R, E, R
  
  

e1(anf)  
  
e(anf) 

Consequently  e1(anf) is an m-configuration of  I. 

When I is ready to start work the tape running through it bears on it the symbol e on 
an F-square and again e on the next E-square; after this, on F-squares only, comes the 
S.D of the machine followed by a double colon “: :” (a single symbol, on an F-
square). The S.D consists of a number of instructions, separated by semi-colons. 

Each instruction consists of five consecutive parts 



i ) “D” followed by a sequence of letters “A”. This describes the relevant m-
configuration. 
 
ii ) “D” followed by a sequence of letters “C”. This describes the scanned symbol.  

iii ) “D” followed by another sequence of letters “C”. This describes the symbol into 
which the scanned symbol is to be changed.  
 
iv ) L”, “R”, “N”, describing whether the machine is to move to left, right, or not at 
all.  
 
v ) “D” followed by a sequence of letters “A”. This describes the final m-
configuration. 

The machine I is to be capable of printing “A”, “C”, “D”, “0”, “1”, “u”, “v”, “w”, “x”, 
“y”, “z”.  
The S.D is formed from “ ; ”, “A”, “C”, “D”, “L”, “R”, “N”. 

{244} Subsidiary skeleton table.  

con(C,I) ~
Not 
A 
 
A 

R, R
 
L,PI,R 

con(CYI) 
 
con1(CYI) 

con1(C,I) ~ A 
 
D 

R,PI,R
 
R,PI,R 

con1(CYI) 
 
con2(C,I) 

con(CYI). Starting from an F-
square, S say, the sequence C of 
symbols describing a 
configuration closest on the 
right of S is marked out with 
letters I. \C.  

con1(C,I) ~
C 
 
Not 
C 

R,PI,R
 
R,R  

con2(C,I) 
 
C 

con(C,  ). In the final 
configuration the machine is 
scanning the square which is 
four squares to the right of the 
last square of C. C is left 
unmarked. 

The table for  U.  

b     f(b1, b1, ::) 

b1 R, R, P :, R, R, 
PD, R, R, PA  anf  

b. The machine prints :DA on the 
F-squares after  :: \anf. 

anf     g(anf1 , :)  

anf1      con(fom, y)  

anf. The machine marks the 
configuration in the last complete 
configuration with y. \fom. 

fom ~ 

; 
z 
not z 
nor ;  

R, Pz, L
L, L
L  

con(fmp, x)
fom  
fom  

fom. The machine finds the last 
semi-colon not marked with z. It 
marks this semi-colon with z and 
the configuration following it 
with x. 



fmp 

  
cpe(e(fom,x, y), sim, x, 
y)  

fmp. The machine compares the 
sequences marked x and y. It 
erases all letters x and y. \sim if 
they are alike. Otherwise \fom. 

anf. Taking the long view, the last instruction relevant to the last configuration is 
found. It can be recognised afterwards as the instruction following the last semi-colon 
marked z. \sim.  

{245}  

sim       f'(sim1Y 
sim1, z) 

sim1       con(sim2,   ) 

sim2 ~ 
A  
Not A  

  
R, Pu, R, 
R, R  

sim3 
sim2  

sim3 ~ 
Not A 
A  

L, Py
L, Py, R, 
R, R  

e(mf, z)
sim3  

sim. The machine marks out 
the instructions. That part of 
the instructions which refers to 
operations to be carried out is 
marked with u, and the final m-
configuration with y. The 
letters z are erased. 

mf        g(mf, :)  

mf1  ~ 
Not A 
A  

R, R
L, L, L, L

mf1  
mf2  

mf2 ~ 

C  
: 
D  

R, Px, L, 
L, L
  
R, Px, L, 
L, L  

mf2  
mf4  
mf3  

mf3 ~ 
not : 
:  

R, Pv, L, 
L, L
   

mf3  
mf4  

mf4       
con(l(l(mf5)), 
) 

mf5 ~ 
Any  
None  

R, Pw, R
P:  

mf5  
sh  

mf. The last complete 
configuration is marked out 
into four sections. The 
configuration is left unmarked. 
The symbol directly preceding 
it is marked with x. The 
remainder of the complete 
configuration is divided into 
two parts, of which the first is 
marked with v and the last with 
w. A colon is printed after the 
whole. \sh. 

sh       f(sh1Y instY
u)  

sh1      L, L, L  sh2  

sh2 ~ 
D 
not D  

R, R, R, 
R 
   

sh2  
inst 

sh. The instructions (marked u) 
are examined. If it is found that 
they involve “Print 0” or “Print 
1”, then 0: or 1: is printed at 
the end. 



sh3 ~ 
C  
not C  

R, R
   

sh4  
inst  

sh4 ~ 
C  
not C  

R, R
   

sh5  
pe2(inst, 0, :) 

sh5 ~ 
C  
not C    inst  

pe2(inst, 1, :) 
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  inst      g(l(inst1),u)  

inst1 I  R, E  inst1(I)  

inst1(L)    ce5(ov, v, y, x, 
u, w)  

inst1(R)    ce5(ov, v, y, x, 
u, w)  

inst. The next complete 
configuration is written down, 
carrying out the marked 
instructions. The letters u, v, w, 
x, y are erased. \anf. 

inst1(N)    ce5(ov, v, y, x, 
u, w)  

  

ov    e(anf)    

8.      Application of the diagonal process.  

It may be thought that arguments which prove that the real numbers are not 
enumerable[5] would also prove that the computable numbers and sequences cannot 
be enumerable . It might, for instance, be thought that the limit of a sequence of 
computable numbers must be computable. This is clearly only true if the sequence of 
computable numbers is defined by some rule.  

Or we might apply the diagonal process. “If the computable sequences are 
enumerable, let In be the n-th computable sequence, and let Yn(m) be the m-th figure 
in In. Let J  be the sequence with 1 – Yn(n) as its n-th figure. Since Jis computable, 
there exists a number K such that 1 – Yn(n) = YK(n) all n. Putting n = K, we have 1 = 
2YK(K), i.e. 1 is even. This is impossible. The computable sequences are therefore 
not enumerable”.  

