13 ‐ Γενική Μηχανική ‐ 3 ‐ Κυκλικές Κινήσεις
15/9/2014
© Κωνσταντίνος Χ. Παύλου (ΓΕΛ Μεσοποταμίας)
5
Γωνιακή ταχύτητα
15‐Σεπ‐14
(c)
Κωνσταντίνος Χ. Παύλου
9
Προφανώς, σε χρόνο μιας περιόδου (
T
), το σώμα θα διαγράψει έναν πλήρη κύκλο, άρα θα
διαγράψει γωνία 2π.
Συνεπώς, θα έχουμε:
Αν χρησιμοποιήσουμε και τη συχνότητα, έχουμε:
Από τη σχέση της γραμμικής ταχύτητας και της περιόδου έχουμε:
2
2
t T
t
T
1
2
1 2
2
f
T
f
T
T
2
2 2
T
R R
R
T T
Για το χρονικό διάστημα Δ
t = t
2
– t
1
:
t
1
t
2
1
2
1
2
,1
,2
...
...
...
S S
S S
t
t
1
2
1
2
1
2
...
...
...
t
t
Γραμμική
ταχύτητα
Γωνιακή
ταχύτητα
,
j
j
R
R
Κεντρομόλος επιτάχυνση
15‐Σεπ‐14
(c)
Κωνσταντίνος Χ. Παύλου
10
Κατά τη διάρκεια της κυκλικής κίνησης το διάνυσμα της ταχύτητας
διαρκώς αλλάζει κατεύθυνση (υποθέτουμε πως το μέτρο της
παραμένει σταθερό).
Άρα διαρκώς το σώμα θα δέχεται επιτάχυνση, η οποία ονομάζεται
κεντρομόλος επιτάχυνση
.
Τα χαρακτηριστικά της κεντρομόλου επιτάχυνσης είναι:
Σημείο εφαρμογής: το σώμα που κινείται.
Μέτρο:
Κατεύθυνση: ακτινική, προς το κέντρο της κυκλικής τροχιάς. Άρα είναι
διαρκώς κάθετη στη γραμμική ταχύτητα.
Σύμφωνα με τον 2ο νόμο του Newton η κεντρομόλος επιτάχυνση θα
πρέπει να συνοδεύεται από μια (συνισταμένη) δύναμη η οποία
ονομάζεται κεντρομόλος δύναμη.
2
a
R
F m