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3.1

Introduction


Example 
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3.2

Limit of a Function
A.
Limit of a Function at Infinity

Defintion
Let f(x) be a function defined on R.  
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N.B.
(1)
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(3)
Infinity, ∞, is a symbol but not a real value. 

There are three cases for the limit of a function when x → ∞,
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Theorem

Uniqueness of Limit Value



If  
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Rules of Operations on Limits
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For any constant k,  
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For any positive integer n,  
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Example

Evaluate  
(a)  
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Theorem

Let 
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Theorem

Sandwich Theorem for Functions



Let f(x) , g(x) , h(x) be three functions defined on R. 

If 
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Example

(a)
Show that for x > 0,  
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Hence find  
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Example

Evaluate  (a)
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Exercise

(a)
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B.
Limit of a Function at a Point

Definition
Let f(x) be a function defined on R.  
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If f(x) is a polynomial , then 
[image: image60.wmf])

(

)

(

lim

a

f

x

f

a

x

=

®

.



(3)
In general ,  
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f(x) may not defined at  x = a even through  
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Let 
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Consider the function 
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Let 
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But f(2) is not defined on R.

N.B.



[image: image74.wmf]l

x

f

a

x

=

®

)

(

lim

  is equivalent to :








(i)

[image: image75.wmf]0

]

)

(

[

  

lim

=

-

®

l

x

f

a

x

;








(ii)

[image: image76.wmf]0

 

)

(

 

 

lim

=

-

®

l

x

f

a

x

;








(iii)

[image: image77.wmf]);

(

lim

)

(

lim

x

f

x

f

a

x

a

x

+

-

®

®

=

=

l









(iv)

[image: image78.wmf]l

=

+

®

)

(

lim

0

h

a

f

h

.

Theorem

Rules of Operations on Limits




Let 
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Prove that for 
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Hence, deduce that  
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3.3
Properties of Limit of a Functon

Theorem

Uniqueness of Limit Value
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3.4

Two Important Limits
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Find the limits of the following functions:
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Find the limits of the following functions:
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Let 
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Hence, find the limit value  
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Assignment
Ex. 3B (1-2)

3.5

Left and Right Hand Limits
Theorem
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Example

Show that each of the following limits does not exist.
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By Sandwich rule, show that 
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As 
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Assignment
Ex. 3C  (1-3)
3.6

Continuous Functions

N.B.

In general, 
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Definition
Let f(x) be a function defined on R. f(x) is said to be continuous at x = a if and only if  
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N.B.

This is equivalent to the definition :



A function f(x) is continuous at x = a ,  if and only if 



(a)
f(x) is well-defined at x = a ,  i.e.  f(a) exists and f(a) is a finite value,
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Remark
Sometimes, the second condition may be written as 
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Example

Show that the function  
[image: image152.wmf]ï

î

ï

í

ì

¹

=

0

=

   x

,

         

0

0

   x

,

1

sin

)

(

x

x

x

f

  is continuous at x = 0.

Definition
A function is discontinuous at x = a iff it is not continuous at that point a.

There are four kinds of discontinuity:




   




 y = f(x)
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(1)
Removable discontinuity:
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Example

Show that 
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  is discontinuous at  x = 2.

Solution

Since f(2) = 4 and 
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so f(x) is discontinuous at x = 2.
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Let  
[image: image156.wmf]ï

î

ï

í

ì

¹

-

=

0

=

  x

,

 

          

a

0

  x

,

cos

1

)

(

2

x

x

x

f

.




(a)
Find  
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(b)
Find a if f(x)  is continuous at x = 0.

 (2)
Jump discontinuity :
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Example

Show that the function  f(x) = [x]  is discontinuous at 2.

	


Example

Find the points of discontinuity of the function  g(x) = x ( [x].

	


Example

Let  
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Show that f(x) is discontinuous at x = 0.

	


(3)
Infinite discontinuity:
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y = f(x)
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limit does not exist.
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Example

Show that the function  
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(4)
At least one of the one-side limit does not exist.
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Example 
Since 
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so the function 
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Definition
(1)
A function f(x) is called a continuous function in an open interval (a, b) if it is continuous at 





every point in (a, b).