The fallacy in this argument lies in the assumption that J is computable. It would be 
true if we could enumerate the computable sequences by finite means, but the 
problem of enumerating computable sequences is equivalent to the problem of finding 
out whether a given number is the D.N of a circle-free machine, and we have no 
general process for doing this in a finite number of steps. In fact, by applying the 
diagonal process argument correctly, we can show that there cannot be any such 
general process.  

The simplest and most direct proof of this is by showing that, if this general process 
exists, then there is a machine which computes J. This proof, although perfectly 
sound, has the disadvantage that it may leave the reader with a feeling that “there 
must be something wrong”. The proof which I shall give has not this disadvantage, 



and gives a certain insight into the significance of the idea “circle-free”. It depends 
not on constructing J, but on constructing J ', whose n-th figure is  Yn(n).  

{247} Let us suppose that there is such a process; that is to say, that we can invent a 
machine D which, when supplied with the S.D of any computing machine M will test 
this S.D and if  M is circular will mark the S.D with the symbol “u” and if it is circle-
free will mark it with “s”. By combining the machines D and I we could construct a 
machine M to compute the sequence J'. The machine D may require a tape. We may 
suppose that it uses the E-squares beyond all symbols on F- squares, and that when it 
has reached its verdict all the rough work done by D is erased.  

The machine H has its motion divided into sections. In the first N –1 sections, among 
other things, the integers 1, 2, …, N – 1 have been written down and tested by the 
machine D. A certain number, say R(N – 1), of them have been found to be the D.N’s 
of circle-free machines. In the N-th section the machine D tests the number N. If N is 
satisfactory, i.e., if it is the D.N of a circle-free machine, then R(N) = 1 +R(N – 1) and 
the first. R(N) figures of the sequence of which a D.N is N are calculated. The R(N)-th 
figure of this sequence is written down as one of the figures of the sequence  J' 
computed by H. If N is not satisfactory, then R(N) = R(N – 1) and the machine goes 
on to the (N + 1)-th section of its motion.  

From the construction of Hwe can see that H is circle-free. Each section of the motion 
of H comes to an end after a finite number of steps. For, by our assumption about D, 
the decision as to whether N is satisfactory is reached in a finite number of steps. If N 
is not satisfactory, then the N-th section is finished. If N is satisfactory, this means that 
the machine M(N) whose D.N is N is circle-free, and therefore its R(N)-th figure can 
be calculated in a finite number of steps. When this figure has been calculated and 
written down as the R(N)-th figure of J', the N-th section is finished. Hence H is 
circle-free. 

Now let K be the D.N of  H. What does H do in the K-th section of its motion? It must 
test whether K is satisfactory, giving a verdict “s” or “u”. Since K is the D.N of Hand 
since H is circle-free, the verdict cannot be “u”. On the other hand the verdict cannot 
be “s”. For if it were, then in the K-th section of its motion H would be bound to 
compute the first R(K – 1)+1 = R(K) figures of the sequence computed by the machine 
with K as its D.N and to write down the R(K)-th as a figure of the sequence computed 
by H. The computation of the first R(K) – 1 figures would be carried out all right, but 
the instructions for calculating the R(K)-th would amount to “calculate the first R(K) 
figures computed by H and write down the R(K)-th”. This R(K)-th figure wonld never 
be found. I.e., H is circular, contrary both to what we have found in the last paragraph 
and to the verdict “s”. Thus both verdicts are impossible and we conclude that there 
can be no machine D.  

{248} We can show further that there can be no machine R which, when applied with 
the S.D of an arbitrary machine M, will determine whether M ever prints a given 
symbol (0 say).  

We will first show that, if there is a machine R, then there is a general process for 
determining whether a given machine M prints 0 infinitely often. Let M1  be a 
machine which prints the same sequence as M, except that in the position where the 



first 0 printed by M stands, M1 prints %. M2 is to have the first two symbols 0 
replaced by %, and so on. Thus, if M were to print  

A B A 01 A A B 0 0 1 0 A B…,  

then M1 would print  

A B A % 1 A A B 0 0 1 0 A B…  

and M2 would print  

A B A % 1 A A B % 0 1 0 A B… .  

Now let F be a machine which, when supplied with the S.D of M, will write down 
successively the S.D of M, of M1, of M2, … (there is such a machine). We combine F 
with R and obtain a new machine, G. In the motion of G first F is used to write down 
the S.D of M, and then R tests it, :0: is written if it is found that M never prints 0; 
then F writes the S.D of M1 and this is tested, :0: being printed if and only if M1 
never prints 0; and so on. Now let us test G with R. If it is found that G never prints 0, 
then M prints 0 infinitely often; if G prints 0 sometimes, then M does not print 0 
infinitely often.  

Similarly there is a general process for determining whether M prints 1 infinitely 
often. By a combination of these processes we have a process for determining 
whether M prints an infinity of figures, i.e. we have a process for determining 
whether M is circle-free. There can therefore be no machine R.  

The expression “there is a general process for determining …” has been need 
throughout this section as equivalent to “there is a machine which will determine …” 
This usage can be justified if and only if we can justify our definition of 
“computable”. For each of these “general process” problems can be expressed as a 
problem concerning a general process for determining whether a given integer n has a 
property G(n) [e.g. G(n) might mean “n is satisfactory” or “ n is the Gödel 
representation of a provable formula”], and this is equivalent to computing a number 
whose n-th figure is 1 if G (n) is true and 0 if it is false. {249} 

 

9.    The extent of the computable numbers.  

No attempt has yet been made to show that the “computable” numbers include all 
numbers which would naturally be regarded as computable. All arguments which can 
be given are bound to be, fundamentally, appeals to intuition, and for this reason 
rather unsatisfactory mathematically. The real question at issue is “What are the 
possible processes which can be carried out in computing a number?”  

The arguments which I shall use are of three kinds.  

a. A direct appeal to intuition.  



b. A proof of the equivalence of two definitions (in case the new definition has a 
greater intuitive appeal).  

c. Giving examples of large classes of numbers which are computable.  

Once it is granted that computable numbers are all “computable” several other 
propositions of the same character follow. In particular, it follows that, if there is a 
general process for determining whether a formula of the Hilbert function calculus is 
provable, then the determination can be carried out by a machine.  

