Θέματα ΑΕΠΠ Έτους 2004 – python

 

Επαναληπτικές Εξετάσεις


 ΘΕΜΑ Γ_1_2004 (Βαθμολόγηση & Αναβαθμολόγηση γραπτού εξετάσεων)

Σε κάποια εξεταστική δοκιμασία κάθε γραπτό αξιολογείται αρχικά από δύο βαθμολογητές και υπάρχει περίπτωση το γραπτό να χρειάζεται αναβαθμολόγηση από τρίτο βαθμολογητή. Στην περίπτωση αναβαθμολόγησης ο τελικός βαθμός υπολογίζεται ως εξής:

Image result for grades funny

  1. Αν ο βαθμός του τρίτου βαθμολογητή είναι ίσος με το μέσο όρο (Μ.Ο.) των βαθμών των δύο πρώτων βαθμολογητών, τότε ο τελικός βαθμός είναι ο Μ.Ο.
  2. Αν ο βαθμός του τρίτου βαθμολογητή είναι μικρότερος από το μικρότερο βαθμό (ΜΙΝ) των δύο πρώτων βαθμολογητών, τότε ο τελικός βαθμός είναι ο ΜΙΝ.
  3. ∆ιαφορετικά, ο τελικός βαθμός είναι ο μέσος όρος του βαθμού του τρίτου βαθμολογητή με τον πλησιέστερο προς αυτόν βαθμό των δύο πρώτων βαθμολογητών.

Να αναπτύξετε αλγόριθμο υπολογισμού του τελικού βαθμού ενός γραπτού με αναβαθμολόγηση, ο οποίος:

  • α. να διαβάζει τους βαθμούς του πρώτου, του δεύτερου και του τρίτου βαθμολογητή ενός γραπτού.
  • β. να υπολογίζει και να εκτυπώνει το μεγαλύτερο (ΜΑΧ) και το μικρότερο (ΜΙΝ) από τους βαθμούς του πρώτου και του δεύτερου βαθμολογητή.
  • γ. να υπολογίζει και να εκτυπώνει τον τελικό βαθμό του γραπτού σύμφωνα με την παραπάνω διαδικασία.
  • Παρατήρηση: Θεωρήστε ότι και οι τρεις βαθμοί είναι θετικοί ακέραιοι αριθμοί και δεν απαιτείται έλεγχος των δεδομένων.


ΘΕΜΑ Δ_1_2004 (Εκλογές Ευρωπαϊκού Κοινοβουλίου)

Σε κάποια χώρα της Ευρωπαϊκής Ένωσης διεξάγονται εκλογές για την ανάδειξη των μελών του Ευρωπαϊκού Κοινοβουλίου. Θεωρήστε ότι μετέχουν 15 συνδυασμοί κομμάτων, οι οποίοι θα μοιραστούν 24 έδρες σύμφωνα με το ποσοστό των έγκυρων ψηφοδελτίων που έλαβαν. Κόμματα που δεν συγκεντρώνουν ποσοστό έγκυρων ψηφοδελτίων τουλάχιστον ίσο με το 3% του συνόλου των έγκυρων ψηφοδελτίων δεν δικαιούνται έδρα. Για κάθε κόμμα, εκτός του πρώτου κόμματος, ο αριθμός των εδρών που θα λάβει υπολογίζεται ως εξής: Το ποσοστό των έγκυρων ψηφοδελτίων πολλαπλασιάζεται επί 24 και στη συνέχεια το γινόμενο διαιρείται με το άθροισμα των ποσοστών όλων των κομμάτων που δικαιούνται έδρα. Το ακέραιο μέρος του αριθμού που προκύπτει είναι ο αριθμός των εδρών που θα λάβει το κόμμα. Το πρώτο κόμμα λαμβάνει τις υπόλοιπες έδρες.

Να γράψετε αλγόριθμο ο οποίος:

  • α. να διαβάζει και να αποθηκεύει σε μονοδιάστατους πίνακες τα ονόματα των κομμάτων και τα αντίστοιχα ποσοστά των έγκυρων ψηφοδελτίων τους.
  • β. να εκτυπώνει τα ονόματα και το αντίστοιχο ποσοστό έγκυρων ψηφοδελτίων των κομμάτων που δεν έλαβαν έδρα.
  • γ. να εκτυπώνει το όνομα του κόμματος με το μεγαλύτερο ποσοστό έγκυρων ψηφοδελτίων.
  • δ. να υπολογίζει και να εκτυπώνει το άθροισμα των ποσοστών όλων των κομμάτων που δικαιούνται έδρα.
  • ε. να εκτυπώνει τα ονόματα των κομμάτων που έλαβαν έδρα και τον αντίστοιχο αριθμό των εδρών τους.

Παρατηρήσεις:

  • α) Υποθέτουμε ότι δεν υπάρχουν δύο κόμματα που να έχουν το ίδιο ποσοστό έγκυρων ψηφοδελτίων.
  • β) Μπορείτε να χρησιμοποιήσετε τη συνάρτηση Α_Μ(x) που επιστρέφει το ακέραιο μέρος του πραγματικού αριθμού x.
  • γ) Τα ποσοστά να θεωρηθούν επί τοις εκατό (%).


Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.