(2)
A function f(x) is called a continuous function in an closed interval [a, b] if it is continuous at every point in (a, b) and 
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f(x) is continuous 


f(x) is continuous


f(x) is continuous


on (a, b).




on (a, b).




on [a, b].

N.B.

(1) 
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Example

Let 
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Show that 
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3.7

Properties of Continuous Functions

A.
Continuity of Elementary Functions

Theorem
Rules of Operations on Continuous Functions

If f(x) and g(x) are two functions continuous at x = a , then so are 
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Example 
Let 
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Let 
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 are two functions continuous everywhere, so h is continuous everywhere.

Theorem

Let g(x) be continuous at x = a and f(x) be continuous at x = g(a), then f。g is continuous at x = a.

Example 
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Show that  
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Example
Let f and g be two functions defined as  
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For what values of x is f [g(x)]  continuous?

Theorem
Let 
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Evaluate 
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Evaluate  
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B.
Properties of Continuous Functions

(P1)

If f(x) is continuous on [a, b], then f(x) is bounded on [a, b].

(P2)

But f(x) is continuous on (a, b) cannot imples that f(x) is bounded on (a, b).


(1)
   y

   c < f(x) < d


(2) 
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f(x) is not
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Example 
f(x) = cot x  is continuous on (0, () , but it is not bounded on (0, ().

(P3)

If  f(x) is continuous on [a, b], then it will attain an absolute maximum and absolute minimum 

on [a, b].

i.e.
If f(x) is continuous on [a, b], there exist  
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  is called the absolute maximum of the function and  
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(P4)

If f(x) is continuous on [a, b] and f(a)f(b) < 0 , then there exists c ( [a, b] such  that f(c) = 0.
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Example 
Let 
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Example

Prove that the equation 
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Example

Let 
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(a)
Show that f(x) is a strictly increasing function.




(b)
Hence, show that the equation 
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 has a unique real root.

(P5)

Intermediate Value Theorem
If f(x) is continuous on [a, b],  then for any real number m lying between f(a) and f(b) , there corresponds a number c ( [a, b]  such that f(c) = m.
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(P6)
Let f(a) = c and f(b) = d, if f is continuous and strictly increasing on [a, b], then
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Example
(a)
Suppose that the function satisfies f(x+y) = f(x) + f(y) for all real x and y and f(x) is 

continuous at x = 0.  Show that f(x) is continuous at all x.




(b)
A function   
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Is f(x)  continuous at x = 0?  If not , how can we redefine the value of  f(x)  at x = 0 so that it is continuous at x = 0?

Exercise

Example

Let f(x) be a continuous function defined for x > 0 and for any x , y > 0, 





f(xy) = f(x) + f(y).




(a)
Find f(1).




(b)
Let a be a positive real number. Prove that 
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(c)
It is known that for all real numbers x, there exists a sequence  
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(i)
Show that  
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(ii)
Hence show that  
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Example

Let f be a real-valued continuous function defined on the set R such that 





f(x+y) = f(x) + f(y) for all x , y ( R.




(a)
Show that 





(i)
f(0) = 0





(ii)
f((x)= (f(x) for any x ( R.




(b)
Prove that f(nx) = nf(x) for all integers n.





Hence show that f(r) = rf(1)  for any rational number r.




(c)
It is known that for all x ( R, there exists a sequence 
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Using (b), prove that there exists a constant k such that f(x) = kx for all x ( R.

Example

Let R denote the set of all real numbers and f : R ( R a continuous function not identically zero 

such that f(x+y) = f(x)f(y)  for all x , y ( R.




(a)
Show that 





(i)
f(x) ( 0 for any x ( R.





(ii)
f(x) > 0 for any x ( R.





(iii)
f(0) = 1





(iv)
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(b)
Prove that for any rational number r,  
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Hence prove that there exists a constant a such that 
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Assignment 
Ex.3D (1-9).

Revision Exercise (1-6).
1.	f(x) may have a finite limit value.





2. f(x) may approach to infinity;





3. f(x) may oscillate or infinitely and limit value does not exist.
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