I. [Type (a)]. This argument is only an elaboration of the ideas of §1. 

Computing is normally done by writing certain symbols on paper. We may suppose 
this paper is divided into squares like a child's arithmetic book. In elementary 
arithmetic the two-dimensional character of the paper is sometimes used. But such a 
use is always avoidable, and I think that it will be agreed that the two-dimensional 
character of paper is no essential of computation. I assume then that the computation 
is carried out on one-dimensional paper, i.e. on a tape divided into squares. I shall also 
suppose that the number of symbols which may be printed is finite. If we were to 
allow an infinity of symbols, then there would be symbols differing to an arbitrarily 
small extent.[6]  The effect of this restriction of the number of symbols is not very 
serious. It is always possible to use sequences of symbols in the place of single 
symbols. Thus an Arabic numeral such as {250} 17 or 999999999999999 is normally 
treated as a single symbol. Similarly in any European language words are treated as 
single symbols (Chinese, however, attempts to have an enumerable infinity of 
symbols). The differences from our point of view between the single and compound 
symbols is that the compound symbols, if they are too lengthy, cannot be observed at 
one glance. This is in accordance with experience. We cannot tell at a glance whether 
9999999999999999 and 999999999999999 are the same.  

The behaviour of the computer at any moment is determined by the symbols which he 
is observing. and his “state of mind” at that moment. We may suppose that there is a 
bound B to the number of symbols or squares which the computer can observe at one 
moment. If he wishes to observe more, he must use successive observations. We will 
also suppose that the number of states of mind which need be taken into account is 
finite. The reasons for this are of the same character as those which restrict the 
number of symbols. If we admitted an infinity of states of mind, some of them will be 
“arbitrarily close” and will be confused. Again, the restriction is not one which 
seriously affects computation, since the use of more complicated states of mind can be 
avoided by writing more symbols on the tape.  

Let us imagine the operations performed by the computer to be split up into “simple 
operations” which are so elementary that it is not easy to imagine them further 
divided. Every such operation consists of some change of the physical system 
consisting of the computer and his tape. We know the state of the system if we know 
the sequence of symbols on the tape, which of these are observed by the computer 
(possibly with a special order), and the state of mind of the computer. We may 
suppose that in a simple operation not more than one symbol is altered. Any other 
changes can be set up into simple changes of this kind. The situation in regard to the 
squares whose symbols may be altered in this way is the same as in regard to the 



observed squares. We may, therefore, without loss of generality, assume that the 
squares whose symbols are changed are always “observed” squares.  

Besides these changes of symbols, the simple operations must include changes of 
distribution of observed squares. The new observed squares must be immediately 
recognisable by the computer. I think it is reasonable to suppose that they can only be 
squares whose distance from the closest of the immediately previously observed 
squares does not exceed a certain fixed amount. Let us say that each of the new 
observed squares is within L squares of an immediately previously observed square. 
In connection with “immediate recognisability”, it may be thought that there are other 
kinds of square which are immediately recognisable. In particular, squares marked by 
special symbols might be taken as imme- {251}diately recognisable. Now if these 
squares are marked only by single symbols there can be only a finite number of them, 
and we should not upset our theory by adjoining these marked squares to the observed 
squares. If, on the other hand, they are marked by a sequence of symbols, we cannot 
regard the process of recognition as a simple process. This is a fundamental point and 
should be illustrated. In most mathematical papers the equations and theorems are 
numbered. Normally the numbers do not go beyond (say) 1000. It is, therefore, 
possible to recognise a theorem at a glance by its number. But if the paper was very 
long, we might reach Theorem 157767733443477; then, farther on in the paper, we 
might find “... hence (applying Theorem 157767733443477) we have...”. In order to 
make sure which was the relevant theorem we should have to compare the two 
numbers figure by figure, possibly ticking the figures off in pencil to make sure of 
their not being counted twice. If in spite of this it is still thought that there are other 
“immediately recognisable” squares, it does not upset my contention so long as these 
squares can be found by some process of which my type of machine is capable. This 
idea is developed in III below.  

The simple operations must therefore include:  

(a) Changes of the symbol on one of the observed squares. 
(b) Changes of one of the squares observed to another square within L squares of one 
of the previously observed squares.  

It may be that some of these changes necessarily involve a change of state of mind. 
The most general single operation must therefore be taken to be one of the following:  

A. A possible change (a) of symbol together with a possible change of state of mind. 

B. A possible change (b) of observed squares, together with a possible change of state 
of mind.  

The operation actually performed is determined, as has been suggested on p.250, by 
the state of mind of the computer and the observed symbols. In particular, they 
determine the state of mind of the computer after the operation is carried out.  

We may now construct a machine to do the work of this computer. To each state of 
mind of the computer corresponds an “m-configuration” of the machine. The machine 
scans B squares corresponding to the B squares observed by the computer. In any 
move the machine can change a symbol on a scanned square or can change anyone of 



the scanned squares to another square distant not more than L squares from one of the 
other scanned {252} squares. The move which is done, and the succeeding 
configuration, are determined by the scanned symbol and the m-configuration. The 
machines just described do not differ very essentially from computing machines as 
defined in §2, and corresponding to any machine of this type a computing machine 
can be constructed to compute the same sequence, that is to say the sequence 
computed by the computer.  

II.   [Type (b)].  

If the notation of the Hilbert functional calculus [7] is modified so as to be systematic, 
and so as to involve only a finite number of symbols, it becomes possible to construct 
an automatic [8] machine K which will find all the provable formulae of the 
calculus.[9] 

Now let I be a sequence, and let us denote by Ga(x) the proposition “The x-th figure 
of I is 1”, so that [10] – Ga(x) means “The x-th figure of I is 0”. Suppose further that 
we can find a set of properties which define the sequence I and which can be 
expressed in terms of Ga(x) and of the propositional functions N(x) meaning “x is a 
non-negative integer” and F(x,y) meaning “y = x + 1”. When we join all these 
formulae together conjunctively we shall have a formula, U say, which defines I. The 
terms of U must include the necessary parts of the Peano axioms, viz.,  

(`u)N(u)& (x)(N(x)\(`y)F(x,y)) & (F(x,y)\N(y)),  

which we will abbreviate to P.  

When we say “U defines I”, we mean that –U  is not a provable formula, and also 
that, for each n, one of the following formulae (An) or (Bn) is provable. 

U & F[5] \ G:(u[5]),    (An)[11] 
U & F[5] \ ( – G:(u[5])),   (Bn) 

 where F[5] stands for F(u, u') & F(u', u") & … F(u[5-1], u[5]).  

