Επίλυση δευτεροβάθμιας εξίσωσης

Αφού είδαμε θεωρητικά το πως μπορούμε να βρούμε τις λύσεις μιας δευτεροβάθμιας εξίσωσης, καλό θα ήταν να το εφαρμόσουμε και στην πράξη

Continue reading «Επίλυση δευτεροβάθμιας εξίσωσης»

Παραγοντοποίηση Τριωνύμου

 

ΑΛΓΕΒΡΑ Γ΄ ΓΥΜΝΑΣΙΟΥ

Παραγοντοποίηση Τριωνύμου
Για να κάνουμε ένα τριώνυμο γινόμενο αρκεί να βρούμε τις ρίζες του χ1 , χ2 και να το γράψουμε α(χ-χ1)(χ-χ2)

Την αλγεβρική παράσταση

    \[\alpha x^2+\beta x +\gamma\]

συνήθως την ονομάζουμε τριώνυμο και νομίζω ότι είναι προφανής ο λόγος αφού όπως βλέπουμε αποτελείται από τρεις μόνο όρους. Τον δευτεροβάθμιο όρο «αx2«, τον πρωτοβάθμιο όρο «βx» και από τον σταθερό όρο «γ». Για το τριώνυμο έχουμε ξαναμιλήσει σε προηγούμενο άρθρο κι έχουμε ασχοληθεί με το πως μπορούμε να βρούμε τις ρίζες του, θυμίζουμε ότι ρίζες του τριωνύμου είναι οι λύσεις της εξίσωσης

    \[\alpha x^2+\beta x +\gamma=0\]

(αν θέλετε να το διαβάσετε αναλυτικά κάντε κλικ εδώ αν θέλετε να θυμηθείτε στα γρήγορα τη διαδικασία κάντε κλικ εδώ να δείτε τη μεθοδολογία).

Τώρα θα ασχοληθούμε με το πως μπορούμε να παραγοντοποιήσουμε ένα τριώνυμο δηλαδή με ποιο τρόπο μπορούμε να μετατρέψουμε ένα τριώνυμο σε γινόμενο. Για την παραγοντοποίηση γενικά έχουμε αναφερθεί προηγούμενα εδώ. Επειδή όμως στο σχολικό βιβλίο η παραγοντοποίηση του τριωνύμου παρουσιάζεται αρκετά αργότερα, δεν το είχαμε αναφέρει καθόλου τότε. Έφτασε λοιπόν η ώρα να ασχοληθούμε και με αυτό το θέμα.

Όταν λοιπόν για κάποιο λόγο χρειαστεί ένα τριώνυμο να το κάνουμε γινόμενο δεν έχουμε παρά να βρούμε τις ρίζες του έστω x1 και x2 και στη συνέχεια να χρησιμοποιήσουμε τον τύπο:

    \[\alpha x^2+\beta x+\gamma=a(x-x_1)(x-x_2)\]

Ας δούμε ένα παράδειγμα: Έστω ότι θέλουμε να μετατρέψουμε σε γινόμενο το x^2+3x-4.

Πρώτα απ’ όλα πρέπει να βρούμε τις ρίζες του και για το λόγο αυτό λύνουμε την εξίσωση

    \[x^2+3x-4=0\]

.

Έχουμε \left.\begin{matrix} \alpha=1\\ \beta=3\\ \gamma=-4\end{matrix}\right\}\Rightarrow \Delta=\beta^2-4\alpha\gamma=3^2-4\cdot 1\cdot (-4)=9+16=25

οπότε οι ρίζες είναι

x_1,x_2=\frac{-\beta\pm\sqrt{\Delta}}{2\alpha}=\frac{-3\pm5}{2}\Rightarrow \left\{\begin{matrix}x_1=\frac{-3-5}{2}=-4\\x_2=\frac{-3+5}{2}=1\end{matrix}

Σύμφωνα με αυτά που αναφέραμε πιο πάνω παραγοντοποιούμε το τριώνυμο με τον τύπο και παίρνουμε

    \[x^2+3x-4=1[x-(-4)](x-1)=(x+4)(x-1)\]

θα δούμε και δύο ακόμη παραδείγματα γιατί πιθανόν να δημιουργήθηκαν απορίες σε ορισμένους από εσάς για το τι κάνουμε στην περίπτωση που δεν έχουμε ρίζες ή στην περίπτωση που το τριώνυμο έχει διακρίνουσα ίση με μηδέν.

Αν ένα τριώνυμο όπως για παράδειγμα το x2+x+1 έχει διακρίνουσα αρνητική (Δ=-3) τότε όπως γνωρίζουμε δεν έχει ρίζες κι έτσι δεν μετατρέπεται σε γινόμενο.

Ενώ αν μας δωθεί για παραγοντοποίηση ένα τριώνυμο όπως το 4x2-12x+9 θα έχουμε

\left.\begin{matrix}\alpha=4\\ \beta=-12\\ \gamma=9\end{matrix}\right\}\Rightarrow\Delta=144-4\cdot4\cdot9=144-144=0

πράγμα που σημαίνει ότι έχουμε δύο ρίζες μόνο που στην περίπτωση αυτή θα είναι ίσες μεταξύ τους. Πράγματι

    \[x_1=x_2=\frac{-\beta\pm 0}{2a}=\frac{12}{2\cdot4}=\frac{3}{2}\]

Έτσι χρησιμοποιώντας τον τύπο που δώσαμε παραπάνω παίρνουμε τελικά

    \[4x^2-12x+9=4(x-\frac{3}{2})(x-\frac{3}{2})\]

το οποίο μάλλον θα ήταν πιο όμορφο αν το γράφαμε έτσι

    \[4x^2-12x+9=4(x-\frac{3}{2})(x-\frac{3}{2})\]

    \[4x^2-12x+9=4(x-\frac{3}{2})^2\]

    \[4x^2-12x+9=2^2(x-\frac{3}{2})^2\]

    \[4x^2-12x+9=\left\{2(x-\frac{3}{2})\right\}^2\]

    \[4x^2-12x+9=(2x-3)^2\]

Παρατηρούμε λοιπόν ότι ο τύπος για την παραγοντοποίηση τριωνύμου «δουλεύει» και όταν Δ>0 (δύο ρίζες διαφορετικές) αλλά και όταν Δ=0 (δύο ρίζες ίσες). Αν και όπως βλέπουμε κι από το προηγούμενο ακριβώς παράδειγμα το4x^2-12x+9=(2x-3)^2 μας δείχνει ότι το τριώνυμο ήταν ταυτότητα αλλά δεν το είχαμε προσέξει. Αυτό όμως είναι κανόνας που ισχύει πάντα «όταν η διακρίνουσα ενός τριωνύμου είναι ίση με μηδέν το τριώνυμο είναι τέλειο τετράγωνο» κι επομένως θα ισχύει

    \[\alpha x^2+\beta x+\gamma=\alpha(x-x_1)^2\]

Συνοψίζοντας λοιπόν όλα τα παραπάνω έχουμε:

 

Το τριώνυμο \alpha x^2+\beta x+\gamma

 

  • αν έχει Δ<0, δεν παραγοντοποιείται
  • αν έχει Δ=0, γίνεται \alpha x^2+\beta x+\gamma=\alpha(x-x_1)^2
  • αν έχει Δ>0, γίνεται \alpha x^2+\beta x+\gamma=\alpha(x-x_1)(x-x_2)

όπου x_1 , x_2 οι ρίζες του.