CONTINUOUS FUNCTIONS

SOLVED EXCERCISES

1) Is f continuous at x_{0}, where: α) $\left.\left.\left.x_{0}=-4, \beta\right) x_{0}=0, \gamma\right) x_{0}=4, \delta\right) x_{0}=5$ (see fig.1)? Can we examine the continuity of f at $x_{0}=2$?

Solution:

$\boldsymbol{\alpha}$) Since $\lim _{x \rightarrow-4^{+}} f(x)=0=f(-4) f$ is
continuous at -4 .
乃) We have $\lim _{x \rightarrow 0^{-}} f(x)=3$ but $\lim _{x \rightarrow 0^{+}} f(x)=2$ thus there is not $\lim _{x \rightarrow 0} f(x)$, i.e f is not continuous at 0 .
γ) Since $\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{-}} f(x)=f(4)$
f is continuous at 4 .
ס) f is not continuous at 5 , since $\lim _{x \rightarrow 5} f(x)=4$ but $f(5)=3$.

Fig. 1

We examine the continuity at a point which belongs to the domain of a function. The number 2 does not belong to the domain of f .
2) Examine the continuity of f at x_{0} :
a) $f(x)=\left\{\begin{array}{lr}|x|, & x<0 \\ x, & 0 \leq x<2 \quad x_{0}=0, x_{0}=2 \\ x^{2}, & x \geq 2\end{array}\right.$
$\beta) f(x)=\left\{\begin{array}{ll}\frac{1}{x^{2}}, x \neq 0 \\ 0, x=0\end{array} \quad x_{0}=0 \quad \gamma\right) f(x)=|x|+5, x_{0}=0$.

Solution:

a) Since $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}|x|=0, \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x=0, f(0)=0 f$ is continuous at $x_{0}=0$.

We have that $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x=2, \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} x^{2}=4$, and consequently there is not the limit of f at $x_{0}=2$, thus f is not continuous at 2 .
ß) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty \notin \mathbf{R}$ but $f(0)=0$, thus f is not continuous at 0 .
γ) Since $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}(|x|+5)=0+5=5=f(0)$, f is continuous at 0 .