{253} I say that Iis then a computable sequence: a machine K: to compute I can be 
obtained by a fairly simple modification of K. 

We divide the motion of K: into sections. The n-th section is devoted to finding the n-
th figure of I. After the (n – l)-th section is finished a double colon : : is printed after 
all the symbols, and the succeeding work is done wholly on the squares to the right of 
this double colon. The first step is to write the letter “A” followed by the formula (An) 
and then “B” followed by (Bn). The machine K: then starts to do the work of K, but 
whenever a provable formula is found, this formula is compared with (An) and with 
(Bn). If it is the same formula as (An), then the figure “1” is printed, and the n-th 
section is finished. If it is (Bn), then “0” is printed and the section is finished. If it is 
different from both, then the work of  K is continued from the point at which it had 
been abandoned. Sooner or later one of the formulae (An) or (Bn) is reached; this 



follows from our hypotheses about I and U, and the known nature of K. Hence the n-
th section will eventually be finished; Ka is circle-free; I is computable.  

It can also be shown that the numbers I definable in this way by the use of axioms 
include all the computable numbers. This is done by describing computing machines 
in terms of the function calculus. 

It must be remembered that we have attached rather a special meaning to the phrase 
“U defines I”. The computable numbers do not include all (in the ordinary sense) 
definable numbers. Let P be a sequence whose n-th figure is 1 or 0 according as n is 
or is not satisfactory. It is an immediate consequence of the theorem of §8 that P is not 
computable. It is (so far as we know at present) possible that any assigned number of 
figures of P can be calculated, but not by a uniform process. When sufficiently many 
figures of P have been calculated, an essentially new method is necessary in order to 
obtain more figures.  

III.  This may be regarded as a modification of I or as a corollary of II.  

We suppose, as in I, that the computation is carried out on a tape; but we avoid 
introducing the “state of mind” by considering a more physical and definite 
counterpart of it. It is always possible for the computer to break off from his work, to 
go away and forget all about it, and later to come back and go on with it. If he does 
this he must leave a note of instructions (written in some standard form) explaining 
how the work is to be continued. This note is the counterpart of the “state of mind”. 
We will suppose that the computer works by such a desultory manner that he never 
does more than one step at a sitting. The note of instructions must enable him to carry 
out one step and write the next note. Thus the state of progress of the computation at 
any stage is completely determined by the note of {254} instructions and the symbols 
on the tape. That is, the state of the system may be described by a single expression 
(sequence of symbols), consisting of the symbols on the tape followed by A (which 
we suppose not to appear elsewhere) and then by the note of instructions. This 
expression may be called the “state formula”. We know that the state formula at any 
given stage is determined by the state formula before the last step was made, and we 
assume that the relation of these two formulae is expressible in the functional 
calculus. In other words we assume that there is an axiom U which expresses the rules 
governing the behaviour of the computer, in terms of the relation of the state formula 
at any stage to the state formula at the proceeding stage. If this is so, we can construct 
a machine to write down the successive state formulae, and hence to compute the 
required number.  

10.      Examples of large classes of numbers which are computable.  

It will be useful to begin with definitions of a computable function of an integral 
variable and of a computable variable, etc. There are many equivalent ways of 
defining a computable function of an integral variable. The simplest is, possibly, as 
follows. If O is a computable sequence in which 0 appears infinitely [12] often, and n 
is an integer, then let us defines W(O,n) to be the number of figures 1 between the n-
th and the (n+1)-th figure 0 in O. Then Y(n) is computable if , for all n and some O, 
Y(n)=W(O,n). An equivalent definition is this. Let H(x,y) mean Y(x) = y. Then if we 



can find a contradiction-free axiom U& such that U& \P, and if for each integer n 
there exists and integer N, such that   

U& & F[9] \ H(u[5], u(#[5]) 

and such that, if m / Y(n), then, for some N ',     

U& & F[9Z] \ (– H(u[5],4)), 

then Y may be said to be a computable function.  

We cannot define general computable functions of a real variable, since there is no 
general method of describing a real number, but we can define a computable function 
of a computable variable. If n is satisfactory, let On be the number computed by M(n), 
and let   

In=tan(X(On – !)),  

{255} unless On = 0 or On = 1, in either of which cases In = 0. Then, as n runs through 
the satisfactory numbers, In runs through the computable numbers.[13] Now let Y(n) 
be a computable function which can be shown to be such that for any satisfactory 
argument its value is satisfactory.[14] Then the function f, defined by f(In) = I&!n", is 
a computable function and all computable functions of a computable variable are 
expressible in this form.  

Similar definitions may be given of computable functions of several variables, 
computable-valued functions of an integral variable, etc.  

I shall enunciate a number of theorems about computability, but I shall prove only (ii) 
and a theorem similar to (iii).  

i ) A computable function of a computable function of an integral or computable 
variable is computable.  

ii ) Any function of an integral variable defined recursively in terms of computable 
functions is computable. I.e. if Y(m, n) is computable, and r is some integer, then T(n) 
is computable, where  
         T(0) = r, 
         T(n) = Y(n, T(n –1)).  
 
iii ) If  Y(m,n) is a computable function of two integral variables, then Y(n,n) is a 
computable function of n. 

iv ) If  Y(n) is a computable function whose value is always 0 or 1, then the sequence 
whose n-th figure is Y(n) is computable. Dedekind’s theorem does not hold in the 
ordinary form if we replace “real” throughout by ‘computable’. But it holds in the 
following form:  

v ) If G(I) is a propositional function of the computable numbers and  



a ) (`I)(`J){G(I) & (– G(J))},  

b ) G(I) & (– G(J )) \(I<J),  

and there is a general process for determining the truth value of G(I), then {256} there 
is a computable number W such that 

   G(I) \ I ? W,  
– G(I) \ I @ W.  

In other words, the theorem holds for any section of the computables such that there is 
a general process for determining to which class a given number belongs.  

Owing to this restriction of Dedekind’s theorem, we cannot say that a computable 
bounded increasing sequence of computable numbers has a computable limit. This 
may possibly be understood by considering a sequence such as 

–1, –!, –$, –*, –&, !, … . 

