
- 11.) Δυο αντιστάσεις R_1 =60 Ω και R_2 =40 Ω συνδέονται παράλληλα και στα άκρα της συνδεσμολογίας εφαρμόζεται τάση V=240Volt . Να υπολογίσετε:
- α. την ισοδύναμη αντίσταση του κυκλώματος (Roa.)
- β. το συνολικό ρεύμα (Ι)
- γ. τις εντάσεις των ρευμάτων Ι1 και Ι2 (που διαρρέουν τις δυο αντιστάσεις)
- δ. την τάση στα άκρα κάθε αντίστασης

Aπ. a. R_{OA} =24Ω β. I=10A γ. I_1 =4A, I_2 =6A δ. V_1 = V_2 =240V

- 2.) Δυο αντιστάσεις R_1 =20 Ω και R_2 =30 Ω συνδέονται παράλληλα και στα άκρα της συνδεσμολογίας εφαρμόζεται τάση V=360Volt . Να υπολογίσετε:
- α. την ισοδύναμη αντίσταση του κυκλώματος (Roa.)
- β. το συνολικό ρεύμα (Ι)
- γ. τις εντάσεις των ρευμάτων I_1 και I_2 (που διαρρέουν τις δυο αντιστάσεις)
- δ. την τάση στα άκρα κάθε αντίστασης
- Aπ. a. R_{OA}=12Ω β. I=30A γ. I₁=18A, I₂=12A δ. V₁=V₂=360V
- 3.) Δυο αντιστάσεις R_1 =4 Ω και R_2 =6 Ω συνδέονται παράλληλα. Αν η ένταση του ρεύματος που διαρρέει τον πρώτο αντιστάτη είναι 3A, να βρεθεί η ένταση του ρεύματος που διαρρέει το δεύτερο αντιστάτη.

 $A\pi$. $I_2=2A$

- 4 Δύο αντιστάσεις R1=30 Ω και R2=60 Ω συνδέονται παράλληλα και στις άκρες του κυκλώματος εφαρμόζεται τάση V=120 Volt. Να βρείτε την ολική αντίσταση του κυκλώματος και την ένταση του ρεύματος που διαρρέει το κύκλωμα και κάθε αντίσταση.
- 5. Δύο αντιστάσεις R1=10 Ω και R2=15 Ω συνδέονται παράλληλα και στις άκρες του συστήματος εφαρμόζεται τάση V=90 V. Να βρεθούν:
- α) Η ισοδύναμη αντίσταση Roλ.
- β) Οι τάσεις V1 και V2 στα άκρα των αντιστάσεων R1 και R2.
- γ) Οι εντάσεις των ρευμάτων Ι1 και Ι2 που διαρρέουν τις αντιστάσεις R1 και R2 αντίστοιχα καθώς και την ένταση του ρεύματος που διαρρέει την πηγή τάσης V.