εικόνα τίτλου

Τριχοτόμηση  γωνίας   - Η λύση του  Ιππία

 

Αν διαβάζεται αυτό το κείμενο τότε δεν βλέπετε το applet και ο  Browser σας  δεν  έχει το Java 2 Runtime Environment .Δείτε τις οδηγίες στην αρχική σελίδα και κατεβάστε το .
Ο σοφιστής  Ιππίας (420π.χ) εμπνεύστηκε μια καμπύλη ,η οποία ονομάστηκε  τετραγωνίζουσα  και ορίζεται ως εξής.

Θεωρούμε ένα τετράγωνο ΟΑΓΔ .Αν το  τμήμα  ΔΓ  αρχίσει να κινείται προς τα κάτω με σταθερή ταχύτητα μένοντας παράλληλο προς το ΟΑ και ταυτόχρονα το ΟΔ να περιστρέφεται γύρω από το Ο με σταθερή ταχύτητα επίσης,  και τα δύο τμήματα φθάσουν ταυτόχρονα στην ΟΑ, τότε τα σημεία τομής τους θα γράψουν μία καμπύλη. Η καμπύλη αυτή είναι η τετραγωνίζουσα .(κάντε κλικ στο διπλανό τετράγωνο να τη δείτε) .

Παρακάτω θα δούμε πως με χρήση της  τετραγωνίζουσας γίνεται η τριχοτόμηση της γωνίας.

 

           
eikona foto1Web2.jpg

Στο  διπλανό σχήμα έχουμε ένα τετράγωνο ΟΑΓΔ.

Θεωρούμε ότι  το τμήμα ΔΓ   κινείται με σταθερή ταχύτητα  υ και το ΟΔ  περιστρέφεται γύρω από το Ο με σταθερή γωνιακή ταχύτητα  ω. Αν  θεωρήσουμε ότι μετά από χρόνο t , το ΔΓ  είναι στη θέση HΖ  δηλ έχει διαγράψει τη απόσταση  ΔΗ , και το ΟΔ έχει γράψει τη γωνία  φ  θα είναι τότε  ΔΗ=υt και   φ=ωt. Θα  είναι τότε:

 

                               eikona sxesi1.jpg            

              Αν  Τ  είναι ο συνολικός χρόνος μέχρι τα τμήματα  να φθάσουν στη θέση  ΟΑ  θα  έχουμε   

                          eikona sxesi2.jpg         Από  τις  (1)  και  (2)  έχουμε 
                                 eikona sxesi3.jpg
     Για  να τριχοτομήσουμε  τώρα την γωνία ΑΟΒ  εργαζόμαστε ως εξής .
   eikona foto2web.jpg
  • Με πλευρά  την ΟΑ  γράφουμε  το τετράγωνο ΟΑΓΔ .
  • Γράφουμε την τετραγωνίζουσα  ΔΖΘΕ
  • Από το σημείο  Ζ  στο οποίο η τετραγωνίζουσα τέμνει την πλευρά  ΟΒ  της γωνίας  φέρουμε παράλληλη στη ΔΓ  η οποία τέμνει την ΟΔ στο Η.
  • Χωρίζουμε το ΟΗ σε τρία ίσα μέρη, ώστε   eikona images/hippias_htm_eqn21831.gif
  • Φέρουμε ΙΘ  παράλληλη στη  ΗΖ.
  • Τότε  η γωνία  ΕΟΘ  είναι  το ένα τρίτο  της  ΑΟΒ.

Πράγματι  σύμφωνα με την παραπάνω σχέση (3)  θα είναι

 

                            eikona sxesi4.jpg Διαιρώντας  τις (4),(5)  κατά μέλη έχουμε   
                 eikona sxesi5.jpg   Δηλ  η   γωνία  ΕΟΘ  είναι το ένα τρίτο της ΑΟΒ

                 Προφανώς  η τριχοτόμηση της γωνίας με αυτό το τρόπο προϋποθέτει  τη κατασκευή της τετραγωνίζουσας, πράγμα που δεν μπορεί να γίνει με κανόνα  και διαβήτη. Μπορούμε να βρούμε όσα σημεία της τετραγωνίζουσας θέλουμε δεν μπορούμε όμως να τη σχεδιάσουμε πλήρως ειδικά το σημείο Ε, όπου τα τμήματα είναι παράλληλα προσδιορίζεται μόνο με όρια .Στο παρακάτω applet  μπορείτε να παρακολουθήσετε  τη παραπάνω κατασκευή. Πατήστε το πλήκτρο " Start".

                                     

Αν διαβάζεται αυτό το κείμενο τότε δεν βλέπετε το applet και ο Browser σας δεν έχει το Java 2 Runtime Environment .Δείτε τις οδηγίες στην αρχική σελίδα και κατεβάστε το .
 

 

 

Back to Top