On the other hand, (v) enables us to prove 

vi ) If Iand J are computable and I<J and Y(I)<0<Y(J), where Y(I) is a computable 
increasing continuous function, then there is a unique computable number O, 
satisfying I<O<J and Y(O) = 0.  

Computable convergence.  

We shall say that a sequence Jn of computable numbers converges computably if 
there is a computable integral valued function N(Q) of the computable variable Q, 
such that we can show that, if Q>0 and n>N(Q) and m>N(Q), then  |Jn –Jm|<Q. 

We can then show that 

vii ) A power series whose coefficients form a computable sequence of computable 
numbers is computably convergent at all computable points in the interior of its 
interval of convergence.  

viii ) The limit of a computably convergent sequence is computable.  

And with the obvious definition of “uniformly computably convergent”: 

ix ) The limit of a uniformly computably convergent computable sequence of 
computable functions is a computable function. Hence 

x ) The sum of a power series whose coefficients form a computable sequence is a 
computable function in the interior of its interval of convergence.  

From (viii) and X= 4(l – #+% – ...) we deduce that X is computable. From e= 1 + 1 + 
$ + $ … we deduce that e is computable. 



{257} From (vi) we deduce that all real algebraic numbers are computable.  

From (vi) and (x) we deduce that the real zeros of the Bessel functions are 
computable. 

Proof of (ii).  

Let H(x,y) mean “T(x)=y”, and let K(x,y,z) mean “Y(x,y)=z”. U& is the axiom for 
Y(x,y). We take U* to be    

U& & P & (F(x, y) \G(x,y)) & (G(x, y) & G(y,z)\G(x,z))  

& (F[6]\H(u,u[6])) & (F(v,w) & H(v, x) & K(w,x,z)\H(w,z))  
 
& [H(w,z)& G(z,t) v G(t,z)\(—H(w,t))].  

I shall not give the proof of consistency of U*. Such a proof may be constructed by 
the methods used in Hilbert and Bernays, Grundlagen der Mathematik (Berlin, 1934), 
p.209 et seq. The consistency is also clear from the meaning.  

Suppose that for some n, N, we have shown    

U& & F[9] \H(u[5-1], u[&O5-1P],  

then, for some M, 

U* & F[8] \K(u[5], u[&O5-1P], u[&O5P]  
 
U* & F[8] \F(u[5-1], u[5] & H(u[5-1], u[&O5-1P]  

& Ku[5], u[&O5-1P], u[&O5P])  

and   

U* & F[8] \[F(u[5-1], u[5] & H(u[5-1], u[&O5-1P]  
& Ku[5], u[&O5-1P], u[&O5P]) \H(u[5], u[&O5P])].  

Hence      U* & F[8] \H(u[5], u[&O5P]). 

Also  U* & F[6] \H(u,u[&O0P] . 

Hence for each n some formula of the form    

U* & F[8] \H(u[5], u[&O5P])  

is provable. Also, if M' @ M and M' @ m and m /T(u), then    

U* & F[8Z] \G(u[&O5P]), u[4]) v G(u[4], u[&O5P]) 

{258} and  



U* & F[8Z] \[{G(u[&O5P], u [4]) v G(u[4], u[&O5P]) & H(u[5], u[&O5P])} \ (–
H(u[5], u[4]))].  

Hence     U* & F[8Z] \(–H(u[5],u[4])) 

The conditions of our second definition of a computable function are therefore 
satisfied.  Consequently T is a computable function.  

Proof of a modified form of (iii).  

Suppose that we are given a machine N, which, starting with a tape bearing on it ee 
followed by a sequence of any number of letters “F” on F-squares and in the m-
configuration b, will compute a sequence On depending on the number n of letters 
“F”. If Yn(m) is the m-th figure of On, then the sequence J whose n-th figure is  Yn(n) 
is computable.  

We suppose that the table for N has been written out in such a way that in each line 
only one operation appears in the operations column. We also suppose that C, B, % 
and ^ do not occur in the table, and we replace e throughout by C, 0 by % and 1 by ^. 
Further substitutions are then made. Any line of form 

  U I P%          B 

we replace by  

  U I P% re(BYu, h, k) 

and any line of the form  

  U I P ^          B 

by U I P^ re(BYv, h, k) 

and we add to the table the following lines:  

  u     pe(u1,0)    
   u1 R, Pk, R, PB, R, PB u2    

  u2   re(u3Yu3, k, h)    
  u2   pe(u2, F)    

and similar lines with v for u and 1 for 0 together with the following line       

c R, PC, R, Ph b.       



We then have the table for the machine N' which computes J. The initial m-
confguration is c, and the initial scanned symbol is the second e. {259} 

11. Application to the Entscheidungsproblem.  

The results of §8 have some important applications. In particular, they can be used to 
show that the Hilbert Entscheidungsproblem can have no solution. For the present I 
shall confine myself to proving this particular theorem. For the formulation of this 
problem I must refer the reader to Hilbert and Ackermann’s Grundzüge der 
Theoretischen Logik (Berlin, 1931), chapter 3.  

I propose, therefore, to show that there can be no general process for determining 
whether a given formula U of the functional calculus Z is provable, i.e. that there can 
be no machine which, supplied with any one U of these formulae, will eventually say 
whether U is provable. 

It should perhaps be remarked what I shall prove is quite different from the well-
known results of Gödel [15]. Gödel has shown that (in the formalism of Principia 
Mathematica) there are propositions U such that neither U nor –U is provable. As a 
consequence of this, it is shown that no proof of consistency of Principia Mathematica 
(or of Z) can be given within that formalism. On the other hand, I shall show that 
there is no general method which tells whether a given formula U is provable in Z, or, 
what comes to the same, whether the system consisting of Z with –U adjoined as an 
extra axiom is consistent. 

If the negation of what Gödel has shown had been proved, i.e. if, for each U, either U 
or –U is provable, then we should have an immediate solution of the 
Entscheidungsproblem. For we can invent a machine K which will prove 
consecutively all provable formulae. Sooner or later K will reach either U or –U. If it 
reaches U, then we know that U is provable. If it reaches –U, then, since Z is 
consistent (Hilbert and Ackermann, p.65), we know that U is not provable.  

Owing to the absence of integers in Z the proofs appear somewhat lengthy. The 
underlying ideas are quite straightforward.  

Corresponding to each computing machine M we construct a formula Un(M) and we 
show that, if there is a general method for determining whether Un (M) is provable, 
then there is a general method for determining whether M ever prints 0.  

The interpretations of the propositional functions involved are as follows:  

R So(x,y) is to be interpreted as “in the complete configuration x (of M) the symbol 
on the square y is S ”.  

{260} I(x,y) is to be interpreted as “in the complete configuration x the square y is 
scanned”. 

Kqp(x) is to be interpreted as “in the complete configuration x the m-configuration is 
qm.  



F(x,y) is to be interpreted as “y is the immediate successor of x”. 

Inst{qiSj Sk Lqo} is to be an abbreviation for  

(x,y,x',y') ~(R Sg(x,y) & I(x,y) & Kqf(x) & F(x,x') & F(y',y)) 

\ (I(x',y') & RSh(x',y) & Kqo(x')  

& (z)[F(y',z) v (R Sg(x',z)\RSh(x',z))])}.  

Inst{qi, Sj, Sk, Rqo} and Inst{qi, Sj, Sk, Nqo}  

are to be abbreviations for other similarly constructed expressions.  

Let us put the description of M into the first standard form of §6. This description 
consists of a number of expressions such as “qi, Sj, Sk, Lqo” (or with R or N 
substituted for L). Let us form all the corresponding expressions such as Inst{qi, Sj, 
Sk, Lqo}and take their logical sum. This we call Des (M).  

The formula Un (M) is to be  

(`u)[N(u) & (x)(N(x)\`x')F(x,x'))  

& (y,z)(F(y,z)\N(y) & N(z)) & (y)RS6(u,y) 

& I(u,u) & Kq7 (u) & Des(M)] 

\(`s)(`t)[N(s) & N(t) & RS7(s,t)].  

[N(u) & ... Des (M)] may be abbreviated to A(M).  

When we substitute the meanings suggested on p.259 – 60 we find that Un (M) has 
the interpretation “in some complete configuration of MY S1(i.e. 0) appears on the 
tape”. Corresponding to this I prove that  

a ) If S1 appears on the tape in some complete configuration of M, then Un (M) is 
provable.  

b ) If Un (M) is provable, then S1 appears on the tape in some complete configuration 
of M.  

When this has been done, the remainder of the theorem is trivial.  

{261} LEMMA1. If S1 appears on the tape in some complete configuration of M , then 
Un (M) is provable.  



We have to show how to prove Un (M). Let us suppose that in the n-th complete 
configuration the sequence of symbols on the tape is Sr!n,0", Sr!n,1", ...., Sr!n,n", 
followed by nothing but blanks, and that the scanned symbol is the i(n)-th, and that 
the m-configuration is qk!n". Then we may form the proposition   

RSx[v\6](u[5], u) & RSx[v\7] (u[5], u') & ... RSx[v\v](u[5],u[5]) 

& I(u[5],u[`[5]) & Kqh[v], (u[5])  

& (y)F((y,u') v F(u,y) v F(u',y) v ... v F(u[5-1],y) v RS6(u[5], y))  

which we may abbreviate to CCn.  

As before, F(u,u') & F(u,u") & ... & F(u[6-1],u[6]), is abbreviated to F[6]. 

I shall show that all formulae of the form A(M) & F[5]\ CCn (abbreviated to CFn) are 
provable. The meaning of CFn is “The n-th complete configuration of M is so and 
so”, where “so and so” stands for the actual n-th complete configuration of M. That 
CFn should be provable is therefore to be expected.  

CF0 is certainly provable, for in the complete configuration the symbols are all 
blanks, the m-configuration is q1, and the scanned square is u, i.e. CC0 is  

(y)RS6(u,y) & I(u,u) & Kq7(u).  

A(M) \CC0 is then trivial. 

We next show that CFn \ CFn+1 is provable for each n. There are three cases to 
consider, according as in the move from the n-th to the (n + l)-th configuration the 
machine moves to left or to right or remains stationary. We suppose that the first case 
applies, i.e. the machine moves to the left. A similar argument applies in the other 
cases. If r(n,i(n))=a, r(n+1,i(n+1))=c, k(i(n))=b, and k(i(n+1))=d, then Des(M) must 
include Inst{qa Sb Sd Lqc} as one of its terms, i.e. 

Des(M) \ Inst{qa Sb Sd Lqc}.  

Hence            A(M) & F[5+1] \ Inst{qa Sb Sd Lqc}& F[5+1].  

But                 Inst{qa Sb Sd Lqc} & F[5+1] \ (CCn\CCn+1)  

is provable, and so therefore is 

A(M) & F[5+1] \ (CCn\CCn+1)  

{262} and   A(M) & F[5] \ CCn) \ (A(M) & F[5+1] \ CCn+1) 

i.e. CFn \ CFn+1.  

CFn is provable for each n. Now it is the assumption of this lemma that S1 appears 
somewhere, in some complete configuration, in the sequence of symbols printed 



by M; that is, for some integers N, K, CCN has RS7(u[9], u[7]) as one of its terms, 
and therefore CCN\RS7(u[9],u[7]) is provable. We have then 

      CCN\ RS7(u[9], u[7]) 

and       A(M) & F[5] \ CC9 

We also have (`u)A(M) \(`u)(`u') ... (`u[9Z])  A(M) & F[9],  

where N' = max (N, K). And so  

(`u)A(M) \(`u)(`u') … (`u[9Z])  RS7(u[9], u[7]), 
 
(`u)A(M) \(`u)(`u[9])(`u[7]) (`u[9], u[7]), 
 
(`u)A(M)\(`s)(`t)RS7(s,t),  
i.e.  Un(M) is provable.  

This completes the proof of Lemma 1.  

LEMMA 2. If Un(M) is provable, then S1 appears on the tape in so-complete 
configuration of M.  

If we substitute any propositional functions for function variables in a provable 
formula, we obtain a true proposition. In particular, if we substitute the meanings 
tabulated on pp. 259 – 260 in Un(M), we obtain a true proposition with the meaning 
“S1 appears somewhere on the tape in some complete configuration of M”. 

We are now in a position to show that the Entseheidungsproblem cannot be solved. 
Let us suppose the contrary. Then there is a general (mechanical) process for 
determining whether Un(M) is provable. By Lemmas l and 2, this implies that there is 
a process for determining whether M ever prints 0, and this is impossible, by §8. 
Hence the Entscheidungsproblem cannot be solved.  

In view of the large number of particular cases of solutions of the 
Entscheidungsproblem for formulae with restricted systems of quantors, it {263} is 
interesting to express Un(M) in a form in which all quantors are at the beginning. 
Un(M) is, in fact, expressible in the form  

   (u)(`x)(w)(`u1) ... (`un)B,   (I)  

 where B contains no quantors, and n = 6. By unimportant modifications we can 
obtain a formula, with all essential properties of Un(M), which is of form (I) with n = 
5.  

Added 28 August, 1936. APPENDIX. 

Computability and effective calculability  



The theorem that all effectively calculable (V-definable) sequences are computable 
and its converse are proved below in outline. It is assumed that the terms “well-
formed formula” (W.F.F.) and “conversion” as used by Church and Kleene are 
understood. In the second of these proofs the existence of several formulae is assumed 
without proof; these formulae may be constructed straightforwardly with the help of, 
e.g., the results of Kleene in “A theory of positive integers in formal logic”, American 
Journal of Math., 57 (1935), 153-173, 219-244.  

The W.F.F. representing an integer n will be denoted by Nn. We shall say that a 
sequence O whose n-th figure is Y9(n) is V-definable or effectively calculable if 
1+Y9(u) is a  V-definable function of n, i.e. if there is a W.F.F. M9 such that, for all 
integers n,  

{M9} (Nn) conv N&9!n"+1,  

i.e. {M9}(Nn) is convertible into Vxy.x(x(y)) or into Vxy.x(y) according as the n-th 
figure of V is 1 or 0. 

To show that every  V-definable sequence O is computable, we have to show how to 
construct a machine to compute O. For use with machines it is convenient to make a 
trivial modification in the calculus of conversion. This alteration consists in using x, 
x', x", ... as variables instead of a, b, c, …. We now construct a machine L which, 
when supplied with the formula M9, writes down the sequence O. The construction 
of  L  is somewhat similar to that of the machine K which proves all provable 
formulae of the functional calculus. We first construct a choice machine L1 which, if 
supplied with a W.F.F., M say, and suitably manipulated, obtains any formula into 
which M is convertible. L1 can then be modified so as to yield an automatic 
machine L2 which obtains successively all the formulae {264} into which M is 
convertible (cf- foot-note p.252). The machine L includes L2 as a part. The motion of 
the machine L when supplied with the formula M9 is divided into sections of which 
the n-th is devoted to finding the n-th figure of  O. The first stage in this n-th section 
is the formation of {M9} (Nn). This formula is then supplied to the machine L2, 
which converts it successively into various other formulae. Each formula into which it 
is convertible eventually appears, and each, as it is found, is compared with 

Vx[V'x[{x}({x}(x'))]], i.e. N2, 

and with Vx[Vx'[{x}(x')]], i.e. N1.  

If it is identical with the first of these, then the machine prints the figure 1 and the n-th 
section is finished. If it is identical with the second, then 0 is printed and the section is 
finished. If it is different from both, then the work of' L2 is resumed. By hypothesis, 
{M9}(Nn) is convertible into one of the formulae N2 or N1; consequently the n-th 
section will eventually be finished, i.e. the n-th figure of  O will eventually be written 
down.  

To prove that every computable sequence O is V-definable, we must show how to and 
a formula M9 such that, for all integers n, 



{M9} (Nn) conv N1+&9!n".  

Let M be a machine which computes O and let us take some description of the 
complete configurations of M by means of numbers, e.g. we may take the D.N of the 
complete configuration as described in §6. Let  W(n) be the D.N of the n-th complete 
configuration of M. The table for the machine M gives us a relation between W(n + 1) 
and W(n) of the form 

W(n + 1) = p9(W(n)),  

where p9 is a function of very restricted, although not usually very simple, form: it is 
determined by the table for M. p9 is V-definable (I omit the proof of this), i.e. there is 
a W.F.F. A9 such that, for all integers n,  

{A9} (Nw!n") conv Nw!n+1".  

Let U9 stand for   

Vu[~{u}(A9)x(Nr)]  

where r = W(0); then, for all integers n, 

{U9} (Nn) conv Nw!n".  

{265} It may be proved that there is a formula V such that 

{{V}(Nw!n+1")} 
(Nw!n")  y 

conv 
N1 
conv 
N2 
conv 
N3 

if, in going from the n-th to the (n+1)-th complete 
configuration, the figure 0 is printed. 
if the figure 1 is printed. 
otherwise. 

Let W% stand for   

Vu[~{V}({A9}({U9}(u)))x({U9}(u))]  

so that, for each integer n,  

~{{V}(Nw!n+1")x (w!n") conv {W9} (Nn),  

and let Q be a formula such that  

~{Q}(W9)x(Ns) conv Nr!z"  

where r(s) is the s-th integer q for which (W9) (Nn) is convertible into either N1 or 
N2. Then, if M9 stands for   



Vw[{W9}(~{Q}(W9)x(w))]  

it will have the required property.[16] 
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ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE 
ENTSCHEIDUNGSPROBLEM.  
A CORRECTION  

By A. M. Turing 

In a paper entitled On computable numbers, with an application to the 
Entseheidungsproblem [17] the author gave a proof of the insolubility of the 
Entseheidungsproblem of the “engere Funktionenkalkül”.[18] This proof contained 
some formal errors which will be corrected here: there are also some other statements 
in the same paper which should be modified, although they are not actually false as 
they stand. 

The expression for Inst{qi Sj Sk Lqo} on p.260 of the paper quoted should read 

(x,y,x',y') ~(RSg(x,y) & I(x,y) & Kqf(x) & F(x,x') & F(y',y)) 

    \ (I(x',y') & RSh(x',y) & Kqo(x') & F(y',z) v [(RS6(x,z)\(RS6(x',z)) 

& (RS7(x,z)\(RS7(x',z)) & ... & (RSy(x',z))])},  

S0, S1, …, SM being the symbols which M can print. The statement on p261, line 33, 
viz.  

“Inst{qa Sb Sd Lqc} & F[5+1] \ (CCn \ CCn+1)  

is provable” is false (even with the new expression for Inst {qa Sb Sd Lqc}): we are 
unable for example to deduce F[5+1] \(–F(u,u")) and therefore can never use the term  

F (y',z) v [(RS6(x,z) \RS6(x',z)) & … & (RSy(x,z) \RSy(x',z))]  



{545} in Inst {qa Sb Sd Lqc}. To correct this we introduce a new functional variable G 
[G(x,y) to have the interpretation “x precedes y”.]. Then, if Q is an abbreviation for  

(x)(`w)(y,z)~F(x,w) &(F(x,y)\G(x,y) ) & (F(x,z) & G(z,y)\G(x,y))  
& [G(z,x) v (G(x,y) & F(y,z)) & (F(x,y) v F(z,y)) \ (–F(x,z))]} 

the corrected formula Un(M) is to be 

(`u)A(M)\(`s)(`t)RS7(s,t),  

where A(M) is an abbreviation for  

Q & (y)RS6(u,y) & I(u,u) & Kq7(u) & Des (M).  

The statement on p261 (line 33) must then read  

Inst{qa Sb Sd Lqc} & Q & F[5+1] \ (CCn\ CCn+1) 

and line 29 should read  

r(n,i(n))=b,      r(n+1,i(n))=d,       k(n)=a,       k(n+1)=c.  

For the words “logical sum” on p. 260, line 15, read “conjunction”. With these 
modifications the proof is correct. Un (M) may be put in the form (I) (p.263) with n = 
4. 

Some difficulty arises from the particular manner in which “computable number” was 
defined (p.233). If the computable numbers are to satisfy intuitive requirements we 
should have: 

If we can give a rule which associates with each positive integer n two rationals an,
bn satisfying an? an+1 < bn+1 ? bn, bn – an < 2-5, then there is a computable 
number I for which an? I  ?bn each n.  
  (A) 

A proof of this may be given, valid by ordinary mathematical standards, but involving 
an application of the principle of excluded middle. On the other hand the following is 
false:  

There is a rule whereby, given the rule of formation of the sequence an, bn in (A) we 
can obtain a D.N. for a machine to compute I . 
      (B)  

That (B) is false, at least if we adopt the convention that the decimals of numbers of 
the form m/2* shall always terminate with zeros, can be seen in this way. Let N be 
some machine, and define cn as follows: cn = !-2-4-3 if M has not printed a figure 0 
by the time the n-th complete configuration is reached cn = ! – 2-4-3 if 0 had first 



been printed as the m-th {546} complete configuration (m?n). Put an = cn – 2-5-2, bn 
= cn + 2-5-2.  Then the inequalities of (A) are satisfied, and the first figure of I is 0 
if N ever prints 0 and is 1 otherwise. If (B) were true we should have a means of 
finding the first figure of  I given the D.N. of N: i.e we should be able to determine 
whether N ever prints 0, contrary to the results of §8 of the paper quoted. Thus 
although (A) shows that there must be machines which compute the Euler constant 
(for example) we cannot at present describe any such machine, for we do not yet 
know whether the Euler constant is of the form m/2*.  

This disagreeable situation can be avoided by modifying the manner in which 
computable numbers are associated with computable sequences, the totality of 
computable numbers being left unaltered. It may be done in many ways [19] of which 
this is an example. Suppose that the first figure of a computable sequence O is i and 
that this is followed by 1 repeated n times, then by 0 and finally by the sequence 
whose r-th figure is cr; then the sequence O is to correspond to the real number 

 (2i – l) n + !(2cr – l)(^)6. 

If the machine which computes O is regarded as computing also this real number then 
(B) holds. The uniqueness of representation of real numbers by sequences of figures is 
now lost, but this is of little theoretical importance, since the D.N.’s are not unique in 
any case.  

The Graduate College,  
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6. If we regard a symbol as literally printed on a square we may suppose that the 
square is 0 ? x ? 1, 0 ? y ? 1. The symbol is defined as a set of points in this 
square, viz. the set occupied by printer’s ink. If these sets are restricted to be 
measurable, we can define the “distance” between two symbols as the cost of 
transforming one symbol into the other if the cost of moving unit area of 
printer’s ink unit distance is unity, and there is an infinite supply of ink at x = 
2, y = 0. With this topology, the symbols form a conditionally compact space.  

7. The expression “the functional calculus” is used throughout to mean the 
restricted Hilbert functional calculus.  

8. It is most natural to construct first a choice machine (§2) to do this. But it then 
easy to construct the required automatic machine. We can suppose that the 
choices are always choices between two possibilities 0 and 1. Each proof will 
then be determined by a sequence of choices i1, i2, …, in (i1 = 0 or 1, i2 = 0 
or 1, …, in = 0 or 1), and hence the number 2n + i1 25+1 + i2 25-2+...+ in, 
completely determines the proof. The automatic machine carries out 
successively proof 1, proof 2, proof 3, ….  

9. The author has found a description of such a machine.  
10. The negation sign is written before an expression and not over it.  
11. A sequence of r primes is denoted by [6].  
12. If  computes M, then the problem whether O prints 0 infinitely often is of the 

same character as the problem whether M is circle-free.  
13. A function In may be defined in many other ways so as to run through the 

computable numbers.  
14. Although it is not possible to find a general process for determining whether a 

given number is satisfactory, it is often possible to show that certain classes of 
numbers are satisfactory.  

15. Loc. cit.  
16. In a complete proof of the V-definability of computable sequences it would be 

best to modify this method by replacing the numerical description of the 
complete configurations by a description which can be handled more easily 
with our apparatus. let us choose certain integers to represent the symbols and 
the m-configurations of the machine. Suppose that in a certain complete 
configuration the numbers representing the successive symbols on the tape are 
s1s2 ... sn, that the m-th symbol is scanned, and that the m-configuration has 
the number t; then we may represent this complete configuration by the 
formula 
[[ Ns7,Ns8, …, Nsp-7], [Nt, Nsp], [Nsp=7, …, Nsv]]  
where [a,b] stands for  Vu[{{u}(a)}(b)], 

[a,b,c] stands for  Vu[{{{u}(a)}(b)}(c)],  
etc.  

17. Proc. London Math. Soc (2) 42 (1936 – 7), 230 – 265.  
18. The author is indebted to P. Bernays for pointing out these errors.  
19. The use of overlapping intervals for the definition of real numbers is due 

originally to Brouwer.  

 

  



 


